Organic Chemistry II CMH 2211 Sample Exam 1					
I.	Write structures for	he com	npounds shown below:		
meta	-bromophenol	-	o-aminobenzoic acid	phenanthrene	
3-me	ethyl-2-phenylhexane	Ī	penzyl alcohol	<i>para</i> -xylene	
II.	Name the compound	s whos	e structures are shown	below:	
	CH ₃ Br		Br		
H ₃ C´	O C H	-		CH ₃ C''' H Br	
III.	Fill in the Blank				
1. or ion with	n must be1	nybridiz	and	isfy certain rules. The compound, have all atoms in the ring electrons in als.	
2.				<u> </u> .	
3.	Benzene is more stable than you might expect based upon a 6 membered ring and three double bonds. This is because benzene has				
4.	Is 26 a Huckle number? (Y/N)				
5.	Benzene ring deactiv	ators h	ave something in com	non. They all have	

Name

6.	Proton NMR of aromatic compounds show characteristic absorptions in the range of to ppm.				
7.	Name two ring substituants that will prevent the ring from reacting in a Freidel-Craft reaction and				
8.	4-Methylbenzioc acid would tend to add a third group at carbon number				
V.	Answer the questions below by YES or NO.				
a. b. c. d.	Is cyclopentadienyl anion aromatic? Is cyclopentadienyl carbocation aromatic? Is cyclopentadiene aromatic? Is cycloheptatriene aromatic? Does cycloheptatriene have a Huckle # of electrons?				
V.	Answer the following:				
Con	sider the reaction of anisole (methoxybenzene) with SO ₃ in the presence of H ₂ SO ₄				
a.	Write the formula for the MAJOR product(s) of this reaction.				
b.	What is the electrophile in this reaction?				
c.	How can it be an electrophile if it has no full positive charge?				
d.	Write a series of equations to show the mechanism of the above reaction. First				

show the mechanism when electrophilic attack is from the *para* position, and then show it from the *meta* position. Show all possible resonance forms of the arenium ion for both *para* and *meta* attack. Include the final step of conversion of the arenium ion to the product in your mechanism. USE KEKULE STRUCTURES.

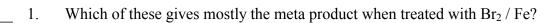
- VI. Write structural formulas for the products if a reaction occurs. If no reaction occurs write N.R.
- a. CH₃CH₂Br AlBṛ₃
- b. $\frac{\text{HNO}_3}{\text{H}_2\text{SO}_4}$
- c. Br_2
- d. $\begin{array}{c} \text{NH}_2 \\ \hline \\ \text{AlCl}_3 \end{array}$
- H_3C H_3C OCH_3 Br_2
- h. $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$
- i. CH₂CH₃

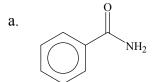
 NBS
- j. NO₂ CH₃Cl AlCl₂
- k. $\frac{\text{KMnO}_4}{\Theta_{\text{OH, heat}}} \longrightarrow \frac{\text{Br}_2}{\text{FeBr}_3}$
- 1. CH=CH₂
 Br₂

 ▶

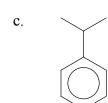
m.
$$\begin{array}{c} CH_3 \\ CH_3-C=CH_2 \end{array}$$

0.
$$\frac{\text{CH}_3\text{Cl}}{\text{AlCl}_{\S}} \xrightarrow{\text{Cl}_2} \frac{\text{OH}^{\Theta}}{\text{H}_2\text{O}}$$

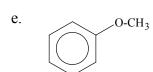

t.
$$CH_2$$
= CH - CH_3 + Br_2

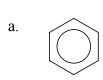

u.
$$CH_3CH=CHCH_3 + MnO_4$$
 OH^{Θ} hot

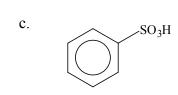
W.
$$CH_4 + Br_2 (limit)$$

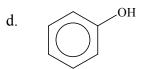

y.
$$CH_3$$
 $AlCl_3$ $AlCl_3$ CH_3

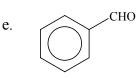
VII. Multiple Choice

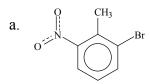


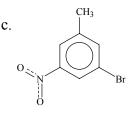


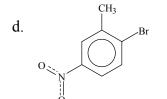


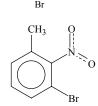



2. Which undergoes electrophilic substitution on the ring most rapidly?








____ 3. In the reaction of 2-nitrotoluene with bromine in the presence of iron , which of the products shown below is the most abundant in the mixture?

4. Which is characteristic for the proton NMR pattern of diethyl ether?

a. An upfield singlet and a downfield doublet.

b.

e.

- b. An upfield triplet and a downfield quartet.
- c. An upfield singlet and a downfield triplet.
- d. Two upfield triplets on top of each other.
- e. One downfield singlet.

5. Which of the following would be the most likely to undergo a nucleophilic aromatic substitution with hydroxide ion in normal conditions?

- a. Benzene
- b. Chlorobenzene
- c. Benzoic acid
- d. p-Chlorotoluene
- e. 2,4,6-Trinitro-1-chlorobenzene