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ABSTRACT 

Experimental studies show that multimodal biometric systems for 

small-scale populations perform better performance than single-

mode biometric systems. We examine if such techniques scale to 

larger populations, introduce a methodology to test the 

performance of such systems, and assess the feasibility of using 

commercial off-the-shelf (COTS) products to construct 

deployable multimodal biometric systems. A key aspect of our 

approach is to leverage confidence level scores from preexisting 

single-mode data. An example presents a multimodal biometrics 

system analysis that explores various normalization and fusion 

techniques for face and fingerprint classifiers. This multimodal 

analysis uses a population of about 1000 subjects, a number ten-

times larger than seen in any previously reported study. 

Experimental results combining face and fingerprint biometric 

classifiers reveal significant performance improvement over 

single-mode biometric systems. 

General Terms 

Algorithms, Measurement, Performance, Design, 

Experimentation, Security, Human Factors, Standardization, 

Verification. 
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1. INTRODUCTION 
Single-mode biometric solutions have limitations in terms of 

accuracy, enrollment rates, and susceptibility to spoofing. A 

recent report [4] by the National Institute of Standards and 

Technology (NIST) to the United States Congress concluded that 

approximately two percent of the population does not have a 

legible fingerprint and therefore cannot be enrolled into a 

fingerprint biometrics system. The report recommends a system 

employing dual biometrics in a layered approach. Combining 

multiple sources of evidence improves performances, as 

demonstrated in several small-scale experimental studies 

performed in academia [1,2,3].  

The key to multimodal biometrics is the fusion (i.e., combination) 

of the various biometric mode data and, if necessary, the 

normalization of that data to achieve values in a common range. 

Fusion can occur at the feature extraction, match-score, or 

decision level [2]. Feature level fusion combines feature vectors 

at the representation level that essentially provides higher 

dimensional data points when comparing the matching score. 

Match-score level fusion combines the disjoint confidence scores. 

Decision level fusion combines accept or reject decisions of 

individual systems. A majority vote scheme can then be 

employed, for example, to make the final judgment [10]. Our 

approach addresses fusion at the match-score level. 

Limitations upon deployment of multimodal systems include lack 

of a common testing framework and the absence of tools to 

evaluate and build such systems. Core components of this work 

present (i) a verification testing methodology for multimodal 

biometric systems, (ii) an evaluation of normalization and fusion 

algorithms for a subject population ten-times larger than 

previously reported, and (iii) recommendations for designing 

multimodal biometric systems that can accommodate COTS 

products. 

2. TESTING FRAMEWORK 
We begin by introducing a methodology for testing multimodal 

biometric systems; the methodology provides a general 

framework for conducting normalization and fusion technique 

evaluations. The basis of this methodology is that fusion is 

applied after the individual biometric match-scores are 

determined. An advantage of fusion at this stage is that existing 

and proprietary biometric systems are not affected, allowing for a 

common middleware layer to handle the multimodal application 

but with a modicum of common information. Another advantage 

of using match (or confidence) scores is that data from prior 

evaluations of single-mode biometric systems can be reused. This 

avoids live testing or re-running individual biometric algorithms. 

One source of such data is the 2002 face recognition vendor test 

(FRVT 2002) [5].  

The following is an overview of our adoption and extension of a 

single-mode biometric testing methodology proposed by Phillips 

et al. [5, 6].  A biometric signature is any form of biometric 

identifying data (e.g., a still fingerprint image or template of that 

information). 

1. Assemble two sets of biometric signatures: a target and 

query set. The target set contains the set of signatures 

that are known to the system (i.e., the Biometric 

database). The query set contains signatures of subjects 

that are to be compared against the target set.  The 

intersection of these two sets contains the subjects that 

should be found in the database. For practical tests the 

intersection should not be null. Although the same 

subjects are in both sets, separate instances of their 

biometric signatures should be used. 

2. For each pair of query and target signatures obtain a 

match-score and store in a matrix, called a similarity 

matrix, whose size is query set size by target set size. 

The match-score is a measure of how similar two 

biometric signatures are. The match-score could 

represent, for example, a similarity or distance score.  

3. Gallery and probe subsets can be extracted from the 

target/query similarity matrix, respectively, to perform 

“virtual” experiments on a subset of the population. A 

gallery is any arbitrary subset of the target set. A probe 

is any arbitrary subset of the query set. 



4. Repeat steps 1-3 for each biometric mode. 

5. Assemble and align the similarity matrices from step 2; 

this includes converting data to a common format, 

forming subsets to obtain matrices of the same size, and 

data mating to create real or virtual subjects. If the 

scores were produced by different sets of subjects, we 

rely upon the assumption that the individual modalities 

concerned are statistically independent of one another 

and could thus be assigned arbitrarily (though 

consistently) to form a set of mated virtual subjects for 

the purpose of testing. The result is a set of similarity 

matrices of equal size representing match-score data for 

mated subjects in a common format convenient for 

processing 

6. Normalize the assembled similarity matrices to a 

common number range. Since this is an optional step, 

the transformation could be null and the output is equal 

to the input. A decision tree based fusion algorithm is a 

case where normalization may not be necessary. 

Normalization can be any post-processing 

transformation of the score data, but care should be 

taken not to reduce the dimensionality of the data [9]. 

7. Fuse the set of normalized similarity matrices into a 

single fusion similarity matrix. A fusion function, f(x1, 

…xn), defines a mapping from n-space, where each 

biometric represents one of the n dimensions, into a 

single fused dimension. A threshold divides this range 

into an accept and reject part. Alternatively, decision 

level fusion defines a boundary that partitions the n-

space into two parts representing accept and reject 

space. Operationally, the threshold or boundary is 

derived from an estimate of the Receiver Operating 

Characteristic (ROC) curve developed in step 8. 

8. Performance statistics for verification are computed 

from the genuine and imposter scores. Genuine scores 

are those that result from comparing elements in the 

target and query sets of the same subject. Imposter 

scores are those resulting from comparisons of different 

subjects. Use each fusion score as a threshold and 

compute the false-accept rate (FAR) and false-reject 

rate (FRR) by selecting those imposter scores and 

genuine scores, respectively, on the wrong side of this 

threshold and dividing by the total number of scores 

used in the test. A mapping table of the threshold values 

and the corresponding error rates (FAR and FRR) are 

stored. The complement of the FRR (1 – FRR) is the 

genuine accept-rate (GAR). The GAR and the FAR are 

plotted against each other to yield a ROC curve, a 

common system performance measure. In practice, one 

chooses a desired operational point on the ROC curve 

and uses the FAR of that point to determine the 

corresponding threshold from the mapping table. 

This framework allows a system designer to model hypothetical 

multimodal biometric systems that can vary the biometric 

indicator, matching algorithm, normalization and fusion 

techniques, and sample databases (e.g., the subject population or 

environmental conditions can be varied). Given this framework, 

systems can be built to optimally suit a particular application. 

3. EVALUATION  
We apply the principles laid out in the framework by examining 

two similarity matrices representing scores from a fingerprint and 

a face recognition system.  Steps 1 through 4 of our testing 

methodology were previously completed. We now proceed to 

apply steps 5 through 8. 

3.1 Databases 
The fingerprint scores were obtained from a subset of a 60,000 x 

60,000 similarity matrix previously generated by NIST using 

public domain fingerprint matching algorithms and 120,000 

fingerprint images.  The images were taken from 30,000 

individuals who each contributed a primary and a secondary 

image for both of their index fingers.  

 The primary images were assigned to the target set and the 

secondary images were assigned to the query set.  Because these 

sets are disjoint, all scores generated were for unique pairs of 

images, thus eliminating any concerns about “asymmetry” of the 

matching algorithm (note, the matcher used was in fact 

symmetric). 

 From this original matrix, we extracted a 1005 x 1005 sub-matrix 

into our common format containing only scores from comparing 

images of left index fingers for 1005 individuals. 

The face scores were obtained from a subset of a 3,323 x 3,816 

similarity matrix produced during prior evaluations [6] of an MIT 

developed face recognition algorithm (“MIT Standard, March 

1995”). The scores result from comparisons of various facial 

images contributed by 1201 individuals to the FERET Database 

[11]. From this original matrix we extracted a 1005 x 1005 sub-

matrix into our common format containing only scores obtained 

by comparing unique pairs of images from 1005 individuals. 

 We then arbitrarily, although consistently, assigned each of the 

1005 "virtual subjects" to a set of face and finger scores (under 

the assumption that face and finger scores are independent of one 

another). This completes step 5 of our testing methodology. 

3.2 Normalization 
Normalization, step 6 of our testing methodology, is 

recommended for certain data fusion methods. Normalization 

addresses the problem of incomparable classifier output scores in 

different combination classification systems. Table 1 provides a 

summary of some well-known normalization techniques that we 

use in this study. 

 

Table 1.  Summary of Normalization Techniques. 

Note: We denote the classifier output score by s and normalized 

score by s’ 

Min-

Max    

s’ = (s - min) / (max-min) 

Z-

score   

s’ = (s - mean)/(standard deviation) 

MAD s’ = (s - median)/constant(median | s -  median|) 

Tanh  s’ = .5[ tanh ( .01(s - mean)/(standard deviation) ) +1] 

 



3.3 Fusion 
We apply a number of well-known fusion techniques [7], shown 

in Table 2, which is step 7 of our testing methodology. The 

simple sum rule adds the scores of each classifier to calculate the 

fused score. The Minimum Score fusion method selects the score 

having the least value of the classifiers. Likewise, the Maximum 

Score fusion method selects the score having the greatest value of 

the classifiers. The genuine posterior probability, P(genuine | 

), represents the probability of a subject being genuine, 

given a score for a particular classifier ( s ).  The Sum of 

Probabilities, and Product of Probabilities fusion techniques 

compute the fused scores by adding or multiplying, respectively, 

these probabilities for all classifiers. 

si

i

 

For the probability fusion techniques, we follow the theoretical 

framework of Kittler et al. [7] that uses a training set of the first n 

(n = 100 in this study) subjects to estimate the population 

posterior probabilities of genuineness P(genuine | ) to combine 

these probabilities for a fused similarity score. We used the mean 

and variance of the genuine and imposter scores from this training 

set and assumed a normal distribution for their probability density 

function, p( s | genuine) and p( s | imposter), to evaluate 

P(genuine | S )= p(s | genuine) / [ p(s | genuine) + p(s | imposter) 

]. Using the actual density function, rather than assuming a 

normal distribution, may yield better results. Note for the sum of 

probabilities and product of probabilities fusion techniques the 

normalization step is not needed—normalization is implied in the 

algorithm. 

si

Table 2. Summary of Fusion Techniques. 

 

3.4 Experiments 
Performance statistics, step 8 of the testing methodology, 

computes the ROC curves for our study. Figure 1 shows a ROC 

curve for the simple sum fusion rule with various normalization 

techniques. Clearly the use of these fusion and normalization 

techniques enhances the performance significantly over the 

single-modal face or fingerprint classifiers. For example, at a 

FAR of 0.1% the simple sum fusion with the min-max 

normalization has a GAR of 94.9%, which is considerably better 

than that of face, 75.3%, and fingerprint, 83.0%. Also, using any 

of the normalization techniques in lieu of not normalizing the data 

proves beneficial. The simplest normalization technique, the min-

max, yields the best performance in this example. 

 

Figure 1. Simple Sum Rule with different Normalizations
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Figure 2 illustrates the results of Min-Max normalization for a 

spectrum of fusion methods. The simple sum fusion method 

yields the best performance over the range of FARs. Interestingly, 

the genuine-accept rate for sum and product probability rules falls 

off dramatically at a lower FAR. 

 

Tables 3 and 4 show the GAR for the spectrum of normalization 

and fusion techniques at FARs of 1% and 0.1% respectively. At 

1% FAR, the sum of probabilities fusion works the best. 

However, these results do not hold true at a FAR of 0.1%. The 

simple sum rule generally performs well over the range of 

normalization techniques. These results demonstrate the utility of 

using multimodal biometric systems for achieving better matching 

performance. They also indicate that the method chosen for fusion 

has a significant impact on the resulting performance. 

si
 is the score from the ith-classifier, assuming N classifiers; 

Let P (genuine | ) and P (imposter | ) be the posteriori 

probability of being genuine or imposter 

si si

si

Simple Sum 

∑
=

N

i
is

1
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Figure 2. Min-Max Normalization with different Fusions
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In operational biometric systems, application requirements drive 

the selection of tolerable error rates, and in both single-modal and 

multimodal biometric systems, implementers are forced to make a 

trade-off between usability and security.  Implementers produce 

ROC curves for their systems from their own test data based on 



these guidelines. Operators use these ROC curves to determine 

the FAR of the security level needed for their application. The 

mapping table, from step 8 of our testing methodology, is used to 

determine the threshold value corresponding to that FAR. This 
mapping is usually done via an implementer provided utility, 

which may need to use extrapolation to determine certain values. 

 

Table 3. Summary of Fusion Techniques, GAR at 1% FAR. 

 

Looking at the data from a slightly different perspective, we count 

the number of subjects who were rejected by either face or 

fingerprint, or by both classifiers, but accepted by fusion. Table 5 

summarizes the false-rejections for the various classifiers at a 

given FAR. Of the 1005 genuine subjects at a FAR of 1%, there 

were 4 cases where a subject was rejected for both the face and 

fingerprint indicator, but was accepted with the min-max 

normalization/simple sum fusion system. Likewise, at a FAR of 

0.1% there were 11 such cases. As expected, the acceptance rates 

are more dramatic when compared to those for the individual 

modalities. These results suggest that multimodal biometric 

systems can be deployed that will increase security while 

reducing the number of false rejections. 

 

Table 4.  Summary of Fusion Techniques, GAR at .1% FAR. 

 Fusion Techniques 

Normalization 

Techniques 

Simple 

Sum 

Max 

Score 

Min 

Score 

Sum of 

Prob. 

Product 

of Prob. 

Min-Max 94.9 % 77.9 % 83.0 % N/A N/A 

Z-Score 94.2 % 87.9 % 85.1 % N/A N/A 

Tanh 94.4 % 87.5 % 85.1 % N/A N/A 

MAD 90.7 % 83.2 % 84.3 % N/A N/A 

None (implied) 88.5 % 83.0 % 82.6 % 87.3 % 86.2 % 

 

Conversely, we also examine those subjects who were accepted 

by either face or fingerprint classifier but rejected by fusion. At a 

FAR of 1% 4 subjects passed the fingerprint system but failed 

fusion. There were no such cases for face. At 0.1% 20 subjects 

passed the fingerprint system but failed fusion. Likewise, 3 

subjects passed the face system but failed fusion. 

Table 5. False Rejections for 1005 subjects in the Unimodal 

and Multimodal Biometric Systems 

 False Rejections 

Classifier 0.1% FAR 1% FAR 

Face 248 124 

Fingerprint 183 112 

Simple Sum 51 13 

Both Face and Finger 39 8 

All Three 28 4 

 

It is important to note that although our findings support the 

results from earlier small-scale studies, the results presented here 

are applicable only for the data in this study. No inferences can be 

drawn to predict performance of a system as we scale the subject 

population [8]. This emphasizes the need to conduct experiments 

on representative data sets for even larger populations. 

4. SYSTEM DESIGN 
The advantage of fusion at the match-score level is that existing 

and proprietary single-mode biometric systems can easily be 

integrated into a multimodal biometric environment if some basic 

information is provided by these existing systems. The needed 

information does not expose any of the internal operations of 

these systems. The following is a list of preliminary 

recommendations for the information needed from existing 

systems that could hasten interoperability and plug-n-play in such 

an environment: 

 

 Fusion Techniques 

Normalization 

Techniques 

Simple 

Sum 

Max 

Score 

Min 

Score 

Sum of 

Prob. 

Prod. of 

Prob. 

Min-Max 98.7 % 90.2 % 87.7 % N/A N/A 

Z-Score 98.5 % 98.3 % 91.1 % N/A N/A 

Tanh 98.5 % 98.1 % 91.1 % N/A N/A 

MAD 96.9 % 93.4 % 91.1 % N/A N/A 

None (implied) 94.6 % 93.4 % 87.7 % 99.0 % 93.7 % � The match-score (confidence level), its range and 

distribution should be exposed in a common format. 

� A set of training data or distributions for sample test 

populations. 

Our long-term goal is to develop a middleware environment that 

would support multimodal biometric applications. Plug-n-play 

architectures can be built from individual single-mode biometric 

systems supporting the requirements stated above. As a first step 

towards achieving this goal we are constructing a prototype 

multimodal biometric system that combines face and fingerprint 

classifiers from two independent COTS products of different 

vendors, as shown in figure 3. This system is built at the 

application level and fuses match-score data provided by each of 

the vendor’s software development kits.  
 

 
 

Figure 3. Prototype Multimodal Biometric System. 



5. SUMMARY AND FUTURE WORK 
We have established a framework capable of assessing the 

performance of multimodal biometric systems. We have 

demonstrated the utility of this methodology by examining 

relatively large face and fingerprint data sets over a spectrum of 

normalization and fusion techniques. The results of this study, 

which uses a population ten-times larger than previously reported, 

supports the results of smaller studies that show multimodal 

biometric systems out perform single-mode biometric systems. 

An additional advantage of fusion at this level is that existing and 

proprietary biometric systems do not need to be modified, 

allowing for a common middleware layer to handle the 

multimodal applications with a modicum of common information. 

Future work will investigate alternative normalization and fusion 

methods, while honing our proposed testing methodology. 

 

NIST, in its extensive single-mode biometrics testing, has 

concluded [4,8] that to accurately evaluate the performance of 

biometric systems, tests must be performed with data sets on the 

order of tens-of-thousands subjects and that no inferences be 

drawn from tests conducted on small subject populations to assess 

system scalability. Thus, future plans include expanding the test 

databases to attain these larger sizes. In addition, to assess the 

feasibility of such systems for large-scale deployments, we will 

perform these tests using COTS products. 
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