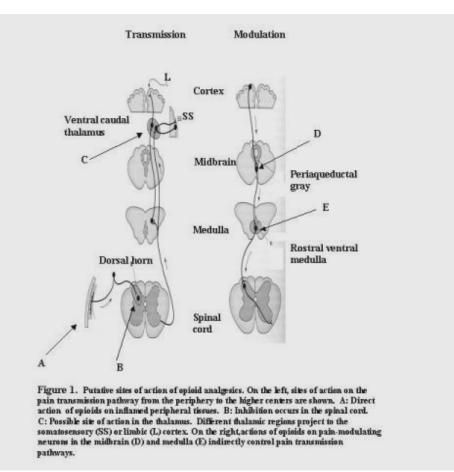
Opioid Analgesic Drugs

1. Classification of Analgesic Drugs

- A. Opioid analgesics (Narcotic analgesics)
 Opiates- Morphine derivatives
 Examples: morphine, codeine, heroin, fentanyl
 Uses: moderate to severe pain
- B. Non-opioid Analgesic Weak analgesics (Non-narcotic analgesics or Non-steroidal anti-inflammatory drugs) Examples: aspirin, acetaminophen (Tylenol), ibuprofen (Advil, Motrin) Uses: mild pain, anti-inflammatory

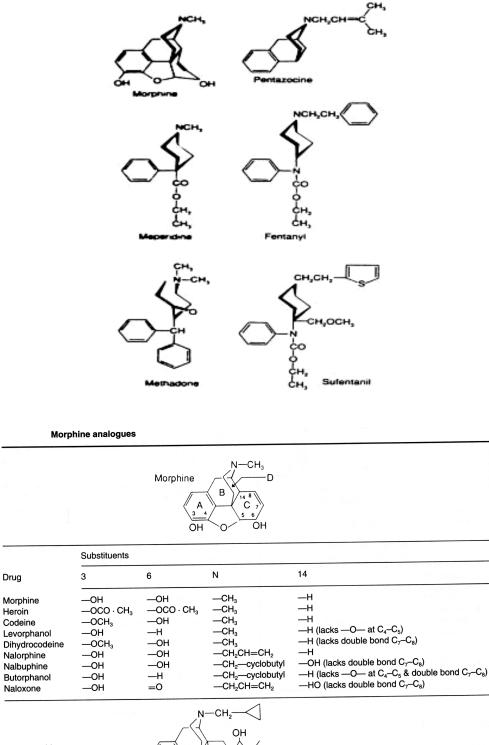

2. Putative sites of action of opioid analgesics

Sites are labeled A - E (see Figure below)

- A: nociceptive nerve endings
- B: spinal cord
- C: thalamus
- D: mid brain
- E: medulla

Sites A - C are in the ascending pain sensory pathway

Sites D and E are in the descending pain modulation pathway



3. Opioid Analgesic Drugs

The drugs used to alleviate moderate to severe pain are either opiates (derived from the opium poppy) or opiate-like (synthetic drugs). These drugs are together as **OPIOIDS**.

Examples: Opiates: morphine, codeine

Opiate-Like: fentanyl, meperidine, methadone See below the structures of some opioid analgesic drugs and derivatives

Buprenorphine

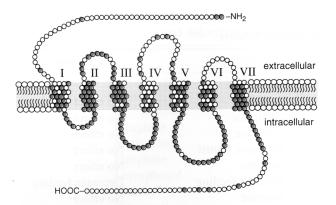
OH

4. Endogenous Opioids:

Enkepalins:				
-	Met-Enkepalin	Tyr-Gly-Gly-Phe- Met		
	Leu- Enkepalin	Tyr-Gly-Gly-Phe-Leu		
Endorphins:	-			
-	α-neoendorphin	Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro-Lys		
	β-neoendorphin	Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro		
	βh-endorphin Tyr-G	Hy-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-		
	Thr-leu-Phe-Lys-Asn	-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu (31-Residues)		
Dynorphins:				
v I	Dynorphin A Tyr-G	Hy-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-		
	Asn-Gln			
	Dynorphin B Tyr-G	Hy-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr		
Endomorphi	ns:			
-	Endomorphin 1	Tyr-Pro-Trp-Phe-NH ₂		
	Endomorphin 2	Tyr-Pro-Phe- Phe-NH ₂		
Endogenous Opioid peptides are derived from precursor peptides (proopiomelanocortin [POMC]) by protelytic clevage of POMC. POMC present in high level in the CNS (arcuate nuecleus, limbic, brain				

Enkepalins, Endorphins, Dynorphins, Endomorphins Enkepalins:

Endogenous Opioid peptides are derived from precursor peptides (proopiomelanocortin [POMC]) by protelytic clevage of POMC. POMC present in high level in the CNS (arcuate nuecleus, limbic, brain stem, spinal cord). Enkephalins activate mu (μ) and delta (δ) opioid receptors. Enkephalins have slightly higher affinity for the δ than for the μ opioid receptor. Endomorphins have very high affinity for the μ opioid receptor.


5. Selected Synthethetic Opioid Peptides:

DAMGO	[D-Ala ² , MePhe ⁴ , Gly(ol) ⁵] enkephalin
DPDPE	[D-Pen ² , D-Pen ⁵] enkephalin
DSLET	[D-Ser ² , Leu ⁵] enkephalin-Thr ⁶
DADL	[D-Ala ² , D-leu ⁵] enkephalin
СТОР	D-Phe-Cys-Tyr-D-Trp-Orn-Pen-Thr-NH ₂
FK-33824	$[D-Ala^2, N-MePhe^4, Met(O)^5 - ol]$ enkephalin
[D-Ala ²] Deltorphin I	Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH ₂
[D-Ala ² , Glu ⁴] Deltorphin II	Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH ₂
Morphiceptin	Tyr-Pro-Phe-Pro-NH ₂
PL-017	Tyr-Pro-MePhe-D-Pro-NH ₂
DALCE	[D-Ala ² , Leu ⁵ , Cys ⁶] enkephalin

6. OPIOID RECEPTORS

Opioids bind to specific receptor molecule that mediates its effects. Several opioid specific receptors have been cloned: Mu (μ), Kappa (κ), and Delta (δ) receptors. These receptors belong to G protein-coupled seven transmembrane receptor family. The amino acid sequences are approximately 65% identical among these receptors, but they have little homology with other G protein-coupled receptors (see below the Figure).

A. Mechanism of Opioid Receptor Function:

 μ , δ , and κ are functionally coupled to pertussis toxin sensitive heterotrimeric G proteins (G_i) to inhibit adenylyl cyclase activity.

Activates receptor-activated K^+ currents which increase K^+ efflux (hyperpolarization) Reduces voltage-gated Ca²⁺ entry. 1.

2.

Hyperploarization of membrane potential by K^+ currents and inhibition of the Ca²⁺ influx prevents neurotransmitter release and pain transmission in varying neuronal pathways.

B. OPIOID RECEPTOR EXPRESSION

μ receptor	periaqueductal gray, spinal trigeminal nucleus, cuneate and gracile nuclei, thalamus regions	Pain perception (morphine analgesia)
	nucleus of solitract, nucleus ambiguus	Morphine-control respiration
	parabrachial nucleus	Morphine- depress respiration
	neurons of the postrema	Nauesea and vomiting
к receptor	hyphothalamic region	Neuroendocrine effects
δ receptor	dorsal horn of the spinal cord	

7. CLASSIFICATION OF OPIOID ANALGESIC DRUGS

Strong Agonists:

Morphine- 4 hr Meperidine- 2 hr Methadone- long acting (half life 24 hrs) Heroin- 2 hr; 3-fold increase in potency, no acceptable medical value in US Fentanyl- 5 to 45 min, anesthetic **Moderate Agonists:** Propoxyphene Codeine **Mixed Agonist-Antagonists:** Pentazocine- agonist on κ receptor and weak antagonist at μ and δ receptor

Nalbuphine- similar to Pentazocine but potent anatagonist at µ receptor

Buprenorphine- lipophilic, about 0.4 mg equivalent to 10 mg morphine, partial µ agonist receptor,

anatagonist at κ receptor

Antagonists:

Naloxone- it rapidly displaces bound opioids from receptor within 30 sec of IV injection, reverses the respiratory depression and coma due to heroin overdose, competitive antagonist for μ , κ , and δ receptors with a 10-fold higher affinity for μ receptor than for κ .

Naltrexone- longer duration of action than naloxone, a single oral dose blocks the effects of injected heroin (48 hrs)

Compund	μ	δ	κ
Agonists			
Morphine	+++		+
Methadone	+++		+
Meperidine	++	+	+
Codeine	+	+	+
Etorphine	+++	+++	+++
Fentanyl	+++		
Sufentanil	+++	+	+
Endogenous Peptides			
Met-enkephalin	++	+++	
Leu-enkephalin	++	+++	
β-Endorphin	+++	+++	
α-Neoendorphin	+	+	+++
Dynorphin Â	++		+++
Antagonists			
Naloxone		-	
Naltrexone		-	
Mixed aganists/antagon	ists		
Pentazocine	-		+
Nalbuphine			++
Buprenorphine	++		
Synthetic opioid peptide	S		
ĎAMGO	+++		+
СТОР			-

8. SELECTIVITY OF OPIOID DRUGS AND PEPTIDES FOR DIFFERENT RECEPTORS

(+) agonist; (-) antagonist

9. PHARMACOLOGIC ACTIONS

Morphine and related opioids produce their major effects on the central nervous system and gastrointestinal tract

A. Central Nervous System

1. Analgesia

- i. produces selective attenuation of pain perception; effect is dose-dependent
- therapeutic dose (10 mg; parentral)
 pain less intense (pain threshold not elevated)
 less discomfort (more effective for dull pain)
 euphoria
 drowsiness
- iii. higher doses (15 20 mg; parentral) pain threshold elevated respiratory depression may be significant sharp intermittent pain relieved

these doses DO NOT produce slurred speech, motor ataxia or protection from seizures

- iv. sites of action
 Periaqueductal Grey (PAG)
 Caudal brain stem (nucleus raphe magus, magnocellular reticular formation)
 Spinal cord
 Limbic system
- v. mechanism of action

opioids generally produce inhibition of neuronal activity opioids inhibit the release of neurotransmitters opioids activate descending inhibitory systems

2. SEDATION

In humans, opioids usually produce sedation However, in extremely high doses opioids produce convulsions (e.g., meperidine)

3. EUPHORIA

Euphoria is often produced by opioids Euphoria is more prominent in those previously addicted to opioids

4. MENTAL CLOUDING

The environment is perceived as indistinct and unreal

5. RESPIRATORY DEPRESSION

Produced even in small doses

Large doses may induce respiratory failure Death from morphine overdose is usually due to respiratory failure Pain can stimulate respiration Opioids decrease sensitivity of brain stem centers to CO₂ (i.e., depress CO₂ sensing capacity) Pure oxygen can induce apnea during severe respiratory depression

6. NAUSEA AND VOMITING

Opioids can stimulate the chemoreceptor trigger zone (CTZ) Located in the area postrema in the medulla oblongata Depression of the vomiting center is also produced Symptoms can be controlled by Phenothiazines (agonist on κ receptor weak antagonist on μ receptor

7. COUGH REFLEX (antitussive effect)

Opioids suppress the cough reflex Produced by depression of neurons in medulla which control the cough reflex Codeine is a potent inhibitor of the cough reflex Meperidine has a weak effect Dextromethorphan has no GI effects, no respiration depression, no analgesia

8. PUPILLARY DIAMETER

Opioids cause miosis (pupillary constriction). Opioids act on μ and κ receptors to stimulate oculomotor nucleus to constrict pupil. Pin point pupils are characteristics of morphine overdose. There is very little tolerance to this effect.

B. GASTROINTESTINAL TRACT

Decreases GI motility Increases GI tone Produces constipation (Diphenoxylate-meperidine derivative [Lomotil]) GI spasms can be controlled by atropine (acetyl choline receptor antagonist) Biliary tract spasm. Opioids can exacerbate biliary colic

C. CARIOVASCULAR SYSTEM

No prominent effects Peripheral vasodilation most prominent effect due to histamine release and decreased adrenergic tone Very high doses may produce bradycardia Orthostatic hypotension

D. URINARY TRACT

Opioids produce urinary retension Increase tone of urinary sphincter Decrease urine production (increased ADH secretion)

E. UTERUS

Duration of labor may be prolonged

F. BRONCHIAL SMOOTH MUSCLE

Therapeutic doses have no effect High doses produce constriction (can aggravate asthma)

10. PHARMACOKINETICS

i. Absorption

Readily absorbed from all sites of administration

ii. Distribution

Distributed to all tissues Morphine is poorly transported across the blood-brain barrier

iii. Metabolism

The major mechanism is conjugated with glucuronic acid in the liver. **Morphine** and **naloxone** are subject to significant "first-pass" metabolism in the liver, but **naltrexone** is not.

iv. Excretion

Free and conjugated morphine are excreted in the urine

11. THERAPEUTIC INDICATIONS

PAIN

i. Chronic pain (only under some circumstances) Most chronic pain states are not relieved by opioid drugs:

central pain trigeminal neuralgia (tic douloureux) causalgia phantom limb pain cancer pain lower back pain

These pain states require continuous medication Therapy limited by tolerance and physical dependence

Chronic pain arising from terminal illness can be relieved by opioid drugs

ii. Acute Pain

postoperative pain diagnostic procedures orthopedic manipulations myocardial infarction

- iii. **Preanesthetic medication** (fentanyl-derivatives)
- iv. **Dyspnea**
- v. **Cough Suppression** (codeine, dextromethorphan)
- vi. **Diarrhea and dysentery**

12. CONTRAINDICATIONS

- i. Decreased respiratory reserve
 - emphysema severe obesity asthma
- ii. Biliary colic
- iii. Head injury
- iv. Reduced blood volume
- v. Hepatic insufficiency
- vi. Convulsant states

13. ACUTE TOXICITY

i. Severe Toxicity Estimates: 30 to 120 mg (oral) of morphine

ii. Lethal dose

Highly variable: > 120 mg (oral) may be lethal

iii. Symptoms

Profound coma Depressed respiration (2 to 4/min) Cyanosis Low blood pressure Pinpoint pupils Decreased urine formation Low body temperature Flaccid muscles

iv. Treatment

Ventilation (do not give 100% oxygen because it can induce apnea) Naloxone (Narcan) will reverse toxic signs Naltrexone has a longer duration of action

14. CHRONIC TOXICITY

Tolerance and physical dependence are manifestations of chronic toxicity

i. Tolerance

Tolerance develops to:

Analgesia Euphoria Sedation

Lethal dose Nausea

Tolerance **DOES NOT** develop to: Respiratory depression (partial) Miosis Constipation

Cross -tolerance develops to other opioids

ii. PHYSICAL DEPENDENCE

Abnormal physical state in which the drug must be administered to maintain "normal" function. Physical dependence is manifested by "withdrawal symptoms" when administration of the drug is stopped. Physical dependence is a powerful reinforcement for continued drug taking behavior

Symptoms:

8 - 12 hrs:	lacrimation, rhinorrhea, yawning, sweating	
12 – 14 hrs:	restless sleep (yen)	
48 – 72 hrs:	symptoms peak, dialted pupils, anorexia, gooseflesh (cold turkey), restlessness, irritability, tremor, nausea/vomiting, intestinal spasm and diarrhea, muscle spasm	

7 - 10 days symptoms end

15. OTHER OPIOIDS

Codeine –

less potent than morphine mainly used as antitussive

Meperidine –

less potent than morphine high doses produce excitation and convulsions less smooth muscle spasm and miosis than morphine little antitussive action

Diphenoxylate (Lomotil) –

meperidine derivative used to treat diarrhea

Methadone –

long duration of action (24 hr) withdrawal protracted and attenuated used to treat addiction

Propoxyphene (Darvon) – mild analgesic action

16. OPIOIDS WITH AGONIST/ANTAGONIST PROPERTIES

Pentazocine (Talwin) -

less potent than morphine will precipitate withdrawal in dependent individuals may produce dysphoria may be orally

Nalbuphine (Nubain) -

similar to pentazocine not effective orally

Butorphanol (Stadol) -

similar to pentazocine not effective orally

17. ANTAGONISTS

Naloxone -

Eliminated first pass metabolism (half life 60 to 100 min)

Readily reverses the coma and respiratory depression of opioid overdose

Rapidly displaces all receptor bound opioid molecules; therefore it is very effective reversing heroin overdose

Competitive antagonist for μ , κ , and δ ; 10-fold higher affinity for μ than for κ [This may explain why naloxone readily reverses respiratory depression with only minimal reversal of analgesia that results from agonist stimulation of κ receptors in the spinal cord

Naltrexone – longer duration of action (up to 48 hrs)