

-An open source not for profit project

-On GitHub ‘DawnScience’

- Diamond Light Source Ltd. and the ESRF are

largely publically funded research facilities

 Who
– Diamond Light Source

– ORNL

– IBM

– IFP Energies Nouvelles

– TECH'Advantage

– MARINTEK / Itema

– Clemson University

– Lablicate

– Uppsala University

– Kichwa Coders

– The Facility for Rare Isotope Beams

at Michigan State University

• Charter including a vision for the future

• Contributions from DAWN and NiCE
being made – we will look at DAWNSci

• Presentations in the US (2012) and last
year, Germany (2013)

• Eclipse Foundation investing in the group

• Git / Jenkins / Marketing

Collaborations

 Science Working Group

science.eclipse.org

DAWNSCI Eclipse Project Phased Delivery

• Phase 1 2014/2015 - Definition of long term APIs and

Reference Implementation

– HDF5 Loading / Saving API

– Description of data and some mathematical operations

– Plotting interface (only) based on data description

– Slicing interface description

– Examples of how to use API and reference implementation (binary)

• Phase 2 2016 – Release of concrete implementation(s)

– TBD

…What we said/promised last time…

So this presentation will show you

how to make use of that so far released...

Diamond Light Source - RCP Based Projects

• Generic Data Acquisition

• Client in RCP server CORBA

• Data Analysis Workbench

• That you already know and love

Actively (each ~10s developers) developed at DLS

• Control Systems Studio
• Community active on many sites

• DESY, NSLS2, KEK, ITER

DLS Information

Diamond Light Source - Data Analysis Group

Team Mostly Doing

DAWN DAWN - RCP front end for Data Analysis. Support of third party

code for Data Analysis. Help/support with python scripts. DAWN

includes Numpy.

DIALS Working in the crystallography area producing new software and

running automatic pipelines (cluster) for processing data produced

during data collections.

Tomography Working with scientists to support visualization software.

Responsible for reconstruction pipelines running on GPU clusters

Web ISPyB, ICAT, SyncLink and SyncWeb productions allowing users

to interact with experimental data remotely.

Spectrosopy / 1D

tools

Developing tools for 1D analysis like peak fitting. Python

interactivity a key requirement.

DLS Information

– For images

• Line, Box, Sector integration

• Diffraction image interpretation, line profile for ‘D-spacing’
• Color mapping / Histogramming

• Pixel Information and region control

– For XY Graphs

• Peak Fitting and Line Fitting

• Derivative and other functions, including user defined

• Scientific tools

– XAFS Analysis Tool

– SAXS

– Use of eclipse architecture, extension points and pages inside

PageBookView.

DAWN Lots of Visual Tools
DAWN Overview

Demonstration – Visual Tools

Example showing various visual tools

DAWN Overview

• Cutting through N-dimensional data

– With an XY plot

– As an image

– As a 3D iso-surface

– Hyper 3D

• Important to run everything concurrently

– Use of Jobs

– Use of ordinary threads

– Use of blocking queues

Slicing data
DAWN Overview

Demonstration – Slicing and dicing

Example opening a tomography file and slicing it

DAWN Overview

Introducing The DAWNSci Eclipse Project...

• Data

• Loading (inc. HDF5)

• Description

• Slicing

• Transformation

• Mathematic

• Metadata

• User Interface

• Plotting 1/2/3 D

• Slicing nD

Phase 1 is API with a

 reference implementation via a p2 site
http://www.dawnsci.org/eclipse/getting-started-with-dawnsci

Data in DAWNSci

Example : Loading and Manipulating Data

This example

• Columns of ASCII data

• Separated by tabs

• Read as 1D arrays

Other format with a loader:

srs, dat, flt, gff, mca, csv, xy, xye,

txt, tif, tiff, cbf, img, ciff, mccd, edf,

pgm, cor, bruker, jpg, jpeg, png,

f2d, msk, mib, mar3450, pck3450,

raw, mrc, gz, bz2, zip, h5, hd5,

hdf5, nxs, nexus, hdf, mat

Extension point to add more...

DAWNSCI - ILoaderService

Purpose – load any numerical file format using a low dependency

service. Keeps code modular and it is easy to use.

How – Loaders can be contributed by extension point for custom

file formats. Many loaders come pre-registered with the service.

Example - Reading and slicing data

ILoaderService service = (ILoaderService)Activator.getService(ILoaderService.class

IDataHolder holder = service.getData(<file path>, ...);

IDataset full = holder.getDataset(“Column_1”);

// full is the full array of data loaded into memory represented by

// an object called IDataset. Mathematics and plotting can be done

// using this object as if it were an array.

Show LoaderExamples...

Data in DAWNSci

DAWNSCI - ILazyDataset and IDataset

Purpose – represent data without physically loading it into

memory, delaying this action until it is required.

How – The LazyDatasetImpl might use HDF5 or directories of files

to represent stacks of data.

Example - Slicing data

ILazyDataset lz = holder.getLazyDataset(“Big”); // Not all loaded, too big
System.out.println(“Your data shape is ”+ lz.getShape());

IDataset slice = lz.getSlice(...); // Now it’s loaded
IDataset all = holder.getDataset(“myData”); // Load everything!!

// Real slices of the data can be taken from the ILazyDataset and

// expressions written which result value is only evaluated when the

// slice is visualized.

Show NumpyExamples and LazyExamples

Data in DAWNSci

DAWNSCI - IMetaData

Purpose – to provde access to experimental conditions without

loading all the numerical / binary data.

How – A loader may define how to load up header information or

other attributes from the file and represent access to these as

IMetadata

Example - Metadata

IMetaData meta = holder.getMetadata();

System.out.println(“The temperature was ”+ meta.getMetaValue(“T”);

IDataset data = holder.getDataset(“myData”);
meta = holder.getMetadata();

System.out.println(“The temperature was ”+ meta.getMetaValue(“T”);

// The meta data can exist for the whole file or for individual

datasets.

Data in DAWNSci

DAWNSCI - Python/Numpy

Purpose – to make available data in the GUI to python scripting

How – A flattening service transfers data to and from python.

IDataset appears as a numpy array in a seemless way.

Data in DAWNSci

Demonstration – Examples Plotting

and Regions

Plotting in DAWNSci

DAWNSCI - IPlottingService

Purpose – to provide access to plotting without making references

to the individual plotting technology in your code.

How – Different plotting systems can be retrieved from the plotting

service and are contributed by extension point. DAWNSCI phase 2

will contribute a draw2d / JavaFX based plotting system impl.

Example – Getting a plotting system

IPlottingService ps = (IPlottingService)Activator.getService(IPlottingService.clas

IPlottingSystem sys = ps.createPlottingSystem();

// This example gets the users current plotting system choice.

// There are preferences set up by DAWNSci based on each plotting

// system available / contributed. createPlottingSystem() instatiates

// and returns the current users preference.

Plotting in DAWNSci

DAWNSCI - IPlottingSystem

Purpose – Ability to plot data in 1D, 2D and 3D. Ability to manage

selection regions, axes, annotations, printing etc

How – The interface IPlottingSystem is implemented similar to a

view part in e3 with a createPlotPart(...) method to add plotting to

any SWT composite.

Example – Making a plotting system

system.createPlotPart(parent, "Image Example", getViewSite().getActionBars(),

PlotType.IMAGE, this);

IImageTrace image = system.createPlot2D(slice, null, new NullProgressMonitor());

// Plotting system here plots the slice which we previously retrieved.

Plotting in DAWNSci

DAWNSCI - IRegion and IRegionSystem

Purpose – Allow selections on the data for algorithms and plotting

to use, for instance sectors.

How – The implementation of IPlottingSystem is also

IRegionSystem. This allows creation of regions and their

configuration/listening. Implemented using draw2d.

final IRegion region = sys.createRegion(“myRegion”, RegionType.BOX);
region.setRegionColor(ColorConstants.orange);

region.setROI(new RectangularROI(0,0,100,100);

region.setMobile(false);

region.setUserObject(FittedFunction.class);

sys.addRegion(region);

region.addROIListener(new IROIListener() {

 // methods for listening to the user moving regions.

}

Plotting in DAWNSci

Demonstration – Examples Tools

Look at the plotting examples

Plotting in DAWNSci

DAWNSCI - IToolSystem

Purpose – Encapsulate a set of operations for mathematical

interaction with plotting.

How – Generally when using AbstractPlottingSystem a tool system

comes for free. Simply return it with the getAdapter(...) method to

Example – Connecting a tool system to the outside world

// In your parts

public Object getAdapter(final Class clazz) {

 if (clazz == IToolPageSystem.class) {

 return sys.getAdapter(clazz);

 }

}

// Now the external world can see the tool system and tool pages

// registered by extension point will be available.

Plotting in DAWNSci

DAWNSCI - IToolPage

Purpose – Use of IPageView pages to provide helper user interface

for a tool linking to a plotting system.

How – Declare with extension point and plot dimensionality and

page will appear on plotting systems with registered IToolSystems.

Plotting in DAWNSci

public class ExampleTool extends AbstractToolPage {

 private Composite control;

 public ExampleTool() {

 // Create your listeners to the main plotting

 // Perhaps create a plotting system here from the PlottingFactory which is your side plot.

 }

 @Override

 public ToolPageRole getToolPageRole() {

 return ToolPageRole.ROLE_1D;

 }

 @Override

 public void createControl(Composite parent) {

 this.control = new Composite(parent, SWT.NONE);

 control.setBackground(Display.getDefault().getSystemColor(SWT.COLOR_WHITE));

 control.setLayout(new GridLayout(1, false));

 GridUtils.removeMargins(control);

 // User interface shown in a page to the side of the plot.

 // ... For instance: a side plot, a Viewer part

 }

 @Override

 public Control getControl() {

 return control;

 }

 @Override

 public void setFocus() {

 // If you have a table or tree in your tool, set focus here.

 }

 @Override

 public void activate() {

 super.activate();

 // Now add any listeners to the plotting providing getPlottingSystem()!=null

 }

 @Override

 public void deactivate() {

 super.deactivate();

 // Now remove any listeners to the plotting providing getPlottingSystem()!=null

 }

 @Override

 public void dispose() {

 super.dispose();

 // Anything to kill off? This page is part of a view which is now disposed and will not be used again.

 }

}

Demonstration – Slicing and dicing

Example opening a tomography file and slicing it

DAWN Overview

DAWNSCI - ISliceSystem

Purpose – Provide a standardized user interface design to slicing

multi-dimenional data.

How – Contributed by extension point, when multi-dimensional

data is opened the current active slice system is used to slice the

data.

Example – Making a slicesystem

public class SliceSystemImpl extends AbstractSliceSystem {

public Control createPartControl(Composite parent){

 //...

}

// Rather a lot of other methods to go into here currently.

Plotting in DAWNSci

DAWNSCI - ISlicingTool

Purpose – An extension point registered tool for slicing multi-

dimensional data

How – Generally extend AbstractSliceTool and then implement

code for doing a slice you need.

Example

public class ExampleSlicingTool extends AbstractSlicingTool {

public void militarize() {

//... User chosen the tool

}

public void demilitarize() {

//...

}

}

// Several examples in the code base

Plotting in DAWNSci

Conclusion

DAWNSCI - The Future

 Github move or mirror dawn-eclipse to

eclipse/dawnsci

 Plan for phase 2 – the reference implementation release

 Cannot do all at once as ~1 million lines

 Release Isosurface implementation in 2015 (backed by

JavaFX in Java8)

 Prototype already created summer 2014 and is

functional - if you want to try it, get in touch

 A processing pipeline implementation in 2015.

 To be used for data reduction at Diamond but in

principle any mathematical pipeline can be created

and run over stacks

Conclusion

DAWNSCI - Conclusion

 Thanks for listening

 Email us on science-iwg@eclipse.org

 science.eclipse.com is available for new members join

now, see Andrew Ross...

 Beverage later?

