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______________________________________________________________________ 

Abstract: Traditionally, resource balance has been measured by utilization. Because 100% utilization of  

all resources all the time is impossible, some advocate intentional imbalance so all resources except 

one—the bottleneck (BN)—have enough excess capacity to enable 100% BN utilization. Instead of  

focusing on utilization, we demonstrate that economic balance requires allocating stochastic criticality, 

i.e., permission to fail (PTF), to resources correctly. Exact and approximate economic balance models for a 

simple system with multiple inputs (resources) and one output (product) are presented. The 

approximation allocates PTF in proportion to a measure of  the economic value of  each resource. Both 

models can be used to achieve balanced growth and improvement in hierarchical systems. Numerical 

results demonstrate the robustness of  the approximation. We also study the merit of  pursuing 100% BN 

utilization. 

Keywords: Management by constraints (MBC), newsboy problem, risk, stochastic economic balance, 

theory of  constraints (TOC). 

______________________________________________________________________ 

1. Introduction 

deally, capacity balance implies fully utilizing all the resources all the time. We refer to 

this as naive balance. Naive balance works very well in perfectly designed systems that 

have no variation and no scheduling conflicts. That is, it doesn't. A related approach is 

balancing utilization perfectly at some level below 100%, e.g., 80%. In general, however, 

focusing on utilization neglects important stochastic aspects of  system behavior, such as 

on-time performance. Considering randomness more explicitly, we define simple balance as 

letting each resource be equally likely to limit the system; i.e., all parts of  the system have 

the same permission to fail (PTF). In sharp contrast to both simple balance and balanced 

utilization, some authors advocate pursuing 100% utilization on one resource, the bottleneck 

(BN) (Goldratt [6]). Equivalently, this allocates 100% PTF to the BN (because no other 

resource is allowed to limit the system). This requires subordinating the whole system to 

the needs of  the BN to make sure that it will neither starve nor get blocked. We refer to this 

as BN-subordination. BN-subordination is touted to improve upon JIT, and adopts the JIT 

principle of  seeking balance in terms of  a smooth flow of  materials in the system 

(Schonberger [14]). To address stochastic issues, the JIT approach combines proactive 

variance reduction and protection by appropriate buffers. These include [often large] 

I

                                                 
*
 “Make everything as simple as possible, but not simpler” (Albert Einstein). 

“Celestial navigation is based on the premise that the Earth is the center of  the universe. The premise is 
wrong, but the navigation works. An incorrect model can be a useful tool” (Kelvin Throop III, as quoted in 
FamousQuotations Network). Paraphrased as: “All models are wrong, some models are useful.” 
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capacity buffers and [ostensibly very small] WIP inventory buffers. For example, Toyota 

treats machines as a cheap resource that should rarely be allowed to limit the system: their 

labor cost is roughly five times higher, so they prefer idle machines over idle workers, and 

machine utilization is not even measured. In contrast, their combative attitude to WIP is 

well known—motivated, inter alia, to support variance reduction (Shingo [15]). Under 

BN-subordination, WIP inventory buffers are specified, but only in front of  the BN. 

Furthermore, allowing large capacity buffers on all non-BN resources, as BN-subordination 

does, also fits Toyota's model. But BN-subordination departs from JIT by espousing an 

intuitively attractive but flawed focusing principle (Trietsch [20]). For this reason, to the 

extent that BN-subordination differs from JIT, it is fallacious. Mukherjee and Chatterjee 

[11] suggest that a careful definition of  the term “bottleneck” can help clarify the issue. 

They assume a deterministic environment with discrete capacity decisions and scheduling 

conflicts and define a bottleneck as a resource whose average shadow price is positive. Earlier 

academic papers that seek to balance the utilization of  non-BN resources while adopting 

BN-subordination (under the assumption that the bottleneck is simply the most constrained 

resource) include Atwater and Chakravorty [1] and Ronen and Spector [13].  

 The main focus of  this paper is on correct balance given the variation in the system. 

We seek economic balance between resources, to maximize profit while accounting for 

their cost. Although—unlike Mukherjee and Chatterjee [11]— we focus on stochastic 

variation and allow continuous capacity increases, our approach—like theirs—can be 

described as adjusting shadow prices to match economic expansion costs. A secondary 

focus is on BN-subordination. Although we present some analytic results, our main 

purpose is to find useful approximations. We believe this to be of  significant value because 

all useful management science models involve approximations, at the very least in the 

degree to which they model reality and in the estimation of  parameters. In stochastic 

analysis, approximations have been used extensively, e.g., using diffusion models based on 

high traffic assumptions to analyze queueing systems. This is also true for papers related to 

our subject. For instance, Bradley and Glynn [4] use diffusion to study the correct balance 

of  production capacity and finished goods inventory (FGI) in a make-to-stock system with 

a single machine and a single product. They obtain asymptotically optimal approximate 

closed-form expressions. The approximation remains valid even for moderate traffic, and 

only fails at low traffic volumes (i.e., when FGI is relatively expensive). Trietsch [17] 

addresses a wider production system with multiple resources and several products subject 

to long-term demand variation. Harrison and Van Mieghem [7], independently, present a 

similar model. Trietsch and Buzacott [18] discuss the results of  Trietsch [17] in a 

hierarchical context (and much of  this paper is based on it). Van Mieghem and Rudi [23] 

generalize the results of  Harrison and Van Mieghem [7] to multi-period multi-process 

networks. Van Mieghem [24] surveys such results and provides further references. The last 

six sources, in different ways, yield newsboy-type results: Optimal decisions involve optimal 

probabilities of  shortage (i.e., PTFs) determined by long- and short costs. The long costs 

are associated with safety buffers, and the short cost is the penalty for not having enough 

safety. 

 Whereas our focus is on capacity and capacity buffers, there is a dual problem that is 
concerned with safety time, seeking to minimize the total expected delay penalty and 
holding costs of  an assembly. This problem has been solved by an exact generalization of  
the newsboy model. For completeness, we will summarize this solution later. Our first 
capacity model is a straightforward extension of  the same generalized newsboy model. It 
assumes that capacity can be increased by a constant without changing the distribution. For 
example, this assumption is correct when we can outsource some load at a fixed price per 
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unit, in which case the net effect is equivalent to adding a constant to our true capacity. Our 
second model is approximate (except in special cases), and based on a different assumption 
about stochastic expansion. However, numerical evidence suggests it is more robust than 
the analytical model when we don't know which assumption to use. It is also easier to 
estimate the necessary parameters for it. Thus our main new result is this second model. 
Our results are more complete than former contributions, because we explicitly include 
more types of  resources—not just those that are conventionally recognized as production 
resources. Specifically, we include both supply and demand as high level resources— 
seeking to maximize min{supply, demand} subject to a budget constraint on resources. 
Including demand in the model is justified because for any organization the throughput is 
determined by both supply and demand and every organization has tools to influence both 
supply and demand. In addition, unlike Bradley and Glynn [4] and Harrison and Van 
Mieghem [7], we do not require a high traffic assumption and we use a richer model for 
stochastic expansion that considers the effects of  expansion on the variance and not just on 
the mean. Last but not least, our models are designed for hierarchical systems: any group 
of  resources can be combined to one resource that is then subject to the same balance 
conditions. Thus we obtain a focusing tool for continuous improvement efforts and for 
growth, all within hierarchical systems. However, although the first model can be extended 
to the multi-product multi-period case (by interpreting results previously obtained by 
Trietsch [17]), we limit our scope here to the single product. 

 Section 2 presents examples illustrating how and where our models can be applied, 
and that they may be useful in spite of  their simplicity. Technically, this section may be 
skipped without loss of  continuity. Section 3 presents the dual model. Section 4 defines the 
problem formally and develops the models. Section 5 discusses the potential gain associated 
with moving towards balance. Section 6 addresses risk and how to account for negative 
investments. It also shows how to solve for tight resources that cannot be expanded in the 
short term and the question is how much capacity to provide on adjustable resources (i.e., 
how to balance a system with an immutable BN). Section 7 presents numerical results 
demonstrating the quality and robustness of  the models, and compares the results to simple 
balance and to BN-subordination. Section 8 illustrates the use of  our main models for 
designing a balanced new facility. Section 9 is the conclusion. 

2. Example 

Our first example is loosely based on a classic application of  the machine interference 

model. When a thread breaks on an automatic loom, it stops and a light (andon) indicates 
that the machine requires service by a sider. The sider rethreads the yarn in the spindle and 
restarts the machine. Suppose there are s siders and m ≥ s machines that may require service 
at random. This defines a queueing system with s servers. Let πk denote the long-term 
frequency of  observing k machines in the queueing system, i.e., (k − s)+ machines in queue 
and (s − k)+ idle siders (where y+ = max{y, 0}). Let the periodic cost of  increasing the 
machines capacity by one throughput unit be P, and let the analogous cost of  siders be C. 
For large m and s (i.e., in the limit as they approach infinity), we can show that the 
conditions of  our generalization of  the newsboy model (Section 3, Theorem 1) are satisfied. 
If  so, the optimal frequency at which we should observe a queue is C / (P + C). 
Theoretically, it may be possible to calculate the optimal number of  siders and machines 
analytically, but it is more useful to think about this as a system that can be managed by 
trial and error. Just monitor the frequencies and add or subtract siders (or machines) as 
necessary. This approach, perhaps in conjunction with simulation, is more practical for 
more complex systems. If  we limit ourselves to positive investments (e.g., adding machines 
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or siders), the result is balanced growth. 

 A machine interference instance with high stakes (billions of  dollars), is balancing the 
capacity of  shipyards and the number of  ships in a large navy. Here, shipyards are 
analogous to siders, and ships to machines. If  repair (and refurbishing) capacity is reduced 
too much, repair time increases and more ships are tied up, thus reversing any savings and 
turning them to losses. Trietsch [22] reports examples of  this sort that involved very high 
levels of  waste due to lack of  balance. These examples also demonstrate that it is important 
to devise balancing methods that can be implemented seamlessly in hierarchical systems, as 
we suggest here. 

3. The Dual Problem 

Consider the assembly coordination model (ACM) of  optimizing the schedule of  
ordering parts for an assembly to minimize the expected completion time or an expected 
linear delay penalty, while accounting for the holding costs associated with early deliveries. 
Our primal capacity balance problem looks at throughput per time unit, while the ACM 
concerns processing time for a given throughput. Maximizing the former is dual to 
minimizing the latter, which is why we refer to the ACM as the dual problem. For 
completeness, we summarize here results for the dual problem obtained independently by 
Chu et al. [5], Kumar [9] and Ronen and Trietsch [12].  

 Let an assembly have n parallel inputs with independent stochastic supply lead times 
Yi (i = 1,…, n) with marginal cumulative distribution function (CDF) Fi (y) and probability 
density function (PDF) . Assume that once all inputs are in the assembly is 
instantaneous. Let T = {Ti | i = 1,…, n} be a vector of  the ordering times of  the inputs (Ti 
is also known as the gate of  input i ). Assume that Yi is stationary; i.e., it is not a function of  
Ti. Therefore, input i arrives at time Ti + Yi, which is a random variable. If  the assembly has 
a due date, it is useful to model it as a gate, T0, and set Y0 = 0. The gates are our decision 
variables but T0 may be dictated exogenously. Specifically, by setting T0 = 0 we can 
communicate a desire to finish the assembly as early as possible while a larger T0 implies 
that the assembly is not considered complete until T0 even if  all the physical inputs have 
arrived. That is, the completion occurs with the last arrival, at time maxi = 0, 1,…,n{Ti + Yi}. 
Let ci ≥ 0 (i = 1,…, n) be the economic cost (gain) of  decreasing (increasing) Ti by one time 
unit; e.g., incurring holding costs on input i if  it arrives too early. ci is restricted only to 
marginal costs that can be influenced by scheduling: as a rule, fixed charges should not be 
included. c0 ≥ 0 is the assembly tardiness penalty per time unit; i.e., the tardiness penalty is 
c0[maxi = 0, 1,…,n{Ti + Yi} − T0]

+. Define s = : s represents the assembly time-unit 
value. The objective function is to minimize the expected total holding cost of  all n inputs 
from their start until the assembly is complete plus the expected tardiness penalty, i.e., to 
minimize Z = (maxi = 0, 1,…,n{Ti + Yi} − (Ti + Yi))], where Y0 = 0. It can be 
shown that 

( )if y

0,1,...,i n ic=∑

0,1,...,E[ i n iZ == ∑ c

dw.
∞

=

⎡ ⎤− − + − −∑ ∏∫ ⎢ ⎥⎣ ⎦
0

nn

0 i
i 1 1T

  ( ( )) s 1 F (w )  i i i iZ  = c T T E Y T  

Taking partial derivatives by Ti, 

∞

≠

∂
− − −∏∫

∂
0

i k
k  iT

s (w )  (w ) dw.f Fi ki

i

 Z
  =    +  c T T

T
 

Observe now that the integral in the partial derivative gives the probability that input i 
will be last, or, the criticality of  this input (denoted by pi): fi is the density of  the probability 
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that input i will arrive at time w and the product of  the remaining CDFs is the probability 

that the other inputs will have arrived before (Chu et al. [5]). If  we use stars to denote 
optimal values, then we can say that for T* this integral is pi*. For i = 1,…, n, it follows that 

if  Ti* > 0 then pi* = ci /s (to set the partial derivative to zero) and otherwise we must have 

pi* ≥ ci /s: if  pi* < ci /s would occur at a constrained Ti* = 0 gate, we could open the gate 
later and increase the derivative towards zero—a contradiction. For constrained gates, the 

true economic time value of  input i (i = 1, …, n) is not ci but vi* = pi*s ≥ ci. Thus, the 

optimal gates satisfy the following generalized newsvendor result: pi* = vi*/s (so if  a gate is 
not constrained its optimal criticality is ci*/s ). The implication is that if  a gate is 

constrained its criticality must be increased at the expense of  the optimal criticality of  gate 

0, and not at the expense of  the criticality of  any other gate. Consider that the service level 
of  the assembly’s on-time performance is 1 − p0*, and if  no gate is constrained it should be 

given by SL0 = 1− c0/s. Thus if  one or more gates are constrained, the optimal assembly 

service level is smaller than 1− c0/s. When no gates are constrained it is easy to see that this 
result is a straightforward generalization of  the newsboy model for n inputs, suggesting that 

the optimal criticality of  an input should be proportional to its marginal time unit cost. In 

Trietsch and Quiroga [19] we demonstrated how this optimality condition can be used for 
an efficient simulation-based search that converges to the optimum very quickly. 

(Subsequently, Trietsch [21] extended this generalized newsboy optimality condition for 

project feeding buffers without requiring statistical independence between inputs.) 

4. Optimal Economic Resource Balance 

Henceforth, we will use the term production to refer to manufacturing or to providing 
service. For our purpose, the product represents an aggregate mix of  individual sub-products, 
and the latter may include manufactures, software, services, etc. We define the total 

production system (or just system) as the collection of  all the resources that are required to 
produce, sell and service the product. Emphatically, marketing and sales compose such a 
resource. Conceptually, we can produce demand, not just supply, so both are endogenous. 
But our inclusion of  demand as an endogenous product, mathematically isomorphic to any 
other part of  the total product, is in sharp contrast to most sources; e.g., Atwater and 
Chakravorty [1], Goldratt [6], Harrison and Van Mieghem [7], Lawrence and Buss [10], 
Mukherjee and Chatterjee [11] and Ronen and Spector [13] all treat demand as exogenous. 
In general, balance may be achieved by a (possibly negative) investment or expenditure (e.g., 
adding machines or hiring more operators). But it may also involve an adjustment (e.g., 
setting prices). For convenience, henceforth we use the term "investment" for investments, 
expenditures, and adjustments; and we'll interpret the term "to invest" accordingly. For 
example, the "investment" involved in price discounting (to increase selling capacity) is the 
reduced income on items that could have been sold at full price. Also, we will express all 
investments in amortized terms; e.g., in $ per month. 

 Let a total production system comprise n resources, Ri (i = 1,..., n), each with a 
random periodic capacity, Xi, such that the output of  the system is min{Xi}. We note now 

that if  there is a quota defining the maximal desired throughput we could model is as 

another resource, R0, which is analogous to the due date, T0, in the dual problem. 
Nonetheless, although we will occasionally use the index 0 to denote the total net 

throughput, regardless of  whether it is subject to a quota or completely random, our default 

is to exclude R0. Let Fi (x) and fi (x) be the CDF and density function of  Xi with mean μi and 
standard deviation σi. We assume statistical independence between periods and between 

resources. Because periods are independent, it suffices to focus on one period only 

(Harrison and Van Mieghem [7]). Let ci be the marginal cost of  expanding μi by one unit 
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per period. As in the dual problem, in our first model we assume that this expansion will 

not affect σi, but we will release this assumption for the second model. (In the dual problem 
the assumption is true when the distribution is stationary but in our primal problem it 

implies that we can increase capacity without increasing the variance, which is rarely true 

in practice. Let Δi be the amount by which μi is expanded. Because changes in μi are 
captured by Δi, for the purpose of  analysis we will treat μi as a constant. Accordingly, let 

Fi|Δ(x) denote the CDF of  Xi after increasing μi by Δi. In general, Δi ≥ −μi, but often either Δi 

≥ 0 is required or ci is much lower for Δi < 0; i.e., some investments are difficult or 
impossible to reverse. We ignore this issue for a while. Let qi = ci / Σcj (we may omit 

summation limits, indices, etc. when they are implicitly clear; e.g., here, j = 1,…, n). That is, 

qi is the normalized marginal cost of  increasing μi such that Σqi = 1. Notice that qi is 
analogous to the unconstrained pi*, or ci / s, of  the dual problem. Similarly, let Qi = ci μi / 

Σcj μj ; i.e., Qi is the relative marginal value of  Ri, and ΣQi = 1. The model we obtain is 

maximize Z = E(mini = 1,…, nXi) 

s.t. Σi = 1,…, n ci Δi ≤ b 

Xi ~ Fi (x|Δi); i = 1,…, n. 

That is, we seek to maximize the expected throughput, defined as the minimum of  n 

inputs, subject to a budget constraint. When the system is potentially profitable, we need 

the budget constraint to avoid unbounded solutions. Otherwise, zero capacity is the trivial 

optimum. Henceforth, we assume that the system is profitable (when balanced). Therefore 

the budget constraint is binding. The pursuit of  maximal profit subject to the budget leads 

to an optimal tradeoff  between resource capacities. We refer to this tradeoff  as economic 

balance (Lawrence and Buss [10]).  

 Because we address a single aggregate product, some of  the variation in Xi is due to 

periodic variation in the product composition. Hopp and Spearman [8] identify such 

variation as the cause of  the floating bottleneck phenomenon (or shifting bottleneck). The 

purpose of  BN- subordination is to prevent BN-shifting. In contrast, both JIT and the 

related CONWIP and CAPWIP (ibid, but with a system-wide cap) expect BN-shifting and 

make no attempt to control it. Indeed, this is the main distinction between 

BN-subordination and CAPWIP. (Our study of  BN-subordination here does not include 

the elements that it shares with CAPWIP.) 

Modeling Hierarchical Systems 

 A basic system has a single hierarchical level with n resources. But realistic resources 

can comprise lower level components and compose higher level aggregates; e.g., 

manufacturing belongs to the total production system at the higher level and comprises 

many resources at several lower hierarchical levels. To enable hierarchical analysis, we 

allow partitioning the n resources to K ≤ n non-empty sets, denoted by Rk; k = 1,..., K. Each 

such set yields a composite resource. We use bold letters to denote values or functions of  

composite resources; e.g., X1 is the minimum of  the resources in R1. Composites of  

composites are also allowed. By the stochastic independence assumption, Fk(x) = 1 − Π(1 − 

Fi) (∀i∈Rk), and 

( )( ) ( )( )
∞ ∞

∈
− −∏∫ ∫μ

k

ik
i0 0 R

 = 1 x  dx = 1 x  dx.FkF  

When we invest in a composite resource, there are infinitely many ways to allocate the 
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investment to the parts. We refer to any rule governing such allocations as a set-allocation 

rule. Specifically, the simple set-allocation rule is Δi = Δj (∀i, j∈Rk). It implies qk = Σqi 

(∀i∈Rk). The proportional set-allocation rule is Δi / μi = Δj / μj and Qk = ΣQi (∀i, j∈Rk). In 

practice, we will often invest in the single most attractive resource, which is yet another 

set-allocation rule. For any set-allocation rule, given either qk or Qk we can compute Qk or qk, 

respectively. Given a set-allocation rule, for all intents and purposes each composite 

resource behaves as a single resource. Accordingly, we will consider Ri as either a single 

resource or a composite resource, and we will use the notation Rk only where it is important 

to show the distinction. For convenience we refer to the whole set of  resources by R0. For 

example, the utilization of  Ri, denoted by Ui, is μ0 / μi (since Z = μ0). Finally, we define the 

Ri-partition by setting R1 = Ri and R2 = R0 − Ri, where some set-allocation rule applies to R2. 

We will use the Ri-partition to generalize n = 2 results to any n. 

Modeling Stochastic Expansion 

Lemma 1: There exists an expansion function gi(x, Δ) (more precisely gi(x, Δi)) such that,  

( )i x,0 = x.g1.    

( ) ( )( ) ( )( )Δ Δ Δi| i|0 ii i
2.   x = x, = x, .g gF F F  

( )( ) ( )( )( ) ( )( )
∞ ∞ ∞

Δ− − Δ −∫ ∫ ∫i| i ii
0 0 0

3.   1 x dx = 1 x, dx = 1 x dx + .gF F F Δ  

(All proofs are given in the Appendix.)  

By specifying gi(x, Δ) we effectively prescribe the exact way in which a distribution is 

changed during capacity expansions. If  Fi | Δ(x) ≥ Fi | Δ + ε(x) (∀ ε > 0, Δ > −μi), the expansion 

is proper. By definition, after a positive (negative) proper expansion, capacity increases 

(decreases) in the strict stochastic sense. A function gi(x, Δ) is proper if, for any admissible x, 

gi (x, Δ) ≤ x for any Δi > 0 and gi (x, Δ) ≥ x for any −μi < Δi < 0. Proper expansion implies 

proper gi(x, Δ) and vice versa. If  gi (x, Δ) is proper and differentiable, then ∂gi / ∂Δ ≤ 0 (∀Δ > 

−μi). Let gi
κ(x, Δ), or simply gκ, denote the following proper expansion function, 

( ) ( )( )κ μ
μκ κ κ

μ
− − ≤ ≤ Δ > −Δ Δ

Δ
 ;  .i

i i i i i i ii
ii

x,  =  x  + 1 x  ;  0 1g
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Taking ∂gi / ∂Δi and evaluating it for Δi = 0, 
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∂ ∂Δ Δ− − − ⇒ − −
∂ ∂Δ ΔΔ

2
.
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i ii ii
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i i iii
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+
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g0 yields simple expansion, constituting a lateral shift of  the distribution by a constant. 

g1 yields proportional expansion, which involves scaling the argument. Proportional 

expansion satisfies Condition 3 of  Lemma 1 because the scaling applies to the mean too. 

Likewise, gκ conforms to the condition for any 0 ≤ κi ≤1. Let CVi = σi /μi be the initial 

coefficient of  variation, and suppose that after expansion σi is increased by κiCViΔi. gi
κ 

achieves this. The limits 0 ≤ κi ≤1 are justified as follows. κi < 0 would imply a decrease in 

the standard deviation during expansion, which is rarely likely. κi = 1 implies constant CVi, 
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and it applies if  we essentially scale every important ingredient of  the capacity. If, however, 

we increase capacity by adding incremental capacity units in parallel to existing ones, then 

CVi should decrease. Considering the practical difficulties involved in estimating Fi(x) even 

without attempting to estimate gi (x, Δ), the use of  gκ is an appropriate approximation. 

Although limiting gi (x, Δ) to gκ is a strong restriction, practically all sources just use g0! 

Criticality and Optimal Permission to Fail (PTF) 

Analogously to the dual case, we define pi = Pr{Xi ≤ Xj; ∀j ≠ i}—the probability that Xi 

will be the minimum—as the criticality of  Ri. With continuous distributions, Σpi = 1 and pk 

= Σpi (∀i ∈ Rk). Below, we use "*" to denote optimal values and "a" superscripts for 

approximate values; e.g., T* ≈ Ta. By definition, pi* (pi
a) is the optimal (approximate) PTF 

that should be allocated to Ri. 

Lemma 2: For n = 2, a necessary condition for optimality is given by 
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Lemma 3: For any n, if  the expansion function is simple (proportional) and the simple 

(proportional) set-allocation rule is used for all j ≠ i, then 

( )
∗

⎛ ∂ ⎞Δ∝ ≤ ∀⎜ ⎟∂Δ⎝ ⎠

iii
i j

ii
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q
  

p
∀ . 

By Lemma 3 and Equation 1, for gκ (κ = 0, 1) with μi = μi*, qi / pi* is proportional to 
κiE(Xi | Xi ≤ Xj;∀j) / μi + (1 − κi). This leads to two simple optimal expressions as follows. 

Theorem 1: When κi = 0 (∀i), with general Fi(x), pi* = qi.   

Theorem 2: Let the resources have exponential distributions with κi = 1 (∀i), then pi* = Qi.  

Theorem 2 implies allocating the budget to resources in proportion to iq . This 

yields μi*∝1/ iq  and Ui*∝ iq . The average utilization is 1/n (so much for naive 

balance!). Although the exponential distribution is a special case, we can also conclude that 
it is impossible to achieve balanced utilization with arbitrarily prescribed Ui.  

Theorem 3: When gκ applies, the objective function, Z, is concave.   

Heuristic Approximations for κ ≠ 0 

When κi = 0 (∀i), by Theorem 1, pi* = qi (as in the dual case). Otherwise, either to 

implement exact models or to obtain accurate simulation results, we need exact 

information on all distributions and expansion functions. The availability of  such 
information in practice is not likely, however. To see this, consider that every period we can 

find the true capacity of  one resource only, the minimal one. All we know about the 

remainder is that they could have delivered more, potentially. That is, the data is censored 
(unlike the dual problem case). As for estimating gi(x, Δ), by limiting ourselves to gκ we can 

simplify the task considerably, but it is still difficult in practice. Therefore, (i) we need 

heuristics that do not require so much information, and (ii) robustness to gi(x, Δ) is 
important. 
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 With this in mind, when we know that κi ≈ 0 (∀i), pi
a = qi is suitable. When we know 

that κi ≈ 1 (∀i), we recommend pi
a = Qi. More generally, we could propose the mixed heuristic, 

pi
a ∝ κiQi + (1 − κi)qi, where the proportionality becomes an equality if  κi = κj (∀i, j) (or if  we 

just select a single value κ for all resources). Nonetheless, for simplicity we propose the use 

of  pi
a = Qi as the default, to be replaced by pi

a = qi only when we know that all κi are very 

low (say 0.25 or below) for all i. Numerical experiments suggest that pi
a = Qi is a robust 

choice when κi is not known. It is the best approximation we have for κi = 1 and performs 

well for κi = 0, while pi
a = qi is not robust for κi > 0 (see Section 6). Furthermore, consider 

that small κi is not likely in practice except in large systems. However, if  we have many 

resources—a case likely in relatively large systems—then the gradual addition of  more 

resources to increase capacity leads to low κi. For example, suppose we have m identical 

machines in parallel and we add one more in parallel, the total capacity will increase by 1 / 

m and when m is large κi ≈ 1 / 2m. (This is why, when s and m are large, Theorem 1 applies 

to the machine interference example in Section 2.)  

Theorem 4: For κi = 0, Qi → pi* as b → ∞ (i.e., as the budget grows, pi
a = Qi is 

asymptotically optimal for κi = 0).   

 If  we stipulate that pi
a = Qi is a good heuristic for κi = 1, it can only improve with size 

for κi < 1 (as it does for κi = 0 by Theorem 4). Thus, the use of  pi
a = Qi (rather than qi or a 

mixture of  Qi and qi) is supported. Furthermore, typically, the model will be applied within 

a subsystem, say R1, and it is important to assign the correct PTF to the subsystem as a 
whole (at least approximately). The use of  Q1 is feasible: if  all else fails, we can simply use 

estimates of  the value of  the subsystem and of  R2 (the rest of  the system) in lieu of  c1μ1 and 

c2μ2. In contrast, the information required for estimating q2 is rarely available. Within the 
subsystem, however, we have the option to use any pi

a (e.g., pi
a ∝ qi) and employ any 

set-allocation rule (e.g., the simple set-allocation rule). The following theorem does not 

require the conditions of  Theorem 3 (or it would be redundant due to concavity). 

Theorem 5: For any vector {pi
a} and budget there is a unique vector {μi

a} that satisfies it.  

 In summary, our heuristics require monitoring adherence to {pi
a}. We consider 

adjusting Ri only upon evidence that pi does not match pi
a. By Theorem 5, they lead to 

unique results regardless of  the exact sequence of  expansions we use. Our main heuristic, 

pi
a = Qi is robust for any gi. Since {pi} is the only required input, both heuristics are 

parsimonious. 

5. The Economic Return on Balance 

For n=2, assume that Δ1 is measured relative to μ1* and Δ2 relative to μ2*. Therefore, 

for Δ1=Δ2=0 the budget constraint is satisfied as an equality. To maintain the budget 

constraint intact we must have Δ2 = −Δ1c1/c2 = −Δ1q1/q2. Substituting this for Δ2, the 
objective function is, 

( )( )( )
∞ ⎛ ⎞⎛ ⎞⎛ ⎞

− −⎜ ⎟⎜ ⎟Δ Δ Δ∫ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
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Using Ri-partitioning, Δ1 may be replaced by any other Δi. Until further notice, assume 

simple expansion, where ∂g1
0/∂Δ1 = ∂g2

0 / ∂Δ2 = −1. Therefore, dZ / dΔ1 = −p1 + p2q1/q2 
(and—since n = 2 — p2= 1−p1 and q2 =1−q1). Away from the optimal solution, this yields (q1 

− p1)(1+q1/q2) = (p1*−p1)/p2*. 

 We now consider two special cases. First, in Case 1, R1 is deterministic while F2(x) is 

general. Case 1 is very similar to the classical newsboy model—but to change the 

deterministic capacity we must also shift the stochastic one (to avoid violating the budget 

constraint). Case 2 involves two normal variables. In both cases, except for a simple lateral 

shift, the distribution of  the difference variable X2 − X1 is invariant to Δ1. In Case 2, X2 − X1 is 

a normal variable with μ = μ2 − μ1 and σ2 = σ1
2 + σ2

2. If  we increase (decrease) μ1 by Δi 

(while maintaining the validity of  the budget constraint) the mean of  this distribution 

decreases (increases) by Δ1(1+q1/q2), but the variance, and therefore the shape, does not 

change. The same result applies for Case 1, where the CDF of  the difference variable is 

identical to the CDF of  R2, except for a lateral shift. Let h(Δ1) denote the density function 

of  the difference variable, in both cases. We then obtain dZ/dΔ1 = Δ1(1+q1/q2)h(Δ1) = 

Δ1h(Δ1) / p2* (because this expression measures the change of  p1 as a function of  Δ1). When 

we take the integral of  this derivative from 0 to Δ1 we obtain the loss associated with 

missing the optimum. If  h() is fairly constant or monotone between h(0) and h(Δ1), the loss 

for small Δ1 is given approximately by ((p1*−p1)(1+q1/q2))
2/2h(2Δ1/3) ≈ (Δ1/p2*)2h(2Δ1/3)/2 

(because p1*−p1 ≈ Δ1h()). 

 In the general g0 case, there must exist a function h(Δ1) that measures the rate of  
change of  p1, and the loss will still be given approximately by (Δ1/p2*)2h(2Δ1/3)/2. But the 
density of  the difference variable will only be an approximation of  h(). Likewise, if  we 
generalize this expression to g1, by a similar analysis, the loss is proportional to ((p1*−p1)(1 
+Q1/Q2))

2/2h(2Δ1/3) for a similar positive function h(). Arthanari and Trietsch [2] gives a 
graphical representation of  the economical gain as calculated above. This can help 
managers focus on the best opportunities. 

Optimal Growth 

Alternatively, suppose the system starts in-or out of  balance, and we wish to invest a 
small positive incremental amount, b, in one of  the resources, say R1. This model is natural 
when Δi ≥ 0 applies and when it is not feasible or desirable to divide the budget to many 
resources. Then, 

 
( ) ( )( ) ( )( )( )1 2 1

1 1 2 21 2
01 1

Z , g
 =   x, 1 x, dxg gf F1

 
  v

∞∂ ∂Δ Δ≡ − −Δ Δ∫
∂ ∂Δ Δ

,  (2) 

where Z is now a function of  both Δ1 and Δ2 because we do not trade them off  directly. We 

are primarily interested in the immediate net benefit by investing b in R1, under the 

assumption that the increment is very small. The net marginal benefit is given by 
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dx.  (3) 

By Ri-partitioning, Equation 1 actually defines a value vi for any i. vi is the marginal 
benefit associated with increasing Ri. The best single resource is selected by maximizing vi/ 
ci, as per Equation 2 (when a balanced system is profitable, max{vi/ci} ≥ 1, so this 
investment will be attractive). If  we do this in a balanced system, with really small 
increments, then in terms of  first order effects it should not matter which resource we invest 
in. But otherwise the resource whose net marginal return is maximal will receive the 
investment, thus leading to better balance. A succession of  small incremental investments, 
each in the best single available resource, will tend to keep the system approximately 
balanced while it grows. 

Optimal Adjustment 

 Suppose we are still interested in the effects of  a small change in a single resource, but 
we also allow a negative budget, i.e., we allow disinvesting. In general, the marginal gain by 

reducing capacity (i.e., the salvage value), denoted by c−i, should satisfy c−i ≤ci (or we could 

make unbounded profits by buying capacity cheap and selling it dear). vi/ci −1≤0 is 
necessary for disinvestment, but we also require c−i /vi−1≥0. Because c−i ≤ci, the combination 

vi/ci  −1≤ 0 and c−i /vi −1 ≤ 0 is possible, in which case Ri is stable: its criticality is not high 

enough to justify investment and not low enough to justify disinvestment; Harrison and 
Van Mieghem [7] identified an indifference region that speaks to the same issue. Therefore, 

maintaining balance on an ongoing basis does not require adjusting all resources 

periodically. 

6. Negative Investment and Risk 

Common financial practice imposes a minimal expected return on investment, i.e., a 
hurdle, to justify risk-taking. Conceptually, this is just a buffer, but here we assume the 
hurdles are determined exogenously. When we take into account the ability to sell capacity, 
if  c−i = ci, there is little or no risk: we can reverse the investment at zero cost. But if  c−i < ci, 
risk should be accounted for. Since different investments entail different risks and different 
hurdles, we should modify each ci separately. For example, if  for a positive investment in Ri 
the hurdle is 10%, we multiply the true, or "raw," ci by 1.1 before using it. vi is measured in 
expected throughput units, so vi/ci ≥1 (where ci is modified) iff the hurdle is satisfied. When 
disinvesting, there are two risks: (1) the return may be less than expected, and (2) we may 
regret the decision later. So we have to reduce c−i relative to its raw value (in contrast to 
increasing ci). Again, c−i /vi ≥1 iff the hurdle is satisfied. Thus risk increases stability.  

 Now consider the effect of  a budget constraint in a profitable system. Profitability 
implies meeting or beating all hurdles. We assume binding budget constraints, so the 
Lagrange multiplier associated with the budget should exceed 1 (money is "expensive"). To 
achieve appropriate balance this multiplier inflates all ci and c−i values in such a manner that 
the budget becomes binding. Here, in contrast to the former result, c−i should be inflated too, 
because it is a source of  funds and the binding budget constraint increases their value (we 
can disinvest in one resource and invest the proceeds in another). Henceforth we assume 
that {ci} and {c−i} are first modified to incorporate appropriate hurdles and then adjusted by 
the multiplier. 

Adapting the Heuristics for c−i < ci 

Let  be a set of  expansion costs such that { }a
ic − ≤ ≤ ∀ ( )a

i i ic c c i , and define 
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= ∑/a a
i i

aq c c j and μ μ= ∑/a a a
i i i j jQ c c . Suppose we partition the resources to three sets, R1, R2 

and R3 such that for all Ri ∈ R1, pi [as measured] < a
ip ; for all Ri ∈ R3, i> a

ip p

).

i

; and Ri ∈ R2 
iff Ri is stable. By construction, R1 (R3) calls for negative (positive) investments, and thus 
should be associated with R2 should have a value between c−i and ci, 
such that 

−= =(a a
i i i ic c c c a

ic

= .a
ip p We can now replace our main (secondary) heuristic, = ( )a

i i ip Q q  by 
= ( ).a a a

i i ip Q q The following linear program yields {  and identifies the partition. , 
and  are the decision variables. Constraint 3 is for i

}a
ic a

ic
+
ix −

ix =a
i

ap Q  and constraint 3a is for 
= .a a

i ip q  (We can merge the two alternative constraints by a convex combination as per κi, 
to make possible using the mixed heuristic, a

ip ∝ κiQi + (1 − κi)qi.) 
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n n
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a +
i i i i i    ,    0c c c x x  

to interpret the output, xi
+ > 0 (xi

− > 0) in R1 (R3); xi
+ = xi

− = 0 in R2. 

The Balance Coefficient 

 For pi
a = Qi

a (qi
a), dividing the objective function by Σcj

aμj (Σcj
a) yields a balance coefficient 

ranging from 0 to 1, where 0 indicates perfect compliance with the prescribed pi
a.  Such a 

coefficient may help investors compare systems in terms of  the quality of  their balance and 

provide an indication of  the relative size of  balancing opportunities. 

Optimal Balance with a Fixed-Capacity Resource 

 A truly rigid resource, say Ri, can be identified by possessing ci = ∞ and c−i = 0 (at least 

in the short term). Informally—because ci = ∞—if pi is high then Ri is likely to be 

nominated as the BN. Atwater and Chakravorty [1] posed a research question: given such a 

BN, how much capacity should we provide on the other resources? But there is no 

conceptual difference between such a BN and any other resource, say Rj, for which c−j ≤ vj* 

≤ cj. That is, the resource is stable regardless of  its criticality. As a direct consequence, 

unless all other ci are 0, its optimal utilization must be below 100%. Thus, our analysis 

answers Atwater and Chakravorty [1]'s research question. The linear program will place 

such resources in R2, so the heuristics can resolve it too. 

 When all resources are amenable to expansion the term "bottleneck" has no clear 

meaning. We agree with Mukherjee and Chatterjee [11] that a resource with positive 

shadow price limits throughput and is thus conceptually a bottleneck, but the term 

bottleneck also has a connotation of  “the single most binding constraint” and in this sense 

there is no single resource that fits the bill all the time. We can call the current minimal 

resource "the [shifting] bottleneck," but we should certainly not consider increasing the 

long-term criticality of  this resource (at the expense of  others) more than optimal balance 

calls for. Our numerical results support this conclusion as well, and indeed Atwater and 

Chakravorty [1] also found numerical evidence that some idleness of  the "bottleneck" is 

beneficial. Thus, the case against BN-subordination includes both theoretical and empirical 

evidence. The bad news is that not all incorrect models are useful, and this particular one is 
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simply too simple. The good news is that it is already well understood that 

BN-subordination is flawed—e.g., see Hopp and Spearman [8], Spearman [16] and Trietsch 

[20]. Nonetheless, to our knowledge, ours is the first mathematical demonstration that 

BN-subordination is always wrong. Perhaps the proof  was overlooked because usually 

BN-subordination is expressed in utilization terms, which masks the conflict with optimal 

criticality. 

A Note about Stochastically Dependent Inputs 

 Trietsch [21] considered the dual problem embedded within a project network and 

implicitly assumed that gi
0 prevails. For that case he demonstrated that there is no need for 

the stochastic independence assumption. Whereas the question whether stochastic 

independence is necessary for our results with respect to gi
1, in the gi

0 case the proof  offered 

by Trietsch [21] can be used to show that our results apply even when the relevant 

distributions are dependent. 

7. Numerical Experiments 

All our numerical experiments are for n = 2 [composite] resources (e.g., R1 = Ri and R2 

= R0 − Ri), with q1 ranging from 0.01 to 0.99, and with a budget of  100. Thus, it is always 

possible to balance utilization by setting μ1 = μ2 = 100, and Z is U0 in percents. We compare 

pi
a = Qi and pi

a = qi against pi* (in terms of  Z). We also study the performance of  simple 

balance and of  BN-subordination. Initially, several g1 examples were run on Excel®, using 

normal and uniform random variables. Another g1 example was run for the dual problem 

(minimizing the expected completion time of  an assembly plus holding costs) with 

exponential random variables (Theorem 2 does not hold for the dual problem). These 

distributions were selected because it is possible to calculate the minimum of  two of  them 

by Excel® (without cumbersome numerical integration). The results indicate that for ci = 

0.01, Qi / pi* was typically between 0.8 and 1.25, and invariably closer to 1 for larger ci. In 

some cases, however (e.g., where the distributions involved were very dissimilar), results 

farther from 1 were obtained. Nonetheless, in terms of  the objective function, the relative 

error was usually well below half  a percent, and often it was completely negligible (e.g., 

0.03%). The worst case was obtained in the dual problem, where the loss due to the 

approximation is up to 2.3%. Furthermore, in all our runs, the relative error achieved a 

maximum for q1 within the range 0.01 to 0.99. That is, although the discrepancy between Qi 

and pi* is maximized for the lowest c1, the importance of  the exact specification of  μ1 is not 

high there, so the relative error was maximized within the range 0.01< ci < 0.99.  

 Following these exploratory experiments, additional tests were run on Mathematica® 
(which supports highly accurate numerical integration) to test the quality of  the 

approximations. These runs included comparisons between the two heuristics for both g0 

and g1 (and other gκ values not reported). We compared the performance of  the heuristics 
with the “wrong” assumption about g (and while doing it we obtained numerical 

corroboration for Theorem 1). For these experiments we selected the beta distribution to 

represent arbitrary capacity distributions. The beta distribution also makes possible the 
approximate representation of  the minimum of  several other beta random variables, 

preserving the correct minimum, maximum, mean and variance. The traditional use of  the 

beta distribution in PERT may be criticized for being optimistic, because it assumes a 
maximum that cannot be exceeded while some project activities do not seem to respect any 

such limit. The same reservation holds with respect to the dual problem, which is really a 

project scheduling case. In our present context, however, such a maximum is not optimistic, 
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because we are trying to maximize throughput. As for the minimum, we can use 0 if  we 

want absolute confidence. For Xi, assume we can estimate the minimum, ai (with a default 
of  0) and the maximum, bi (subject to bi > μi > ai). Then it is usually possible to find αi and 

βi such that a beta distribution with the parameters ai, bi, αi and βi will have the correct mean 

μi and standard deviation σi.  

 Figures 1 to 3 show some results (note that the x-axis is symmetric with respect to 0.5 

but not linear). Figure 1 is a typical case where the distributions involved are similar to each 

other, each with a mode strictly within the range, but one of  them is more likely to 
represent the minimum of  several others. We compare the error of  using pi

a = Qi for g0 

(where qi is optimal) to the error of  using pi
a = qi for g1 (where Qi is the best approximation 

we know). Clearly, pi
a = Qi is much more robust. The error associated with it is 0.026% of  

Z*, as compared to 1.85% for the other. The figure also demonstrates that Qi is better than qi 

for g1, with a maximal error of  0.26%. We see that g1 is less amenable to solution by any 

heuristic, but Qi is clearly better.  
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Figure 1. X1~beta(2.5, 1.8), X2~beta(6, 1.2). 
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Figure 2. X1~beta(1, 2), X2~beta(4.5, 1.5). 
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Figure 2 compares the performance of  the two heuristics for dissimilar distributions: 

one is left triangular (i.e., beta(1,2)), and the other is similar to the former case. Here, the 
maximal error of  pi

a = Qi for g0 was a negligible 0.044%, but both heuristics performed less 

spectacularly for g1—actually this was the worst case in the series, perhaps as a result of  the 

distributions not being similar to each other. Nonetheless, pi
a = Qi was more robust than pi

a 
= qi, again, with a maximal error of  just above 2%, as compared to 33%. 2% may look like 

a very large error, but consider that it would likely be smaller for κ < 1 (based on the 

excellent κ = 0 performance), not to mention that there is no known viable alternative. 

 Figure 3, which is based on a g1 case with normal variables, compares the 

performance of  our heuristic to BN-subordination and to simple balance. 

BN-subordination requires 100% BN-criticality, but this is impossible for the normal 
distribution. We use the notation BN-PTF to denote the PTF that may be achieved instead 

of  100%, for example, BN-0.999 means that other resources are critical with a frequency of  

1 / 1000. The graph includes results for BN-0.999, BN-0.99, and BN-0.9. Furthermore, 
simple balance (PTF = 0.5) also involves balanced utilization here ( μ μ=1 2 ), so we refer to 

it as regular balance. But simple balance can also be interpreted as BN-0.5 (although the 

essence of  BN-subordination is that PTF should be much higher). To continue, the 
heuristic result is so close to the optimum that it completely masks it! Simple balance 

achieves a constant Z which is optimal for c1 = 0.5. Indeed, it is tangential to the optimal 

curve there. Similarly, for high c1 (at the top right of  the figure), the various BN-PTF graphs 
are tangential to the optimum (although it is difficult to see this due to the scale). Including 

balance as BN-0.5, we obtain a clear picture: BN-subordination is only better than regular 

balance for very high cBN values, where it is approximately correct by our main heuristic. To 
the extent BN-subordination is supposed to improve upon “regular” balance, the remedy is 

usually worse than the disease! And as PTF grows, BN-PTF is more damaging. In the limit, 

when BN-100% is achieved, the damage is 100% loss of  investment. Our heuristic, in 
contrast, is the clear winner everywhere in the range. 

 

Figure 3. Comparing the heuristic with BN-subordination and with regular balance. 

8. An Illustration 

To illustrate the use of  our approach, we constructed an example involving the design 
of  a new restaurant. Balancing problems always require iterations so we must make some 

assumptions to derive an initial solution, and then iterate to converge to the optimal 
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solution. In this example we start with utilization balance as the initial solution; i.e., we set 

the initial capacity of  all parts to the same value (150). We assume all distributions are 
lognormal and as such they are fully defined by their mean and coefficient of  variation. We 

assume the coefficient of  variation does not change with capacity; i.e., gi
1 prevails. We aim 

to maximize the return on the total capitalized value by optimizing the capacity in diners 
per day per money unit (MU). There is a budget of  975 on the total capitalized value. 

1. Without loss of  generality assume that the land value is 1 MU per area unit and 

initially assume the use of  100 area units. Assume further that by regulation it is required to 
landscape 20% of  the land area (at a cost that is included in the land value).  

2. A building covering 20% of  the ground (well below an upper bound of  25% 

imposed by the municipality) can serve 150 diners per day with a coefficient of  variation of  

10%. The randomness is due to the different sizes of  parties (e.g., parties of  3 may take 

tables for 4) and differences in the time they take. The structure can be built on a fixed cost 

contract for 287 MU (i.e., construction cost is 14.35MU per area unit). 

3. Together with landscaping a structure of  this size leaves 60 area units to be paved for 

parking, which also suffices on average for 150 diners, with a coefficient of  variation of  

15% (this variation is due to the fact that different parties use different number of  cars per 

diner for different durations). The cost of  paving this area is 3 MU (or 0.05 MU per area 

unit). 

Solution: Considering the landscaping requirement each usable land area unit costs 1 / 

0.8 = 1.25 MU. Because the constraint on the building size is not binding we can say that 

each area unit of  the structure costs + =14.35 1.25 15.6 . 20 such units are sufficient for 150 

diners so this translates to per capacity unit. A similar calculation for 

the parking capacity cost yields 

× =15.6 20/150 2.08

+ × =(0.05 1.25) 60/150 0.52  per capacity unit. For the 

balanced utilization case, this implies that the relative criticality of  the building should be 

 and that of  the parking 20%. This relative criticality value is an 

example of  the hierarchical approach because there may be other critical inputs that we 

ignored so far, such as demand, ingredients, workers etc. Assume now that all these other 

inputs are incorporated into a single additional input with a capacity of  150 on average and 

coefficient of  variation 25%. Let the target criticality for the structure as a whole be 40% 

(i.e., 8% for parking and 32% for the building). This is equivalent to stating that the 

capitalized unit capacity price of  the remainder of  the system is 3.9 (because 3.9 / (3.9 + 

2.08 + 0.52) = 0.6). At this stage we can test by simulation whether the current plan is 

balanced. To this end we simulated 1000 repetitions in an Excel® spreadsheet (available 

from the authors), each including three random values for parking, building capacity and 

the combination of  the other inputs. We then compared the frequency each input is 

minimal to its PTF and adjusted the capacities subject to the budget constraint until the 

desired criticality was obtained. At that stage, however, the ratio among the inputs was no 

longer the same as that used to calculate the PTF, which required a new adjustment, and so 

on. 

+ =2.08/(2.08 0.52) 80%

Table 1 traces the process. The utilization balance case yields criticalities of  0.25, 
0.311 and 0.439 instead of  the PTF of  0.32, 0.08 and 0.6. Note that in spite of  the fact that 

the nominal capacity of  all resources is 150 the true capacity is only 127.61. After one 

iteration the criticalities approximately match the PTF and the capacity increased by about 
2.4% to 130.70. The main change necessary for that purpose was to increase the capacity of  

the parking area to 178 mainly at the expense of  input 3. This changes the PTF and led to 

one more iteration that actually reduced the capacity to 130.66. This reduction reflects the 
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fact that we are using a heuristic. The optimal solution as identified by Solver yields 130.74. 

Note that the difference between the optimal solution and the result of  the heuristic is 
about 0.06%, which is totally negligible in practice. If  we would choose to reject the last 

step—since it was detrimental—the difference would be only 0.03%. 

To illustrate the hierarchical approach consider that the building is divided to parts 

such as the dining room and the kitchen, each of  which can be broken down further; e.g., 

the number of  tables of  each size has an effect on the utilization of  the dining area. 

Similarly, input 3 represents several resources such as staff, equipment, ingredients, etc. 

Table 1. Performance of  the heuristic 

 Input 1 Input 2 Input 3 Minimum 

Initial PTF 0.32 0.08 0.60  

Initial Capacities 150.00 150.00 150.00 127.61 

Criticalities 0.25 0.311 0.439  

First capacity adjustment 153.04 180.33 144.33 130.70 

New PTF 0.326 0.096 0.577  

2nd capacity adjustment 152.2821 177.96 145.05 130.65 

Optimal capacities 154.7656 181.11 143.31 130.74 

Optimal criticalities 0.295 0.086 0.619  

9. Conclusion 

We extended the newsboy model to the balance of  n parallel resources and a single 

output—with the objective of  maximizing the expected economic return (net throughput). 

In addition to an analytic result, we obtained a deceptively simple approximation: the 

optimal criticality (probability of  shortage) of  a resource should be directly proportional to 

the marginal cost of  increasing its relative capacity. This, in turn, is a measure of  the true 

economic value of  the resource. The model is designed to steer change and improvement in 

hierarchical systems. Our analytical model is a simple generalization of  the newsboy model, 

but numerical experience demonstrates that the analytic basis of  this model is sensitive to 

deviations from the simplistic assumption that the model is based on—namely that 

expansion simply shifts the capacity distribution by a constant 0( )g —while our 

approximation model is robust. Thus we can only recommend the exact method where the 

assumption is known to be reasonable. ( 0g is the implicit standard in the literature, 

however.) Finally, we defined a balance coefficient that may be used to compare subsystems 

or even independent systems. The higher the coefficient, the more urgent it is to balance the 

system. 

 Our model is simple, but it’s up to the readers to decide whether it is too simple or 

useful. However, we demonstrated that BN-subordination (i.e., focusing on one resource 

and ensuring that it will not starve) is indeed too simple and does not work as advertised. 

We proved theoretically and demonstrated numerically that it is very wasteful. We believe 

that consultants and practitioners, especially those who teach or accept that throughput 

maximization is important, should abandon BN-subordination forthwith. Our 

approximation can help focus on the best balancing steps required to move away from 

BN-subordination while maintaining optimal growth. Of  course, our model is equally 

useful when lack of  balance is due to any other cause. Often the culprit is lack of  proper 

coordination between hierarchical levels—which is why the hierarchical aspects of  our 

model are important Trietsch [22]. 
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 There are myriad potential extensions of  the model. On the technical front, we might 

wish to consider statistical dependence; this is easy for g0 but is still an open research 

question for g1. An interesting result that could be useful for the technical analysis is given 

by Bertsimas et al. [3], who use mean and variance information to find a bound on the 

distribution of  any order statistic, and the minimum is therefore a special case their bound 

can provide an approximation for. This approach can handle statistically dependent 

variables. An extension of  the model itself  is to consider multiple products, multiple 

alternative processes and multiple periods. It can be shown that if  we assume g0 then the 

results of  Bradley and Glynn [4] can be interpreted as a direct generalization of  our model 

where the optimal criticality of  a resource is determined by the marginal cost of  increasing 

it divided by the value of  the total throughput that depends on it. Trietsch [20] discusses 

this approach in qualitative terms. A multi-period model may focus on the dynamics of  the 

system and its statistical estimation aspects. Similarly, a more detailed study considering 

specific input/output structures (layouts) in detail is required. This may also be a proper 

framework to study how to measure the criticality of  resources. An important extension is 

to include discrete expansions—a case that can only be approximated by our continuous 

model. Yet another research direction is a more detailed study of  the hierarchical 

implications of  the model. Last but not least, empirical research may focus on the size of  

typical practical balancing opportunities that are caused by management either not using 

any model or using an inappropriate one. 
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Appendix  

Proofs of  Lemmas and Theorems 

Proof of Lemma 1: Conditions 2 and 3 are proved by construction: For any possible 

investment, by the CDF's before and after, calculate Δ to satisfy condition 3. Then, for 

every value x, gi(x,Δ) = argy{Fi|Δ(x) = Fi(y)}. Condition 1 states that a zero expansion has 
no effect.   

Proof of Lemma 2: Let μ1 and μ2 be any tentative solution such that c1μ1+c2μ2 = b. The 
budget constraint is then c1Δ1+c2Δ2 = 0, leading to the Lagrangian, 

λ λ∞ − −Δ Δ Δ Δ Δ Δ∫1 2 1 1 2 2 1 21 21 20
L( , , ) =  (1 ( (x, )))(1 ( (x, )))dx + (  +  ),g g c cF F  

subject to Δj ≥ −μj (j = 1,2). Setting ∂L / ∂Δ1 to zero yields, 

( ) ( )( ) ( )( )( ) λ
∞ ∂ Δ −Δ Δ∫

∂Δ
1 1 2 2 11 2

0

x,  1 x,  dx = .g g cf F
11

1

x,g
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Notice that  

( )( ) ( )( )( )
∞

−Δ Δ∫ 1 1 2 21 2
0

x, 1 x,  dx = .g gf F 1p  

This is true because f1(g1(x,Δ1)) is the density of  X1 and (1 − F2(g2(x,Δ2))) is the 
probability that X1 ≤ X2. Therefore, f1(g1(x,Δ1))(1 − F2(g2(x,Δ2))) / p1 is the conditional 

density function of  X1|X1≤X2, and therefore at the optimum, 

( ) ( )( ) ( )( )( ) ( )
λ

∞
∗∂ ⎛ ∂Δ Δ− ≤Δ Δ∫ ⎜ ⎟∂ ∂Δ Δ⎝ ⎠

11
1 1 2 2 1 2 11 2 1

0 1

x,g
x, 1 x,  dx =   E  |  = .g g p cf F X X

11

1

x,g
    

⎞
 

A symmetric expression obtains for R2, and division yields the first part of  the lemma. The 
second part follows immediately (negative proportionality factors are allowed).   

Proof of Lemma 3: In these two cases a linear cost function for each resource implies a 

linear cost function for any combination of  resources. The proof  follows by Ri-partitioning 
and Lemma 2.   

Proof of Theorem 1: For g0, ∂g / ∂Δ = −1, so qi / pi* = qj / pj* (∀i,j).   

Proof of Theorem 2: For g1, ∂g / ∂Δ|Δ = 0 = − x / μi, so ciμi / pi* must be proportional to 
E(Xi|Xi≤Xk;∀k). But E(Xi|Xi≤Xk;∀k) is the mean of  an exponential variable with a rate 

equal to the sum of  the rates of  all resources, and thus E(Xi|Xi≤Xk;∀k) = E(Xj|Xj≤Xk;∀k) 

(∀i,j).   

Proof of Theorem 3: g0 is linear and leads to a linear expansion. For a small δ, the original 

probability of  falling between x and x+δ is approximately fi(x)δ, and after proportional 

expansion the same probability applies to falling between x(1+Δi / μi) and (x+δ)(1+Δi / μi). 
Therefore, the expansion described by g1 is also linear (although g1 itself  is a strictly convex 

function of  Δ). For 0≤κi≤1, the expansion described by gκ is a convex combination of  the 

two linear expansions of  g0 and g1, and thus linear too. So Z involves maximizing the 
minimum of  linear functions subject to a linear budget constraint, and must be concave.    

Proof of Theorem 4: |μ1* μ2*| is constant, so |μ1*− − μ2*| / μj*→0 (j = 1,2) as b→∞. 

Hence, in the limit, E(X1|X1≤X2) / μ1* = E(X2|X2≤X1) / μ2* = 1. This, with Lemma 3, 
yields the required result.  

Proof of Theorem 5: Immediate for n = 2 and by induction for n>2.   
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