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0. Introduction. In the classical theory of finite-dimensional central
simple algebras a large part of the work deals with a study of the simple
subalgebras of such an algebra. In particular, the commutators of simple
subalgebras as well as pairs of isomorphic subalgebras have been studied by
A. A. Albert and E. Noether. For a modern presentation of their principal
results we refer to [3, pp. 101-104](2). It is the purpose of this paper to
study extensions of these results to simple rings which possess a minimal one-
sided ideal (S.M.I, rings). Throughout the work we shall use the words simple
ring to mean a ring which has no radical and no proper two-sided ideals. It
should be noted that it is not known whether a non-nilpotent ring with no
proper two-sided ideals may be a radical ring or not. The words radical and
semi-simple will be used in the sense of Jacobson [4].

The structure theory of S.M.I, rings has been given by Dieudonné [l ] and
Jacobson [5], and will be briefly summarized here. With every S.M.I, ring A
there is associated a pair of dual vector spaces 93?, 9? over a division ring D.
93? and 9? are linked by an inner product (x, /), x in 93?, / in 9?, which is a
nondegenerate bilinear function from 93? X 9? to P. A linear transformation
(l.t.) a on 93? is said to have an adjoint a* on 9? if there is a l.t. a* on 9? such
that (xa, f)=(x, a*f). The l.t. which possess adjoints are often called con-
tinuous. We shall call a l.t. a finite-valued if the space 93?a is finite-dimen-
sional. It may then be shown that any continuous finite-valued linear trans-
formation (f.v.l.t.) a on 93? has the form za = ^¿(z,/,)*», where z, x¿ are in 93?,
and the/,- are in 9?. The ring A may then be regarded as the ring 7(93?, 91) of all
f.v.l.t. on 93? which have adjoints on 9?. We shall use the notation .£(93?, 9?)
for the ring of all continuous l.t. on 93?. Furthermore A =7(93?, 9?) is a dense
ring of f.v.l.t. on 93?. That is, for any n linearly independent vectors X\, x2, • • •,
xn of 93? and any n arbitrary vectors yi, y2, • • ■ , yn of 93?, there is a l.t. a
in A such that x,a=y¿. Conversely any dense ring of f.v.l.t. on 93? is an
S.M.I, ring.

If $ is a subspace of 93?, the annihilator of $ in 9? is the set of all vectors
/ of 9? such that ($, /) =0. The annihilator is a subspace of 9? and will be
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denoted by $'. A similar definition holds for the annihilator £' in 9)2 of a
subspace 8 of 92.

In §1 conditions under which a semi-simple ring is a direct sum of S.M.I,
rings are obtained, and a suitable hypothesis is given which assures that
a simple subring of an S.M.I, ring is again an S.M.I, ring. The next section
deals with the commutator of a simple subring of an S.M.I, ring. It is seen that
if the subring is a simple ring not satisfying the descending chain condition on
one-sided ideals, the commutator coincides with the two-sided annihilator
of the subring. This annihilator will in general be a ring with a nilpotent
radical, and will be an S.M.I, ring modulo its radical. In §4 we investigate
conditions under which a given isomorphism of two simple subrings of
7(9)2, 92) may be extended to an inner automorphism of .P/9J2, 92). In the
course of this investigation we study the relation between the modules 9J2P
and P*92, where B is an S.M.I, subring of 7(9)2, 92). It turns out that MB
and P*92 split into equipotent families of orthogonal irreducible submodules
(Theorem 6). We then go on to a study of the maximal one-sided ideals of an
S.M.I, ring 7(932, 92). These turn out to be of two kinds, those that are again
S.M.I, rings and those that possess a radical. In the course of this work we
give an example of a pair of dual spaces 93?, 92 with dim 93? = dim 92>No
which do not admit biorthogonal bases. That is, there are no bases {x,} of 932,
{fj} of 92 such that (*<,//)"»8y (§5). Finally, attention is restricted to the
case where both 93c and 9c are of countably infinite dimension over D. In
that case, using an idea of Kaplansky's [9, Theorem 6], it is possible to
give a complete classification of certain subrings of 7(9)2, 9Î) under the
natural concept of equivalence; two subrings B and C are equivalent in
7(93?, 91) if there is an invertible l.t. P in £(93?, 9c) such that B=P~1CP.

As will be seen the main new feature of the infinite case is the fact that
the images of vectors of 93? under l.t. belonging to the subring B of J(3R, 9c)
need not fill 9)2 completely. In fact, there is a complement of the range of
B which contains the subspace of all vectors annihilated by every l.t. of B,
but may also contain other vectors. It is the existence of such a "tail" that
leads to most of the interesting new features of the infinite case.

In conclusion I should like to express my warmest thanks to Professor
I. Kaplansky for his constant advice and encouragement in the preparation
of this paper. I should also like to thank Professor 0. F. G. Schilling for
several conversations concerning the material in §§2 to 4.

1. Subring of rings atomic modulo the radical. If B is a simple subring
of an S.M.I, ring A, we wish to show that B is also an S.M.I, ring. In order
to prove this however, we have to impose a hypothesis on B which will guar-
antee the existence of idempotents. Following Kaplansky we shall say that
a ring B is a Zorn ring [12] if:

Every non-nil left ideal of B contains a nonzero idempotent(3).

(3) For a discussion of associative Zorn rings cf. [8, p. 63].
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This hypothesis is satisfied for algebraic algebras, and indeed algebraic
algebras provide a motivation for Theorem 1.

We recall that Dieudonné [l] has called the union of the minimal left
ideals of a ring its left socle. Since we shall be exclusively concerned with
semi-simple rings where the right and left socles coincide, we shall henceforth
speak simply of the socle of a ring. Jacobson has called a semi-simple ring
atomic if it is equal to its own socle and has shown [4, Theorem 33] that it
then is a direct sum of S.M.I, rings. We are now in a position to state a
theorem which gives the desired result as an immediate corollary:

Theorem 1. Let A be a ring whose radical is a nil ideal and such that A is
atomic modulo its radical. Then every Zorn subring is also atomic modulo its
radical.

That the theorem is not valid for arbitrary subrings of A is apparent in the
case where A is the field of rational numbers and the subring is the ring of
integers. Here the subring is semi-simple but not atomic.

It should be noted that the hypotheses on A are strong enough to ensure
that A is a Zorn ring too. The proof of Theorem 1 will now be carried out
in a series of lemmas.

Lemma 1. If A is an S.M.I, ring and e is an idempotent of A, eAe is a simple
ring with the descending chain condition (d.c.c).

Proof. The result is easily established by noting that by Theorem 9 of [7]
the ring eAe is a subring of a simple ring with the d.c.c, and as such it must
satisfy the d.c.c. itself(4).

An immediate consequence of this is that if A is semi-simple and atomic,
eAe is a semi-simple ring with the d.c.c. for all idempotents e of A. Now it is
readily seen that if K is any ring with radical R(K) and e is an idempotent
of K, eKe — eR(K)e is isomorphic to ë(K — R(K))ë where ë is the residue class
of e modulo R(K). Thus if A is atomic modulo its radical, eAe will be a semi-
simple ring with d.c.c. modulo its radical R(eAe)—eR(A)e. It then follows
that eAe cannot contain an infinity of orthogonal idempotents. For it is easily
verified that two orthogonal idempotents cannot be congruent modulo the
radical, so that an infinity of orthogonal idempotents in eAe would give
rise to an infinity of orthogonal idempotents in eAe — R(eAe).

Lemma 2. Let A be a ring which is atomic modulo its radical, and let B be a
Zorn subring of A. Then every idempotent e of B maps onto an idempotent of
the socle of B-R(B).

Proof. The ring eBe is a Zorn ring. For let L be a non-nil left ideal of eBe.
Then BL is a non-nil left ideal of B and so contains a nonzero idempotent

(4) This latter result may be immediately deduced from Theorem 2.1 of [8], although it
can also be proved directly.
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f=fe. It is readily seen that ef is a nonzero idempotent of eBeC\BL =L. Now
eBeEeAe and so by the remarks subsequent to Lemma 1 it does not contain
an infinity of orthogonal idempotents. Hence [8, Theorem 2.1] eBe — eR(B)e
satisfies the d.c.c. Thus if we let S = B—R(B) and ë the residue class of e
modulo R(B), ë(B—R(B))ë = ëSë is a semi-simple ring with the d.c.c. But
then ëSë may be written as a direct sum of a finite number of minimal left
ideals; ëSë= ^(ëSë)ëi where ëi(ëSë)ëi is a division ring. However ëië — ëëi
= ëi, so that êiSëi is a division ring, Sëi is a minimal left ideal of 5 [6, p. 65]
and, since ë is in ^Sê,-, ë is in the socle of S.

Lemma 3. Let B be a Zorn subring of an atomic semi-simple ring A. Then
every element b of B may be written as

b = be+ b'e' + ■ ■ • + r,

with e, e', • • • idempotents of B, b, V, • • • in B, and r in R(B).

Proof. Let A be a direct sum of S.M.I, rings At, where the Ai are taken
to be rings 7(332,-, 92,), for dual spaces 932,-, 92,- over division rings P,. If b is an
element of B not in R(B), the left ideal generated by b in B is non-nil and so
contains a nonzero idempotent e = cb+nb, c in P, n an integer. We may write
b= 2~lbi, e= 2~2ei where 6,-, e<are in Ai. Then e,-=(c-|-w)6,- so that e2 = (c+n)biet
= e», thus 6,e,?á0 provided e^O, and 932,6,-C932;6<. Hence

932,6; = mibid ® 932,6,(1 - *)

and since the 6¿ are f.v.l.t. we have, when e^O,

dim 932,6¿(1 - e.) < dim 932,6,-.

If b — bej+O and is not in R(B), we set b' = b — be and repeat a similar argu-
ment for V. We are thus led to an idempotent e' of P such that 6/e¡ 9+0 if
ei 9+0, and spaces 932 <6,- C932,6, with dim 93?¿6/(1-e-) <dim 932,6¿ <dim 932,6,-.
Since the spaces 932,6,-are finite-dimensional and at least one nonzero e¿ occurs
at each step, the process must terminate, and we end up with the desired
representation.

The proof of Theorem 1 is then completed as follows: Let i be a ring
whose radical is a nil ideal, and which is atomic modulo its- radical. Let P be
a Zorn subring of A. We now consider B=B— Bi\R(A), the image of B in
A —R(A). The ring B is also a Zorn ring, for if L is a non-nil left ideal in B,
its inverse image in B contains a nonzero idempotent. Since the radical of a
ring contains no idempotents except zero, this idempotent maps on a non-
zero idempotent of L. Hence by Lemma 3 every 5 in B may be written as
bè + b'ë' + ■ ■ ■ +f, where f is in R(B). We now show that every element in
the residue class f is in R(B). The left ideal M generated by f in B is nil since
R(B), the radical of a Zorn ring, is a nil ideal. Thus some power of every
element of M, the inverse image of M in B, lies in BC\R(A). But since the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1952] SUBRINGS OF SIMPLE RINGS WITH MINIMAL IDEALS 119

latter is a nil ideal of B, BÍ\R(A)CR(B). Since P is a Zorn ring, R(B) is a
nil ideal, and therefore M is also nil and so lies in R(B).

Thus if b is any element in the residue class 5, we may write b = be-\-b'e'
+ • ■ • -T-r+t, where r is in R(B), t is in BC\R(A)CR(B), and e, e', ■ ■ ■ are
idempotents of P. This last fact follows since the usual trick of building idem-
potents modulo the radical in the presence of the d.c.c. works just as well
modulo any nil ideal. But by Lemma 2 it is known that e, e', • • •
map into the socle of B — R(B). Thus since the socle is a two-sided ideal, b
maps into the socle of B—R(B). Hence B — R(B) is equal to its own socle and
so is atomic.

Corollary 1. Let A be an S.M.I, ring, and let B be a simple Zorn subring
of A. Then B is an S.M.I, ring.

2. Commutators of subrings. The finite-dimensional case. We now study
the commutator subring of a simple Zorn subring of an S.M.I. ring A
=7(93?, 9Î). We denote by -<4(P) the subring of A consisting of all those ele-
ments of A which commute with every element of the subring B. Let a be
an element of A (B) ; then

93?aP = WBa.

But 93?a is a finite-dimensional subspace, so that B induces a ring of l.t. on
the finite-dimensional subspace 93?a to which it is homomorphic. However,
B is simple so that either aB=Ba = 0 for all a in A(B), or B is isomorphic to
a simple Zorn subring of the ring of all l.t. on a finite-dimensional vector space
over a division ring. It is then easily seen that in this case B satisfies the d.c.c.
[8, Theorem 2.1]. Thus we have proved the following theorem.

Theorem 2. If A is an S.M.I, ring and B is a simple Zorn subring, then
either B satisfies the d.c.c. or A(B) is the two-sided annihilator of B in A.

Unfortunately we cannot obtain general results in the first of these alterna-
tives, but have to make assumptions that will guarantee that if B satisfies
the d.c.c, it is also finite-dimensional over its center. In order to ensure this
we shall assume that A is an algebraic S.M.I, algebra over an algebraically
closed field i>. It then follows that the division ring D is isomorphic to 3>,
and that if B is a simple subalgebra satisfying the d.c.c, it is of finite dimen-
sion over i>. Thus B has a unit u and we proceed to show that

(2.1) A(B) = uAu(B) © (1 - u)A(l - u).

It is readily verified that uAu(B) and (1 — m)^4(1 — u) are two-sided ideals in
^4(P) with zero intersection. Now for every element a in .¡4(P), ua = au, so
that a = uau + (l— u)a(l— u). Furthermore buau = uaub, so that (2.1) holds.

Now uAu and B are finite-dimensional simple algebras over <3? with the
same unit and BduAu. Since the center of uAu is an algebraic extension field
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of <£w, uAu is a central simple algebra.   Hence uAu(B)  is again simple
[3, p. 104].

Now let c be an element of A(A(B)). Then since u is in A(B), uc = cu, so
that c — ucu + (l— u)c(l — u). A simple computation shows that ucu is in
uAu(uAu(B)), and that (1 — u)c(l— u) lies in the center Z of (1 —u)A(l-u).
But from (2.1) it is clear that uAu(uAu(B)) and Z are contained in A(A(B)),
and since they are obviously orthogonal,

A(A(B)) = uAu(uAu(B)) @ Z.

Quoting [3, p. 104] again we finally obtain

(2.2) A(A(B)) = B ®Z.
It is well known that (1 — u)A(l —u) is simple with A and so its center is

zero or a field [5, Theorem 16]. But all the subalgebras of an algebraic alge-
bra are Zorn algebras and so, by Corollary 1, (1— u)A(l— u) is an S.M.I,
algebra. Thus if Z9+0, (1— u)A(l— u) has a unit and so satisfies the d.c.c.
[5, p. 243]. Now (1 — u)A(l— u) is isomorphic to the ring of l.t. it induces on
932(1 — u), and it is easily verified that the latter is a dense ring of f.v.l.t. But
then if (1 — u)A(l— u) has a unit, 932(1— u) must be of finite dimension
[5, Theorem 3]. Since 93?w is also finite-dimensional, this implies that 93? is of
finite dimension over <£. Hence Z^O if and only if A is of finite dimension
over <f> and the unit of P does not coincide with that of A, in which case
Z=$. We have thus proved the following theorem.

Theorem 3. Let A be an algebraic S.M.I, algebra over an algebraically
closed field <3?. Let B be a simple subalgebra satisfying the d.c.c. with unit u. Then

(i) A (B) is a direct sum of two simple algebras, namely, the commutator of
B in uAu and the two-sided annihilator of B in A.

(ii) If A has infinite dimension over $, A(A(B)) =B.
(iii) If A is of finite dimension over f> but u is not the unit of A, then A (A (B))

= B®Z, Z£ë*.

3. The infinite case. We now discuss the second of the alternatives of
Theorem 2 assuming only that A is an S.M.I, ring and that P is a simple
Zorn subring of A. We proceed to investigate the embedding of B in A. It is
known that for a given finite set of elements of an S.M.I, ring there exists a
unit element in the ring forthisset [7, Theorem 9]. We shall call such a unit
element a "local unit" for the set. Let 93?P denote the set of all vectors of 2)2
which are images under l.t. of B. 932P is a subspace of 932: for if xb, yc are two
elements of 93ÎP, xb—yc=(xb—yc)e, where e is a local unit for b and c;
furthermore for all a in D, (ax)b=a(xb). This also shows that our definition
of 932P coincides with the usual one in which 93?P consists of all finite sums of
terms xb, x in 932, 6 in P. We denote by X(B) the subspace of all vectors
annihilated by all l.t. in P.
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Lemma 4. 93?Pn£(P) =0.
Proof. Let a; lie in WBÍ^Z(B). Then x=yb for some y in 93? and b in P.

Thus if e is a local unit for b, x = xe = 0.
Hence we may write

(3.1) 93? = 93?P 9 £(P) © 23

where 35 is some complement of 93?P©£(P) in 93?. There is of course nothing
unique about 93. If B does not satisfy the d.c.c, a nonzero 33 may very well
occur as will be shown by an example. The existence of such a "tail" is in
marked contrast to the case where B has the d.c.c. There P has a unit u
and so 93? = 93?w©93?(l-w), with 93?P = 93?w and £(P) =93?(1 -u). In fact,
as will be seen in the subsequent work, most of the difficulties of the infinite
case stem precisely from the existence of a nonzero tail.

We now make the following definition.
Definition. If a simple Zorn subring B of an S.M.I, ring A =7(93?, 9Î),

93?, 9? dual spaces over a division ring D, is embedded in A in such a way that
93?P©£(P) ?¿93?, B is said to be caudal in A. If on the other hand 93?P©2I(P)
= 93?, B is said to be acaudal in A.

We now give an example of a simple caudal subring. Let (xn) he a count-
ably infinite set of vectors over a field 3>, and let w and z be two additional
vectors such that (xn), w, and z are linearly independent over i>. Let 93?
= {x„, w, z}, the space spanned by the (xn), w, and z over <ï>. Consider the set
of matrix units e,y defined as f.v.l.t. on 93? by

With these definitions it is easily verified that the l.t. Cy satisfy the usual law
of matrix unit multiplication enekh — ̂ ikCih- Now let B be the algebra spanned
over «3? by the e,y. From our definitions it is clear that B consists entirely of
f.v.l.t. on 93?. Hence if A denotes the algebra of all f.v.l.t. on 93?, B is a sub-
algebra of A. B is clearly isomorphic to the algebra of l.t. it induces on the
space spanned by the x„ only. The latter is easily seen to be an algebraic
dense algebra of f.v.l.t. on {xn}, the space spanned by the x„ over $, and so
B is a simple Zorn algebra [5, Theorem 9]. Furthermore it is readily verified
that 93?P = {x„}, and that Z(B) = {w}. Thus z is not in 93?P © £(P) and B is
caudal in A.

We are now in a position to determine the structure of A (B) in case P
does not satisfy the d.c.c. ^4(P), the two-sided annihilator of B in A, may
then also be characterized as the subring of A consisting of all those l.t. of
A which have range in j£(P) and annihilate 93?P. Now A =7(93?, 9?) and we
may further characterize A(B) as the ring of all those l.t. in A mapping
93? into £(P) and whose adjoints map 9? into (93ÎP)'. For if a is in -¡4(P),
93?aC£(P), and since Pa = 0, (93ÎP, a*9?)=0. Conversely if a is a l.t. with
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these properties, 0 = (9JÎP, o*9?) = (932Pa, 92). Hence 93?Pa = 0 since 932 and 92
are dual spaces.

Analogously to the splitting (3.1) of 932 there is one of 92

92 = 5*92 8 £(P*) 0 SB
where B* is the ring of adjoints of B. We verify immediately that (932P)'
= £(£*), (P*92)' = 2:(ß). Thus A(B) may finally be characterized as the sub-
ring of A =7(932, 92) consisting of all those l.t. of A whose range is in £(P)
and whose adjoints have range in X(B*). In order to determine the structure
of A(B) we make a study of the following situation:

Let $C932, 8C92 be subspaces of 932 and 92 respectively. We consider the
set S = S($, 8) of all l.t. of 7(93?, 92) which have range in $ and whose adjoints
map 92 into 8. Since if x is in $ and / is in 8, the l.t. z—*(z, f)x lies in S, S
maps 93? onto $ and S* maps 92 onto 8. It is easily verified that S is a ring
and in this notation A(B) =S(Z(B), £(P*)). If x is in 8T\$, xS = 0; for if 5
is in S, (xs, 92) = (x, 5*92) =0. But 93? and 92 are dual spaces so that xs = 0
for all 5 in S. Similarly we see that S*($'P\8) =0. Conversely if for x in
$, xS=0, 0 = (xS, 92) = (x, 5*92) = (x, 8), so that x is in 8'Pif.

We may now consider the factor spaces Ä = Ä/8'nß, £=8/$'Pi8. It is
easy to see that $ and 8 are again linked by a nondegenerate inner product,
for we have but to define (x, f) — (x, f) where x and / are any elements in the
cosets cc and/. If we now define xs=xs, s*f=s*f, for representatives x and/
of the cosets x and /, it follows by the remarks of the preceding paragraph
that 5 induces a ring S of f.v.l.t. on $ with adjoints in 8- Moreover it is clear
that all f.v.l.t. on A with adjoints on 8 are obtained in this fashion; hence [l,
Proposition l] S is an S.M.I, ring.

The mapping of S onto S obtained by sending every l.t. of S onto the
one it induces on fi is a homomorphism with kernel P say, S — R=J($, 8).
Since 5 as an S.M.I, ring is semi-simple, the radical of 5 is contained in P.
Now R may be characterized as the set of all l.t. of 5 which map S into
8'n$. It then follows automatically that R* will map 8 onto ST\8. For if
r is in P, 0 = (®r, 8) = ($, r*8). Now let 5 and / be arbitrary elements of
S and let r be in P, then (Msrt, 92) = (932sr, /*92) =0, since mrC®rE2'C\®,
and ¿*92C8. Thus srt = 0 and it follows that SRS = 0 so that P3 = 0. Hence
R is a nilpotent ideal of 5 and so is contained in the radical. Combining this
with our previous statement we see that P is the radical of S.

We note that P might have been defined as the set of all r in 5 such that
SrS = 0, for then 0 = (93?5r, S*9?)=($r, 8) so that $rC8T\$. Furthermore
if the inclusions

(3.3) oc8T\ací?,     ocrnscs
are all proper, the index of nilpotency of the radical is actually three. For we
may then pick the following nonzero elements: x in 8'A$, / in 8 but not in
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IcTtë, y in Ä such that (y,f) ¿¿0, and g in ít'H8. The l.t. r and r' defined by

zr = (z,f)x,        zr' = (z, g)y, z in 93?,

are in R and zr'r = (z, g)(y, f)x so that r'r^O. However if any one of the
inclusion relations (3.3) fails to be proper, P2 = 0. For example, suppose
that ?'Hfi = A, then if r, r' are any two elements of P, (Wrr', 9?) = (93?r, r'*9?)
= 0so thatP2 = 0. U2T\® = ®T\% = 0, every r in P maps $ into 0; but then
0 = (®r, 9?) = (Ä, r*9?) and r* has range in 8, so r*9? = 0, r = 0. Hence P = 0 and
5=5 is an S.M.I, ring. Conversely suppose that P = 0. Then if x^O were
in 8'nS or g^O were in Ä'HS, the l.t.

s -»(«,/)*,      /?¿0in8,       »-►(*, g)y,      y^OinÄ

would be nonzero elements of the radical. We have thus proved the following
lemma.

Lemma 5. The ring S = S($, 8) is a ring with radical R consisting of all ele-
ments r of S such that SrS = 0, and S — Ris an S.M.I, ring. The index of nil-
potency of R is three if and only if all the inclusion relations (3.3) are proper.
The radical is zero if and only if 8'PiÄ = $'^8 = 0 and then S is isomorphic to

It is to be noted that if in the proof of Lemma 5 we had taken for A the
ring .£(93?, 9?) of all continuous l.t. on 93?, and for 5($, 8) the subring con-
sisting of all those l.t. whose range is in $ and whose adjoints have range in
8, the analogous result would have been proved. However in that situation
S — R would have been a primitive ring with minimal ideals rather than an
S.M.I, ring. We also note that the rings S(®, 9?) and 5(93?, 8) are left and
right ideals in either case. If A =7(93?, 9?), all one-sided ideals are of this form
[6, p. 15].

We shall now give an example to show that the ring A (B) = S(X(B), X(B *))
may have a radical with index of nilpotency three. We define dual spaces 93?
and 9? over a division ring D as follows: 93? has a basis of vectors {x¿, y,}
and 9? has a basis of vectors {fk, gh} where .the subscripts i,j, k, h run over the
positive integers. The inner product is given by the relations

(xí, fk) = Sik,        (yj, fk) = 0,        (xí, gh) = 0,        (y¡, gh) = Sjh.

It is then readily verified that 93? and 9? are dual spaces. Let

ÍÍ = {x2,_i — Xa+i, y2,-i — y2j+i}, i = 1, 2, • • • ;/ = 2, 3, • • • ,

8 = {/m-i — fik+i, g2h-x — gih+i}, k = 2, 3, • • • ; h = 1, 2, • • • ,

where the vectors in braces are a basis for the subspace in question. It is
then readily verified that

$' = {/**. gu g2*J, k, h= 1,2, • • • ,
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St" = {*2,-i, y2j-i}, i = 1, 2, • • • ; j = 2, 3, • • • ,
8' = {xi, x2i, y2i], i, j = 1, 2, • • • ,

8" = {fik-i, g2h-i}, * = 2, 3, ■ ■ • ; A = 1, 2, • • • .

We thus see that

ä' n 8 = o, sn?' = o,
ft'riï" = {gx},     rn?' = {xi}.

Now if 4 =7(932, 92), the subring B = 5($, 8) is an S.M.I, ring by Lemma 5.
Since both $ and 8 are of infinite dimension over D, B does not satisfy the
d.c.c. [5, Theorem 3], so that A(B)=S(X(B), £(5*)) =5(8', «'). But for
^4(5) the inclusion relations (3.3) are all proper so that the radical of ^4(P)
has index of nilpotency three.

If, however, P is acaudal in A and P* is acaudal in A*, a simplification
results: For then it is easily seen that £(P*)' = 93?P and that £(P)'=P*9?.
Then Lemma 4 yields £(P*)T\£(P) =£(P)'P\£(P*) =0, so that A(B)
= S(X(B), £(P*)) is an S.M.I, ring isomorphic to J(X(B), £(£*)). We thus
have the following theorem.

Theorem 4. Let A be an S.M.I, ring, B a simple Zorn subring which does
not satisfy the d.c.c. Then A(B), the two-sided annihilator of B in A, is a ring
with a nilpotent radical R, R? = 0, and A(B)—R is an S.M.I, ring. If B is
acaudal in A and B* is acaudal in A*, A(B) is an 5.M.I. ring and is isomorphie
ío7(£(P),£(P*)).

However, A(B) may be an S.M.I, ring without P being acaudal in A.
For example it may happen that £(P) =0 while B is still caudal in A (delete
w in the first example of this section) and so A(B) =0 and thus is an S.M.I,
ring.

In general it will not be true that A(A(B))=B. To obtain an example
let us assume that P and B* are acaudal in A and A* respectively, and
that the dimensions of £(P) and £(P*) are both infinite. Then A(B) is
an S.M.I, subring of A not satisfying the d.c.c. and so A(A(B)) is iso-
morphic to 5(93?P, P*92). Thus, unless B induces a dense ring of f.v.l.t.
on 93?P, A(A(B)) will contain B properly. It will become apparent in the next
section that B need not induce a dense ring of f.v.l.t. on 932P. However,
we shall also see that if P does induce a dense ring of f.v.l.t. on 93?P, P
= 5(932P, P*92). Thus if P satisfies the hypotheses made at the beginning of
this paragraph and induces a dense ring of f.v.l.t. on 93?P, A(A(B)) —B.

We now give a slight generalization of the results in the acaudal case, to
the situation where A is taken to be the algebra of all l.t. (not necessarily
finite-valued) on a vector space 932 over a field <3?. Following Dieudonné [2]
we call such an algebra a central completely primitive one. We again let P be
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a simple subalgebra containing nonzero f.v.l.t. Then since the set of all
f.v.l.t. in B forms a two-sided ideal, P consists entirely of f.v.l.t. Hence by
Theorem 18 of [5] P is an algebraic algebra, and so is a Zorn algebra. Thus P
is a simple Zorn subalgebra of the S.M.I, algebra of all f.v.l.t. on 93?. Hence,
by Corollary 1, P is also an S.M.I, algebra. Assuming now that 93? = 93?P
®X(B), we can determine the structure of ^4(P). We denote by J the sub-
algebra of A(B) which annihilates 'SkB, and by I the subalgebra which
annihilates X(B). Then we have:

Lemma 6. ^4(P) =/©/.

Since the proofs of this lemma and the subsequent theorem are fairly
easily reconstructed, they will not be given here. Our results in this case are
then summed up in the following theorem.

Theorem 5. Let A be the algebra of all l.t. on a vector space 93? over a field <£,
B a simple subalgebra containing nonzero f.v.l.t. If 93? = 93?P©jE(P), then
A(B), the commutator of B in A, is the direct sum of a central completely primi-
tive algebra over <f> and an algebra which is the set of all l.t. on a vector space
over a division ring.

4. Isomorphic subalgebras. We now wish to investigate isomorphic simple
subrings of an S.M.I, ring A. If A is a finite-dimensional central simple alge-
bra, it is known that every isomorphism between two simple subalgebras con-
taining the unit of A can be extended to an inner automorphism of A [3,
p. 101, Theorem 15]. Now if A =7(93?, 9?) is an S.M.I, ring not satisfying
the d.c.c, A contains no invertible elements, and so we cannot hope to ex-
tend an isomorphism of subrings to an inner automorphism of A.

Now it is possible to generalize the concept of inner automorphism to a
ring without a unit as follows: As usual let x o y = x-|-y-f-xy for any two x, y
in the ring A. Suppose that there is an element x' in A such that x o x'
= x' o x = 0. Then the mapping a—*x' o a o x is called a quasi-inner auto-
morphism of A (Malcev). Since we can write x' o a o x = (l-\-x')a(l-\-x),
where of course the unit element is used purely as shorthand, it is readily
verified that the mapping is actually a ring automorphism. If now
A =7(93?, 9?), 93?, 9? dual spaces over a field $>, it is clear that all quasi-inner
automorphisms of A are mappings of the form a-+P~1aP, with P = I-\-f in
£(93?, 9?). Here / is the unit of £(93?, 9?), and / lies in 7(93?, 9?). It then fol-
lows that not even quasi-inner automorphisms are enough for a generaliza-
tion of the classical theorem. For let Q he an invertible element of ^OSl, 9?)
not of the form «(1-1-/), where a is in <£, and/ is in 7(93?> 9?)- Then the auto-
morphism a—*Q~laQ is not quasi-inner. Indeed if it were, there would exist
an element / in J(W, 9?) such that Q-1(i'+/) would commute with every
element of J(%R, 9Î). Thus Q~1(I-\-f)=aI, where a is in <£, a contradiction.

However, we shall be able to prove that under suitable hypotheses an
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isomorphism between two simple subrings of A can be extended to an inner
automorphism of ,£(93?, 92).

We specialize to the case where A =7(932, 92), with 93?, 92 dual spaces over
an algebraically closed field i>(5). In a natural manner A is then an algebra
over <3?. Suppose now that B and C are simple subalgebras of A isomorphic
under a mapping a. Since they are algebraic [5, Theorem 18], B and C are
Zorn algebras, and so B and C are S.M.I, algebras. We wish now to find con-
ditions under which <r(b) =P~1bP for P in .£(93?, 92). It is to be noted that
since <x is an algebra isomorphism, <r(a6) =aa(b) for all a in $.

If <r is of the desired type, it is clear that A(B) and A(C) must also be
isomorphic. For if ab = ba, then

P-laPP-ibP = P-lbPP-laP,        P-laP<r(b) = <r(6)P-1aP,

so that A(B) and A(C) are also isomorphic. In the finite-dimensional case
this isomorphism is automatically ensured by supposing that B and C contain
the unit element of A. However, in the infinite-dimensional case even if 9J2P
and 932C have the same dimension, A (B) and A (C) may fail to be isomorphic.
As an example let A and B be as in the first example of §3, and let C coincide
with B on the space spanned by the xn, but let wC = zC = 0. Then obviously
both B and C are isomorphic to the algebra of l.t. which they induce on {x„},
and so B is isomorphic to C. However, C is acaudal in A and A (C) can be seen
to be an S.M.I, ring, in fact it is isomorphic to <i>2, while the l.t. a defined by
xna — wa = 0,za=w clearly lies in the radical of A(B), so that A (B) and A(C)
are not isomorphic in this case. Furthermore we know that the modules 93ÎP
and 93?C are fully reducible as right B and C-modules respectively [l, Thé-
orème 1 and p. 54]. Now if P~1BP=C, 93?P and 932C must split into equi-
potent families of irreducible submodules. That this is not implied by the
isomorphism between B and C and that of their commutators in A can easily
be seen by means of examples. It is clear, therefore, that in order to arrive
at the desired result we shall have to assume in addition to the isomorphism
between B and C at least that A (B) is isomorphic to A (C), and that 932P and
93?C split into equipotent families of irreducible submodules.

Before proving our main theorem we make a study of the relation between
932P and P*92. We know that 932P may be written as a direct sum of ir-
reducible right P-modules, U< say. Thus 93?P = ][],-Ui(6), where the cardinality
of the index set (i) is uniquely determined and is c, say. Following Dieudonné
[2, p. 160] we call c the height of B in A. We then prove the following
theorem.

Theorem 6. Let 93?, 92 be dual spaces over an algebraically closed field <£.
Let B be a simple subalgebra of 7(93?> 92). Then to every splitting of 932P into

(6) This may be realized, for example, by letting A be an algebraic S.M.I, algebra over 3>.
O Throughout the proofs of Theorems 6 and 7 the plain 5Z slSa denotes a direct sum.
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irreducible right B-modules, 93?P = ^¿Ui, there is a corresponding splitting of
P*9? into irreducible left B*-modules, P*9? = 2Z¿33,-. The VLi and 33j are sub-
spaces of 93? and 9? respectively with the property that (U,-, 23y) =0, i¥-f. Further-
more VLi and 23¿ are dual spaces over 4>, and B{, the algebra of l.t. which B induces
on VLi, is precisely J(VLi, 93,).

Proof. The proof will be carried out in a number of steps. For the relevant
theorems on modules that are used cf. [l].

ia) The module VLi is a subspace of 93? on which B induces a dense algebra of
f.v.l.t.

If x is in U¿, there is an element e in P such that xe = a\ Hence for all a
in <£, ax = a(xe)=xae is in Vu. Since U¿ is an irreducible P-module, B in-
duces a dense ring of f.v.l.t. on U¿ as a vector space over the division ring of
endomorphisms of VLi commuting with B [5, Theorems 6 and 9]. But we just
saw that this division ring contains i>, and since it is known to be isomorphic
to a ring of the form eBe, e an idempotent of B, it is algebraic over <£. Thus
this division ring coincides with i>.

In particular since a dense ring of f.v.l.t. contains projections onto
arbitrary subspaces there is, for every x in U,-, an e in B such that U»e = {x}.
Now if b is in B and {xi, x2, ■ • • , xn\ is a basis of 93Î&, we know that for
any z in 93?, zb= 2Zj (z>fj)xj<fiin P*9?. We may then break up the x¡ accord-
ing to the decomposition 2Z¿U¿ of 93?P and thus write zb= 2* 2Zj(zi/y*)***»
where the x¡k are in Ut, and the /,■* are in P*9?. By choosing a basis of 93?e
which contains the vector x and writing the Xa as linear combinations of a
set of independent vectors which includes x, we arrive at the following repre-
sentation of e: For all z in 93?P we may write z= ^¡¡¡z*, with Zk in U*. Since
the VLk are invariant under the l.t. of P, it follows that for all z in 93ÎP, ze
= (z,f)x+u,f in P*9?, u in £)«** U*.

For the rest of the proof we restrict attention to the dual spaces 93ÎP
and P*9?(7)- We shall consider annihilators of subspaces of 93?P (P*9?) in
P*9? (93ÎP) only. However we shall still use the standard notations, $' is the
annihilator in P*9? of a subspace Ä of 93ÎP. We recall that Mackey [10] has
called a subspace $ closed if $" = ®.

(b) Any direct sum of irreducible right B-submodules of 93?P is closed.
Let 93?P = ^2tVLi be a splitting of 93ÎP into irreducible submodules which

contains the given direct sum. We first show that /.¿j< 11/ is closed. To do
this it is clearly sufficient to show that for a given x in U¿ there exists a vector
/ in P*9? such that (x, f) 9^0, but ( ¿3<*¿ Wy, f) =0. But from (a) we have an
idempotent e in B such that for all z in 93?P, ze = (z, f)x-\-u. Since xe = x,
(x,f)9¿0, and since (J)w Uy)eC ]C»w Uy, (X¡«w Uy, /) =°- Thus ]£*«/ Uy
is closed. But any direct sum of the VLi can be obtained as an intersection of

0 To see that WB and S*9l are dual spaces we note that (3»S)'=£(B*), (B*9î)' = ï(5),
and apply Lemma 4.
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these subspaces and so is closed too [10, Theorem III-l ]. Of course this result
is also true for direct sums of irreducible left P*-submodules of P*92.

We now define S3. = (S»w Uy)'. It is clear that the S3,- are subspaces of
P*92 and that they also are left P*-modules. Furthermore if / is in S3;
C\ 5Z.VJ- 33y, / annihilates 932P and so/ = 0. Thus the S3< are independent.

(c) The S3,- are irreducible left B*-modules.
Suppose that SB is an irreducible nonzero submodule of 33<. Then

SB'DS3,' = X^'Vi Lty- Now 9325/ 2~li*j Uy is irreducible, so that if the inclusion
relation were proper, SB'/ £.w Uy = 93ÎP/X^y Uy. But 3B'C93?P so that this
would imply 932P =SB'. But then, since SB is closed, SB = 0. Thus SB' = Z-wUy,
and SB " = SB = 33,-.

(d) P*92=2:¿93<-
Suppose that ^,S3, did not fill P*92. Then, since £)i33< 's closed, ( X]>'93.)'

would not be zero. But if (x, 2^,33,)= 0, (x, 33,) =0 for all i. Thus x = 0, a
contradiction.

(e) The spaces U,- and 23¿ are dual and Bi=JQli, S3,).
If, for / in S3,-, (U,-, /) =0, then (9J?P, /) =0, and so / = 0. If, for x in U<,

(x, 33¿) =0, x is in ( 2Z«w Uy)"= ¿J<W Uy and so x = 0. As we already saw Bi
is generated by l.t. of the form 2—>(2, f)x, z, x in U,-, / in S3,-, so that P¿
C7(U<> S3,). Now for any 6 in B, zb= 2~lk Xy(z> ftj)xkj where the xk¡ are in
VU, and the/*,- are in P*92. Since UkB=Uk, it is clear that the/*,- are in S3t,
so that P,-D7(U¿, 33¿).

This theorem depends heavily on the fact that B consists of finite-valued
l.t. For if it held for a general S.M.I, algebra of l.t. on 932, it would hold in
particular for P=$. This would imply the existence of bases {x¿j, {/y} for
932 and 92 such that (x,-,/y) = 5,y. That this is not the case in general was shown
in [l,p. 75].

Suppose now that A =7(932, 92), 93?, 92 dual spaces over a division ring D,
and that B is an S.M.I, subring which induces a dense ring of f.v.l.t. on the
subspace 932P over P. The proof of Theorem 6 is applicable here and shows
that 5*92 is also irreducible and since 93?P and P*92 are dual spaces over P,
we have in our previous notation P=5(93?P, P*92)^7(932P, P*92).

We can now state and prove the main theorem of this section.

Theorem 7. Let 932, 92 be dual spaces over an algebraically closed field <£.
Let A =7(932, 92) and suppose that B and C are isomorphic simple subalgebras
of A. Then the isomorphism between B and C can be extended to an inner auto-
morphism of £(93?, 92) if:

(i) A(B) and A(C) are isomorphic;
(ii)  The heights of B and C in A are equal;
(iii) P and C are acaudal in A, B* and C* are acaudal in A *(8).

(8) It will be seen in §5 that B may be caudal in A, while B* is acaudal in A*.
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Proof. If B and C are of infinite dimension, it follows at once from Theorem
4 that A(B) induces the algebra A(B)=J(X(B), X(B*)) on X(B) and that
A(C) induces the algebra A(C)=J(X(C), X(C*)) on X(C). Since A(B) and
A(C) are isomorphic under a mapping p, say, this is also true for A(B) and
A(C). Then an application of Théorème 5 and §20 of [l] combined with
Theorem 19 of [5] yields an invertible linear transformation Q from X(B) onto
X(C) with an adjoint Q* from X(C*) to X(B*) such that

p(a) = Q-'äQ    and    (yQ, g) = (y, Ç*g)
where ä is the l.t. induced by a in ^4(P) on X(B), y is in X(B), and g is in
X(C*). Let the isomorphism between B and C be denoted by a. Suppose
that 93?P= ZiUi- P*9?= £,-33,; 93?C= £í2B(, C*9? = J^At, where i runs
through the same index set for all four sums, and U,-, 33,- and 9B¿, ï,- have the
properties described in Theorem 6. The indexing thus produces a pairing
off of the irreducible submodules of 93?P and 93?C If P, and C< denote the
algebras of l.t. that P and C induce on U¿ and 9B¿ respectively, P¿ and C¿ are
also isomorphic under a. For if b induces a l.t. ¿>¿ on U< and c induces a l.t.
Ci on SB,-, we simply define a(b¿) = [c(¿>)]¿. Just as before we obtain an in-
vertible l.t. Pi from U» to 28,- with an adjoint P* from 3£< onto 33» such that

ff(i<) = Pr^iPi    and    (x¿P¿, ft) = (*,, Pf/O
where x¿ is in U¿ and /,■ is in &. Since 93? = 93ÎP © £(P), 9? = C*9?©£(C*), any
vector x in 93? and any vector / in 9? may be written as

x = S xí + y,    Xi in Vu, y in X(B),       f = ^2 fi + g, /,- in &, g in £(C*).

We then define invertible l.t. P, P* on 93? and 9? by

xP = £ **-?< + yQ,        P*/ = E «ft + £*£•
Keeping in mind that (30¿, Xy)=0 for i^j and that (93ÎC, X(C*)) = (X(C),
C*9?) =0, we have (xP, /) = (x, P*/), so that P is in £(93?, 9?). Furthermore
for all x in 93? and b in B, xPa(b)P-l= Y.XiPiO-(b%)Pi-l = xb so that <r(b)
^P^bP. If a is in A(B), xPp(a)P~1 =yQp(a)Q~1 =xa, so that P~laP = p(a).

If B and C are of finite dimension over <I>, ̂4(P) and A(C) are larger than
the annihilators of P and Cin A. However, it can easily be seen from Theorem
3 that, in this case, the isomorphism between A(B) and A(C) induces an
isomorphism of the corresponding annihilators. Thus the same proof is valid
also in this case.

Now A is the socle of £(93?, 9?) and so consists of all f.v.l.t. in £(93?, 9?),
thus PAP~X(ZA. But it is easily verified that any f.v.l.t. of £(93?, 9?) lies in
P.4P"1 so that PAP-^A.

That restrictions as to the caudality of the subalgebras are indeed neces-
sary for the validity of Theorem 7 will be seen from the following example:

Let 93?= {xi} © {x2} © • • • ®{z}   over an algebraically closed field 4>.
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Let A and P be defined as in the first example of §3 (with w deleted). Let C
be the algebra of f.v.l.t. with a basis/,-y over <3? which coincides with the e,y on
{xn\, but such that

zfa — 0 if i is even,       2/,-,- = x y if i is odd.

Then it is easily verified that the /,-y also satisfy the matrix unit law of
multiplication on 2; and thus we see just as before that P and C are caudal
in A with a tail of dimension one in both cases. Clearly B and C are isomorphic
under the mapping tr(e,y) =/i;, and £(P) =£(C) =0 so that A(B) =A(C) =0.
Moreover both B and C are isomorphic to the dense algebra of f.v.l.t. they
induce on {x„| so that they are algebraic S.M.I, algebras, and the modules
932P and 932C are irreducible. Hence in this case all the conditions of Theorem
7 except (iii) are satisfied. Suppose however that there existed an invertible
l.t. P on 93? such that <r(6) = P~16P. Then

xnP = xnennP = x„P/„„ = rj„xn     where i\„ 7+ 0 is in $.

Now let zP~l = 2^lT a,Xi+az, ai, a in 3>. Since P_1 maps {x„] onto {xn}, and
is an onto mapping of 932, aj^O. But if j is an even integer greater than m,

zP~1ejjP = aXj-P = arijXj 9+ 0 whereas z<r(ey,) = zfa = 0,

a contradiction. Thus no P of the desired kind exists in this case.
It should be noted that there is no overlapping between our theorem and

Dieudonné's analogous results [2, Théorème 8]. For there the subalgebras are
assumed to contain the center of the ring of all l.t. on 9J2, and so if they are
simple, the only f.v.l.t. they contain is the zero transformation.

In the finite-dimensional analogues of the theorems of §2-5 the subalge-
bras are always assumed to contain the unit of the larger algebra. If this re-
quirement be dropped in this case, the only additional phenomenon that
occurs is the two-sided annihilator, which as we have seen is fairly easy to
handle and does not introduce anything strikingly different. The situation is
quite the reverse in the infinite case. One might be tempted to substitute for
the assumption about the unit the assumption that 9J?P = 93?; but this would
exclude the occurrence of a tail which gives rise to several new phenomena.

5. Maximal ideals in S.M.I, rings. If A is a simple ring with the d.c.c,
it is well known that all the maximal right ideals of A are the subrings of A
annihilating a given vector in the representation of A as the full ring of l.t.
on a finite-dimensional vector space. We now wish to study the maximal
one-sided ideals in an arbitrary S.M.I, ring A =7(932, 92), 93?, 92 dual spaces
over a division ring P. In that case as we saw in §3 all the left (right) ideals
are of the form S(St, 92) (5(93?, 8)), and there is a lattice isomorphism between
the subspaces St (8) and the left (right) ideals [6, p. 15]. Thus the maximal
left ideals of A will be all the subrings of the form S(St, 92) where St is a maxi-
mal subspace of 932, i.e., one with a one-dimensional complement in 932. Clearly
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there are two cases to be considered, $'^0 and $' = 0.
Suppose first of all that ^'^0, then £"= $. For if it were larger than $,

it would be all of 93?, and so 93? and 9? could not be dual spaces. Hence 2 is
closed in the sense of Mackey [l0]. Theorem 111-2 of [lO] then yields the fact
that $' is one-dimensional, $'= {g} say. Thus $T^9?= \g) ¿¿0, and by Lemma
5 the left ideal J = S(®, 9?) is a ring with radical P which is a zero ring. The
ring J—R is an S.M.I, ring isomorphic to 7(^> 9?/{g})- It is also easily
verified that J* can be characterized as the subring of A* consisting of all l.t.
which annihilate g, by using the fact that /consists of all l.t. of A whose range
is in $t = \g}'. Moreover, these maximal left ideals are the regular ones. We
recall that a left ideal J is said to be regular if there is a right unit modulo J,
i.e., an element e such that ae — a is in Pfor all a. In fact we have the following
lemma.

Lemma 7. The maximal left ideal J = S($, 9?) ti regular if and only if S'^O.

Proof. Suppose that J = S(@, 9?) is regular and let 93? = ¿t©{y}. Then
since e cannot be in J, ze = (z, g)y-\-x, where x is in S. But, for all z in 93? and
a in A, zae — za must lie in $. In particular if a is in J, zae — za = (za, g)y+x',
x' in ®, must lie in Ë. But as z ranges over all of 93? and a ranges over all of
J, za ranges over all of 2 so that ($, g) =0.

Conversely suppose that there is a g in 9? such that ($, g) =0. If 93? = Ä
© {y}, define a l.t. e of A by ze = (z, g)y/(y, g). Since $ is closed, (y, g)^0
and so e is well defined. For a in A let za—ay-\-x, x in $, then

z(ae - a) = (za, g)y/(y, g) - ay - x = - x

so that ae — a is in J for all a of A(9).

Corollary 2. If every maximal left ideal of A is regular, 9? = 93?*, the space
of all linear functionals on 93?, and so A is the ring of all f.v.l.t. on 93?.

Proof. Let/ be an arbitrary functional on 93?. Then if $ is the null-space
of /, Ë is a maximal subspace of 93?, and so there is a regular maximal left
ideal J = S(®, 9?) corresponding to it. But then there exists a vector g in 9?
such that ($, g) =0. Hence/is a scalar multiple of g and so is in 9?, 9? = 93?*.

These results are fairly well known. However, they have only appeared
as exercises in lecture notes by Jacobson and Kaplansky, so that it was
thought worthwhile to reproduce them here for the sake of completeness.

We thus see that if A is not the complete ring of f.v.l.t. on 93?, maximal
ideals 5(®, 9?) with $'=0 must also exist. By Lemma 5 it follows immedi-
ately that these are S.M.I, rings isomorphic to the ring J($, 9?). Such ideals
furnish examples of S.M.I, subrings P with B caudal in A but P* acaudal in

(9) Added in proof June 27, 1952. It can be shown that an arbitrary left ideal S($, 9c)
is regular if and only if S is closed and the dimension of 9K/S is finite.
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A*. For since 7*92 = 92, X(J) =0 and so any complement of $ is a tail for /
in A. In case dim 932 = dim 92=No it is known [10, Lemma p. 171 ] that there
is a basis {x,} for 93? and a basis {/,-} for 92 such that (x,-, fj) = 5¿y; following
Jacobson we shall refer to such a pair of bases as biorthogonal bases. Then
if Ä is a maximal nonclosed subspace of 932, it follows by the same lemma that
St and 92 have biorthogonal bases. Hence in this case all the nonregular
maximal left ideals are isomorphic to ^4(10). We proceed now to give an ex-
ample of a ring 7(93?, 92) —A where not all the nonregular maximal ideals are
isomorphic. However we first prove the following lemma.

Lemma 8. Let 93?, 92 and H, §) be two pairs of dual spaces over the same divi-
sion ring D, and let all four spaces have the same dimensions. Suppose that {x,}
is a basis of 932, {/y} a basis of 92 such that (x,-, /y) =7,-y in D. Then 7(3)1, 92) is
isomorphic to J(%, §)) if and only if there exists a basis [xi } of X and a basis
{// } of £) such that (x¡, fj ) =7,,-.

Proof. Suppose that J(3Jl, 92) is isomorphic to 7(#> 2))- Then there exists
an invertible l.t. P from 93? to ï with an adjoint P* from §) to 92 such that
PJ(H, 3J)P-1=7(932, 92). But then 7« = (**/,-) = (x¿P, P*~l/y) so that*/ =x,P,
// =P*~1fj furnish a basis of the desired type. Conversely if such x,' and//
exist, define P by x,P = x/ and P* by P*fj =/,-, then (x,P,// ) = (x,-, P*// ). But
it is easily verified under those circumstances that PJÇ&, ^))P~1=7(3Jl, 92) so
that the two rings are indeed isomorphic.

To obtain an example of two nonregular maximal left ideals which are
not isomorphic we consider the following situation: Let 932= {x,J, 92= {/y} be
dual spaces over a division ring D with dim 93? = dim 92>^o and (x,-, /y)
= 5,y. We well-order the index set (i) and we shall keep the same ordering
throughout the discussion.

Consider the subspace Ë of 93? spanned by xi —x2, x2 —x3, • • -, x„,
Xu+i, • • • , where w is the first limit ordinal. Clearly 93? = $© {xi}, and if
(St,f)=0 for/= 2~lfiai> then a¿ = 0 for í¡Zoú and ai=a,- for i<u. Since only
a finite number of a, are nonzero, / = 0 and St and 92 are dual spaces. Thus
S(St, 92) is a maximal nonregular left ideal isomorphic to A =7(93?, 92), for
{xi-x2, x2 — xs, •••,*«, xa+1, • • • } and {/i, /1+/2, /1+/2+/3, • • • ,

fa, fa+i, ■ " •} are biorthogonal bases for £ and 92.
Now let Sti be the subspace of 93? spanned by all the vectors xi —x,-, ipil.

Then 932 = Äi© {xi}. Now suppose that (Stuf) =0 with/= ^/,-a,-, thenai=a,-.
Since the index set (i) is infinite,/=0. Thus S(Sîi, 92) is another nonregular
maximal left ideal. By Lemma 8 those two left ideals are isomorphic if and
only if there exist biorthogonal bases for $1 and 92. We shall show that this
is impossible and so we have nonisomorphic ideals in this case.

Suppose there exist a basis {w,-| of $1 and a basis {g,} of 92 such that
(»«1 gi) = 8«. Then

(10) Cf. Lemma 8.
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Ui = £ «i,-(xi — Xj)    and   /,• = X) gißhi
i h

where the coefficients are in D. Since (m,-, gj)=8ij, we obtain the following
relations by evaluating («,-, /,) :

(5.1) for/ = 1,    £ «<* = frii        for/ 5¿ 1,    ay¿ = — ßij.
h

But for a fixed j only a finite number of ßhj are different from zero, so that
there are only a finite number of vectors «¿ with ^Cya.y^O, Ui¡, u^, ■ • ■ , u^
say. Also for each xi—x¡ there are only a finite number of vectors «,- involving
X\—Xj with a nonzero coefficient when written in terms of the basis
{xi —Xy} of íti. We now show that these facts lead to a contradiction.

For any uit Í9^i\, ■ ■ ■ , im, i.e., a m,- such that £y atJ = 0, we pick the
maximum h such that «a^O. Then «,-*= — ¿lj<h &n and

Ui =   £ «<)(xi —  X,-)   =   Yl OCij(Xh —  Xj).

Thus all the m,- except a finite number lie in a subspace 2B of $i, spanned
by certain of the vectors x>, —xy, Ä^l.j'^l. Now each Xi—X¡ occurs in only a
finite number of w,- by (5.1). Therefore for every given index/ there are only a
finite number of vectors Xa — x¡ in 30. Suppose now that we adjoin a vector
Xi — Xh0 to 953. Then any vector Xi—Xj lying in SB4- {xi — Xft0} must be of the
form Xi — xy = Xi — xho-\- £7r,-*(Xi — Xk), where the sum runs over n terms, say,
and at least one of the terms in it is of the type x>¿0 — x*. Since there are only a
finite number of possibilities for such a term, for each n only a finite number
of vectors X\—x¡ lies in 33-f- {xi — Xh0}. Thus only a countable number of
vectors X\ — x¡ lie in SB+ {xi —xa0}. Similarly if we adjoin a finite number of
Xi — Xh, to 353, all we get is a countable number of vectors x\—x, lying in the
extended space. But since only a finite number of «,- do not lie in 953, we have
to get all of $i by adjoining only a finite number of vectors Xi — x^. Hence
.f i would contain only a countable infinity of vectors X\ — x¡, a contradiction.

It is hardly necessary to state that all these results can be carried over to
right ideals of A by passing to A *.

6. Equivalent subrings in the doubly countable case. We shall call two
subrings B and C of a ring A =7(93?, 9?) equivalent in A if there is an in-
vertible element P in £(93?, 9?) such that P~XBP = C. We then have the fol-
lowing lemma.

Lemma 9. The rings B = S(®, 8) and C = 5($i, 8i) are equivalent in A if and
only if there is an invertible l.t. P in £(93?, 9?) such that $P = $i, P*8i = 8.

Proof. If the rings are equivalent in A, ^i = 93?C = 93?P-1PP = ÄP and
8 = P*9?=P*C*P*-19?=P*8i. Conversely if such a l.t. exists and b is in P,
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ífflP-lbPCSti, P*-16*P*92C8i so that P~lBPCC. Similarly PCP-'CB and
so P-1BP=C.

Unfortunately the only case in which any headway has been made in
determining for which pairs of subspaces such P exist is the one where both 932
and 92 are of countable dimension over the division ring D, and it is to this
case that we shall restrict ourselves from now on.

Theorem 8. Let 93?, 92 be a pair of dual spaces over a division ring D, with
dim 932 = dim 92= tío- Let St, Sîi be two subspaces of 93? and 8 a subspace of 92
such that Ä' = i?i =8' = 0, and suppose dim 93?/$=dim W/Sti. Then there
exists an invertible linear transformation P in £(932, 92) such that SîP — Sîi, and
P*8 = 8. Conversely, of course, if such a l.t. exists and SÎ' = St{ =0, dim 932/$
= dim 93?/$i.

Proof. The last statement is clear. We shall show how to build P by a step-
wise process; for the idea of the proof cf. [9, Theorem 6].

We first note the following: If % is a finite-dimensional subspace of 93? of
dimension n, it is closed and so g' has deficiency « in 92 [10, p. 163 and
Theorem III-2]. Hence for a given basis {xi, x2, • • • , xn} of 5. we may write
92 = 5'© {/i, h, ■ • • ,fn), (xi, /y)=5iy. Here {f¡\ is a basis for any comple-
ment g °f %' in 92. The well known theorem that finite-dimensional dual
spaces admit biorthogonal bases is used here.

Now let g and %i be two «-dimensional subspaces of 93?, « a finite integer.
Suppose that the desired mapping has already been achieved for g and gi, and
a pair of complements g, gi of g'and v5i' in 92. That is, if g= {xi, x2, • • -,x„},
3={/i. fi. •'•./»}> (x«'> fi)=f>n< there is a one-to-one l.t. P from g onto %i
with an adjoint P* from gji onto g. The l.t. P carries &C\% onto ßif^rji and
the Ft. P* carries gnjfi onto 8Pig. Let y( = XiP, gj = P*~xfj be bases of gi
and fji; then clearly (y,, gy)=5,y also. We now extend the mapping by a
process alternating between g and gi- We shall describe the process of adding
one element of g and one to gfi. Let {zt} be a basis of 932 and {A,} a basis of
92 which contains a basis of 8 as a subset. Suppose that zm is the first basis
element not in g, and hk is the first basis element not in gi. We must then
pick a vector w in 93? and not in %i and a vector r not in g, but in 8 if hk is
in 8, and not in 8 if hk is not in 8 such that

,, <x (w> gi) = (zm,fj),   j = 1, ■ ■ ■ , n,        (yu hk) = (x„ r),    i = 1, ■ ■ ■ , n,
(6.1)

(w, hk) = (zm, r).

For if this is done, zmP = w, P*hk=r will clearly be an extension of our map-
ping with the desired properties. There are two cases to be considered.

Case I. The vector zm is not in $ + rj. Then the w we pick must not be in
Ä1+81. But then $+8^9)2 and so

dim (St + g)/Ä = dim %/St C\ g < dim 932/$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1952] SUBRINGS OF SIMPLE RINGS WITH MINIMAL IDEALS 135

But dim 93?/$= dim 93?/$i and dim gi/ítiPgi = dim g/f Pg and so

dim (Ä! + gi)/f = dim gi/ÍÍi Pi gi < dim 93?/$i.
so that Äi+gi is a proper subspace of 93? too.

We may then write 93? = ,3©gi where for all z in 3, (z. gy)=0 = (z, gi).
For if x is in 93? and (x, g,) =ajt a¡ in D, then (x— ^aiyi, gj) =0. If (zm, fj)
= j3y let w= y^ßiVi-r-z for z in 3- Then (w, gj) = (zm, /y) and we can certainly
find a z such that w is not in $i+gi. For if this were not the case, 3Cíti4-gi
and so 93? = Jti+gi.

We now show how r may be picked. Suppose first that hk is not in 8, so
that we wish to obtain an r that is not in 8 either. If (yi} hk) =yu (x,-, ]C//Yy)
= 7,-. But g" =g so that there is a vector / in g' such that (zm, t) f^O. Setting
(Zm, XZ/Yy+O = (w, hk), we can solve for £ since (zm, t) ¿¿0. If (zm, XlfyTy)
9^(w, hk), '*L,fffj-\-t¡i = ro will be a vector fulfilling the conditions of r in (6.1),
but not in g. If (zm, "52lfp/]) = (w, hk), since g+{zm| has dimension w + 1,
there is an s in 9? such that (g+jz™}, s)=0, and then Xl/y7y+5:=ro wu'
have the same properties as the first r0. If r0 does not happen to lie in 8, we
let r=ra.

Suppose now that r0 were in 8. We claim that there is a vector u in the
annihilator of g+ {zm| in 9? which is not in 8. Once this is established r = r0
-\-u will fulfill all our requirements for r. Now suppose § were the annihilator
of g+{zOT} both in 9? and in 8. Since 8 is dual to 93?, dim 8/|>= dim 9?/£>
= n +1. But then dim 9?/§ -5- dim 8/§ = 1 and so 8 would not be a proper sub-
space of 9?. Thus r can always be picked to fulfill our requirements.

If hk is in 8, however, since 93? and 8 are dual spaces, the whole argument
leading to r0 in 9? can be repeated with 9? replaced by 8. (That is, there
are vectors // in 8 such that (x¿, // ) = 5« and {// } D8Pg, etc) We are thus
led to an r0 in 8 but not in {// }, and so not in g, which we choose as r.

Case II. The vector zn is in $-|-g. We must now choose w to lie in ®i but
not in ÎîiPgi. But Si and 9? are dual spaces and the g¡ are n linearly inde-
pendent forms, hence by a well known theorem of linear algebra there is a
vector v in .$i such that

(■», gj) - (zm,fj), j = 1, ■ ■ ■ , n.

If v is not in gi, we let v = w. Suppose, however, that v lies in gi. As we shall
presently see, SiP^^O, so that there is a z^O in $iP,3. Then (v-\-z, gf)
= (v, gj) and since 3Pgi = 0. w = v-\-z is in $i but not in SiPgi. It remains
to show that JtiP^^O. If tiP3 were zero, dim Îïi^dim 93?/.3- Since
dim 93?/3=dim gi< °°, the dimension of $i would then also be finite which
contradicts the fact that $i =0.

For this case the vector r is picked just as before.
Now, in either case, for the induction to go through we must also be sure

that the spaces gi+ {w} and gi+ {hk} are dual. A straightforward computa-
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tion shows that they will fail to do so if and only if (w— ^(w, g,-)y,-, A*) =0.
If this condition is fulfilled, we modify w as follows: There is a vector g in 932
such that (q, gj) =0, i = l, 2, ■ ■ • , n, but (q, hkjT+O. If w+q lies in %i we add
a vector annihilating all the g,'s and A* to it to obtain our new w. This new w
has the following properties: the spaces }5i+{w} and $i + {A*} are dual, it
does not lie in gi, and (w, gj) = (zm,fj). Using this modified w, r is then picked
as before. Thus the pairs of spaces j$i+{w} and Si+JAa;}; 5+{2m} and
¡5+ [r] are dual.

In either case let @ be spanned by $ and zm, &i by §i and w. Then P
extends to a one-to-one mapping of ® onto ®i mapping ®P\$ onto ©if^Si,
with an adjoint on $1+ {hk} to 5+ \r\ mapping the respective intersections
with 8 onto each other. In this manner by reversing the role of g and gi at
the next step we build the required l.t. P. The same theorem of course holds
for two subspaces of 92 and one subspace of 93?.

Corollary 3. Let St, $1 be subspaces of 932, 8, 81 be subspaces of 92, such
that St'= Stl =8'= 81' =0. Suppose further that dim 932/$= dim 93?/$! and
that dim 92/8= dim 92/8i. Then there exists an invertible l.t. P in £(93?, 92)
such that $P = $i, P*8i = 8. Conversely if such a P exists and $/ =$' = 8'
= 8/ =0, dim 93?/$ = dun m/Sîi and dim 92/8 = dim 92/8x.

Proof. By Theorem 8 we can find invertible l.t. Q and P in £(93?, 92) such
that $<2 = $i, (2*8 = 8; $iP = $i, P*8i = 8. But then P = QR is the required
l.t.

We are now in a position to classify any two subspaces of 93?, or 92. In
fact if $ is any subspace of 932, and we call the three cardinals

dim $,       dim $"/$,       dim $'

the invariants of $ in 932, we have the following corollary.

Corollary 4. // $, $1 are two subspaces of 932, a necessary and sufficient
condition for an invertible l.t. in £(93?, 92) carrying $ onto $1 to exist is that
the invariants of $ and $1 in 9)2 be the same.

It should be noted that if $' = 0, dim $=N0 and dim $"/$=dim 932/$,
so that in this case there is only the one invariant, dim 932/$, of $ in 93?.

Proof of Corollary 4. The necessity of the condition is obvious. For the
proof of the sufficiency we proceed as follows. By Lemma 1 of [11 ] we may
write

9J2 = $" © SB = $1" © SBi,       92 = $' © SB' = $/ © SB/.
It is easily seen that $", SB'; $1", SBi ; SBi, $1' ; and SB, $' are pairs of dual
spaces. Now if ($, A) =0, A is in $' and so $ has no annihilator in SB'. Since
dim $"/$=dim $i"/$i by Theorem 8 (with the dual spaces $", SB' and
$1", SBi' identified) there is an invertible l.t. P of $" onto $1" carrying $
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onto $i with an adjoint P* mapping 953i onto 953'. Since dim ít' = dim 93?/$"
= dim 953= dim $/ =dim 953i = l, 2, • • • , t$o, we can find biorthogonal bases
of the same cardinality for 953 and $' and for 953i and $/. Thus by mapping
these onto each other we get an invertible l.t. Q from 953 onto 953i with an
adjoint Q* from $i onto $'. Now for any x in 93? and any/in 9? we may write:

x = xi + Xt, xi in ft", x2 in 953;       / = /i + ft, /i in 9Bi', f2 in Ä/.

If we then define P and P* by xP = XiP+x2Ç, P*f=R*fi + Q*f2, it is
readily verified that (xP, /) = (x, P*f), so that P is an invertible l.t. in
£(93?, 9?) carrying S onto $i. Of course the same result holds for subspaces of
9?.

That the countability assumptions of Theorem 8 cannot be dropped may
be seen from the example in §5, for there the subspaces satisfy all the require-
ments of Theorem 8 but cannot be carried into each other by an invertible
element of £(93?, 9?).

These last results may be restated in terms of ideals and subrings of
7(93?, 9?). Since we know that all left (right) ideals of A =7(93?, 9?) are of the
form 5($, 9?) (5(93?, 8)), Lemma 9 in conjunction with Corollary 4 yields
the following theorem.

Theorem 9. Two left (right) ideals in 7(93?, 9Î), with 93? and 9? dual spaces
of countably infinite dimension over the division ring D, are equivalent in
7(50?, 9?) if and only if their ranges in 93? (in 9?) have the same invariants.

Corollary 3 yields information on the equivalence of subrings of the form
5(j?, 8) with f' = 8' = 0. Since then B=S(®, 8) is an S.M.L subring with
X(B) =X(B*) =0, the remarks subsequent to Theorem 6 combined with the
results of this section give us the following theorem.

Theorem 10. Let 93?, 9? be dual spaces over a division ring D, with dim 93?
= dim 9?= t<0. Let B and C be two S.M.I, subrings of JCSR, 9?). Suppose that

B and C induce dense rings of f.v.l.t. on their respective ranges and that X(B)
— X(B*) =X(C) =X(C*) =0. Then B and C are equivalent in A if and only if
the invariants of 93?P and 93? C in 93? are the same and the invariants of P*9?
and C*9? in 9? are the same.

It is easy to construct examples where X(B) =0, X(B*) ¿¿0, so that these
assumptions are independent.
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