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ABSTRACT

This paper describes an approach to design and implement a radix-10 online floating-point multiplier. An online
approach is considered because it offers computational flexibility not available with conventional arithmetic. The
design was coded in VHDL and compiled, synthesized, and mapped onto a Virtex 5 FPGA to measure cost in
terms of LUTs (look-up-tables) as well as the cycle time and total latency. The routing delay which was not
optimized is the major component in the cycle time. For a rough estimate of the cost/latency characteristics,
our design was compared to a standard radix-2 floating-point multiplier of equivalent precision. The results
demonstrate that even an unoptimized radix-10 online design is an attractive implementation alternative for
FPGA floating-point multiplication.
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1. INTRODUCTION

Decimal (radix-10) multiplication is regaining recognition as an attractive choice of radix over binary multiplica-
tion for various commercial applications, such as financial analysis, banking, tax calculation, currency conversion,
insurance, and accounting.1 It has the advantage that binary-to-decimal as well as decimal-to-binary conver-
sion is not needed, thus avoiding conversion round-off errors. Several papers have presented efficient algorithms
and/or designs for parallel multipliers234.5 To this date, the literature is scarce, if not absent, regarding a
radix-10 online arithmetic multiplier. We are interested in online (left-to-right) multipliers because they allow
concurrency between successive operations which is not possible with conventional right-to-left designs.

Online arithmetic6 is a class of operators in which calculations are performed digit-serially, most-significant-
digit-first. For all basic operators (addition, multiplication, division, square root), designs scale linearly with
precision n, in other words, they grow on the order of O(n). This yields generally a lower cost than for a
comparable parallel operator which (with the exception of addition) grows on the order of O(n2) in terms of
cost. The tradeoff is that the delay also grows on the order of O(n), whereas parallel multiplication grows on
the order of O(log n).

In online arithmetic, after a certain number of digits of the operands have been input, the first digit of the
result is computed, and then is output on the next cycle. This delay is known as the online delay. Afterwards,
successive output digits are produced one per cycle. The total latency in terms of cycles of an online operation,
given operand digit precision m and online delay δ is: T = m+ δ− 1. If successive multiplications are performed
on separate units, the performance may outperform a network of conventional multipliers which cannot initiate
dependent operations as early as in the online case thus reducing the effect of linear latency. An operation with
an online delay δ = 4 is shown in Figure 1.

2. METHODOLOGY

Decimal floating-point multiplication (z = xy) is defined such that given inputs x = X · 10ex and y = Y · 10ey ,
the output z = Z · 10ez is produced such that

Z = XY
ez = ex + ey

(1)

The exponent and significand calculation will be considered separately.

Send correspondence to R.McIlhenny: rmcilhen@csun.edu or M.D. Ercegovac: milos@cs.ucla.edu

Mathematics for Signal and Information Processing, edited by Mark S. Schmalz, Gerhard X. Ritter,
Junior Barrera, Jaakko T. Astola, Franklin T. Luk, Proc. of SPIE Vol. 7444, 74440P · © 2009 SPIE

CCC code: 0277-786X/09/$18 · doi: 10.1117/12.826754

Proc. of SPIE Vol. 7444  74440P-1



δ=4

input

compute

output

Figure 1. Online delay of a function

2.1 Exponent calculation

The exponents will be represented in binary, and the output exponent ez will be produced using a standard
parallel binary adder and computed in a single cycle. The exponent will be adjusted appropriately according to
the normalization of the result significand Z.

The result will be considered
normalized if 10−1 ≤ Z < 1
quasi-normalized if 10−2 ≤ Z < 1
under-normalized if Z < 10−2

(2)

Except for the maximally redundant digit set {−9, . . . , 9}, the result is guaranteed to be quasi-normalized if the
leading digit is non-zero. For the digit set {−9, . . . , 9}, this does not hold true. For example, denoting negative
digit −x as x, (0.199) = 0.001 < 10−2.

In order to represent the result as quasi-normalized, the output exponent ez is adjusted according to the output
digit zk at each cycle k and the online delay δ for the operation. A flag done is set to represent that the significand
digits that are output from the unit are to be considered valid from that cycle on. Previous to the done flag
being set, output significand digits will be ignored.

(ez, done) = NORM(zk, ez, δ) =

⎧
⎨
⎩

(ez, false) if k < δ
(ez − 1, false) if zk = 0 and k ≥ δ and not(done)
(ez, true) if (zk �= 0 and k ≥ δ) or done

(3)

Note that the normalization step can be done in a separate cycle as not to affect the cycle time.

2.2 Significand calculation

The two main equations for computing the significand in an online fashion are: (1) the recurrence: and (2) the
output digit selection function. Each of these is presented in detail next.

The recurrence for online multiplication Z=XY, assuming radix 10 and on-line delay δ, where the input
operands X and Y , as well as the output Z are m-digit vectors consisting of digits xi, yi, and zi, respectively, in
which, at each step k:

X [k] = (X [k − 1], xk+δ−1), X [0] =

δ−1∑

i=0

xi10−i

Y [k] = (Y [k − 1], yk+δ−1), Y [0] =

δ−1∑

i=0

yi10−i

Z[k] = (Z[k − 1], Zk), Z[0] = 0

(4)

is derived from the bound
|X [k]Y [k] − Z[k] < 10−k (5)

The residual is defined as
W [k] = 10−k(X [k]Y [k] − Z[k]) (6)
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The recurrence is

W [k] = 10(W [k − 1] − zk−1) + 10−δ+1(X [k]yk+δ−1 + Y [k − 1]xk+δ−1) (7)

with initial condition
W [0] = X [0]Y [0] (8)

The updates of the online forms for X , Y , and Z are obtained by concatenating digits, respectively.

2.3 Output digit selection

The output digit selection function is based on a truncated version of the recurrence, denoted Ŵ [k], and repre-
sented as:

zk = SEL(Ŵ [k]) (9)

The selection function is based on the symmetric digit set {−a, . . . , a} with selection points md such that if

md ≤ Ŵk < md+1 (10)

then
zk = SEL(Ŵ [k]) = d (11)

is a valid output digit. The midpoints are chosen based on the overlap, denoted ∆ between the lower bound for
selecting digit d, denoted Ld and the upper bound for selecting digit d − 1, denoted Ud, i.e.

Ld ≤ md ≤ Ud−1 (12)

The bounds are based on the error of the residual, denoted ε. For radix-10 multiplication, the error is:

ε = ρ(1 − 2 · 10−δ+1) (13)

where ρ is the redundancy factor of the symmetric digit set {−a, . . . , a} in which

ρ =
a

r − 1
=

a

9
(14)

Then we have the upper bounds
Ld = d − ε
Ud = d + ε

(15)

For radix r = 10, various choices for the digit set are available, ranging from the minimally redundant digit
set {−5, . . . , 5} to the maximally redundant digit set {−9, . . . , 9} for both the inputs and the output. Table 1
summarizes the parameters.

Table 1. Decimal online multiplication parameters

Digit set Redundancy factor Minimum online delay Error
{−a, . . . , a} ρ δ ε

{−5, . . . , 5} 5/9 3 49/90
{−6, . . . , 6} 6/9 3 49/75
{−7, . . . , 7} 7/9 2 28/45
{−8, . . . , 8} 8/9 2 32/45
{−9, . . . , 9} 1 2 4/5

As an example, the lower bound, upper bound, and selection midpoints for the digit set {−5, . . . , 5} are shown
in Table 2. The optimal midpoints for each of the possible digit ranges are shown in Table 3. The complete
algorithm for decimal on-line floating-point multiplication is shown next.
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Table 2. Output digit selection midpoint for digit set {−5, . . . , 5}

d -4 -3 -2 -1 0 1 2 3 4 5

Ld -409/90 -319/90 -229/90 -139/90 -48/90 41/90 131/90 221/90 311/90 401/90
Ud−1 -401/90 -311/90 -221/90 -131/90 -41/90 48/90 139/90 229/90 319/90 409/90
md -9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2

Table 3. Optimal midpoints for output digit selection

Digit set Optimal midpoint
{−a, . . . , a} md

{−5, . . . , 5} d − 1/2
{−6, . . . , 6} d − 3/5
{−7, . . . , 7} d − 3/5
{−8, . . . , 8} d − 3/5
{−9, . . . , 9} d − 4/5

Decimal Online Floating-Point Multiplication

{Initialization}
ez = ex + ey

W [−δ + 1] = 0
X [−δ + 1] = 0
Y [−δ + 1] = 0
z0 = 0

for k = −δ + 2 to 0 do
X [k] = X [k − 1] + xk+δ−110−k−δ+1

W [k] = 10(W [k − 1]) + 10−δ+1(X [k]yk+δ−1 + Y [k − 1]xk+δ−1)
Y [k] = Y [k − 1] + yk+δ−110−k−δ+1

end for

{Recurrence}
for k = 1 to m do

X [k] = X [k − 1] + xk+δ−110−k−δ+1

W [k] = 10(W [k − 1] − zk−1) + 10−δ+1(X [k]yk+δ−1 + Y [k − 1]xk+δ−1)
Y [k] = Y [k − 1] + yk+δ−110−k−δ+1

zk = SEL(Ŵ [k])
(ez, done) = NORM(zk, ez, δ)

end for

3. IMPLEMENTATION

The main components of a digit slice of a decimal online floating-point multiplier are: (i) two digit-by-digit
multipliers to compute carry digit cxk,i and product digit pxk,i of the digit-by-vector product X [k]yk+δ−1 and
carry digit cyk,i and product digit pyk,i of the digit-by-vector product Y [k − 1]xk+δ−1, (ii) a 6-to-2 digit adder
for producing individual digit wk,i of the residual W [k], (iii) and various digit-wide registers for storing digits of
the residual. Due to a lower cost of the digit-by-digit multipliers, compared to the other digit sets, the digit set
{−5, . . . , 5} will be the choice for implementation.
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3.1 Digit-set encoding

For efficient implementation, encoding of the digits is essential. Since the range for {−5, . . . , 5} is 11, a min-
imum of log2 11 = 4 bits is necessary. A simple encoding is an extension of two’s complement representa-
tion for the digits. This is denoted as (-8)421 encoding, as shown in Table 4, where the value of a digit
xk = (xk,3, xk,2, xk,1, xk,0) = −8xk,3 + 4xk,2 + 2xk,1 + xk,0. Assuming that the initial input will be in BCD
format, and the final output should be in BCD format, conversion is necessary to and from the redundant digit
set {−5, . . . , 5}, denoted RDS5. Each conversion method will be described in detail.

Table 4. (-8)421 encoding of digits

Digit -5 -4 -3 -2 -1 0 1 2 3 4 5
(-8)421 encoding 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101

3.2 BCD to RDS5 recoding

Given a BCD input digit xk, recoding to a RDS5 digit χk is performed according to the algorithm RECODE(xk).
The digit χk is represented as a pair of digits (tk−1, sk), in which tk−1 ∈ {0, 1} and sk ∈ {−5, . . . , 4}, and
xk = 10tk−1 + sk. Then χk = tk + sk.

RECODE(xk)

(tk−1, sk) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) if xk = 0
(0, 1) if xk = 1
(0, 2) if xk = 2
(0, 3) if xk = 3
(0, 4) if xk = 4
(1, 5) if xk = 5
(1, 4) if xk = 6
(1, 3) if xk = 7
(1, 2) if xk = 8
(1, 1) if xk = 9

χk = tk + sk

3.3 On-the-fly conversion

Given a RDS5 digit zk, on-the-fly conversion (OFC) to a vector of BCD digits, denoted ζ is performed according
to the following algorithm.6

OFC(zk)

A[k] =

{
A[k − 1] + zk10−k if zk ≥ 0
B[k − 1] + (10 − |zk|)10−k if zk < 0

B[k] =

{
A[k − 1] + (zk − 1)10−k if zk > 0
B[k − 1] + (9 − |zk|)10−k if zk ≤ 0

Initially A[0] = 0 and B[0] = 1. Assuming m digit precision, the final significand ζ = A[m].
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3.4 Digit-by-digit multiplier

A digit-by-digit multiplier (⊗)takes digit xk,i of weight 10−i and digit yk,j of weight 10−j and produces digit
ck,i+j−1 of weight 10−i−j+1 and digit pk,i+j of weight 10−i−j , in which the digit product xk,iyk,j = 10ck,i+j−1 +
pk,i+j . Different possible values of input and output digits are shown in Table 5. To simplify the logic, the
absolute values of the input digits are generated before multiplication. Appropriate negation of the output digits
is applied afterwards. In other words, we have the following digit-by-digit multiplication operation:

x∗

i = |xi|, y
∗

j = |yj |

neg =

{
−1 if (xi < 0 and yj ≥ 0) or (xi ≥ 0 and yj < 0)
1 otherwise

10ck,i+j−1 + pk,i+j = (neg)(x∗

i · y∗

j )

(16)

Table 5. Digit-digit multiplication for digit set {−5, . . . , 5}

x∗

i ,y
∗

j 1 2 3 4 5

1 0,1 0,2 0,3 0,4 0,5
2 0,2 0,4 1,-4 1,-2 1,0
3 0,3 1,-4 1,-1 1,2 1,5
4 0,4 1,-2 1,2 2,-4 2,0
5 0,5 1,0 1,5 2,0 2,5

ck,i+j−1,pk,i+j

3.5 6-to-2 digit adder

To produce the residual requires at each digit slice the addition of six digits. The sum will be represented in
a modified carry-save format consisting of a carry digit and a sum digit. The choice of a carry-save format is
to make the delay independent of the precision of the operation. Each 6-to-2 digit adder adds: (i) carry digit
wck−1,i and sum digit wsk−1,i from the previous residual W [k − 1], (ii) carry digit xck,i and product digit xpk,i

from the preceding digit-by-digit multiplier which multiplies an individual digit xi from the vector X [k] with
digit yk+δ−1, and (iii) carry digit yck,i and product digit ypk,i from the digit-by-digit multiplier which multiplies
an individual digit yi from the vector Y [k − 1] with digit xk+δ−1, to produce sum wk,i.

The result wk,i can be converted to carry digit wck,i and sum digit wsk,i. For the digit set {−5, . . . , 5} the
conversion is based on the following:

(wck,i, wsk,i) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−2, wk,i + 20) if wk,i < −15
(−1, wk,i + 10) if − 15 ≤ wk,i < −5
(0, wk,i) if − 5 ≤ wk,i ≤ 5
(1, wk,i − 10) if 5 < wk,i ≤ 15
(2, wk,i − 20) if wk,i > 15

(17)

The complete diagram of a decimal online floating-point multiplier consisting of M modular slices, represent-
ing m-digit precision significand calculation, is shown in Figure 2.

4. RESULTS

The design of a decimal online floating-point multiplier was coded in VHDL and compiled, synthesized, and
mapped using the Xilinx Foundation 10.1 design tool. It was mapped to a Virtex 5 FPGA to measure cost in
terms of LUTs (5- and 6-input look-up tables). The count and cost of individual components is shown in Table 6,
assuming a binary e-bit exponent and a radix-10 m-digit significand. The logic delay in the main slice is

Tlogic = tL + tDM + tADD + tSEL = 0.396 + 0.258 + 0.086 + 0.644 = 1.384ns (18)
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Figure 2. Decimal online floating-point multiplier

The normalization logic has a delay of tNORM = 1.802ns. The slice cycle time, dominated by the delay due
to unoptimized routing, is:

Tcycle = tL + tDM + tADD + tSEL + tROUTE = 0.396 + 0.258 + 0.086 + 0.644 + 4.837 = 6.221ns (19)

These numbers are based on results obtained from synthesizing the design, without any optimizations in the
layout taken into account. Improved results may be obtained by optimizing the floorplanning. Note a rather
large penalty in the routing delay. For delay comparisons, the latency in terms of the total number of cycles, the
cycle delay, and the total delay are included.

Table 6. Cost of a decimal online floating-point multiplier

Module Count LUTs Delay (ns)

Exponent adder (ADDE) 1 e tE = 0.094
Latches (L) and D flip-flops (D) 4m + 1 n/a tL = 0.396
Digit-By-Digit multiplier (⊗) 2m 36m tDM = 0.258

6-to-2 digit adder (6-to-2) m 31m tADD = 0.086
Output digit selection unit (SEL) 1 7 tSEL = 0.644

Normalization unit (NORM) 1 3e tNORM = 1.802
On-the-fly conversion unit (OFC) 1 8m tOFC = 1.035

Routing logic — 60 tROUTE = 4.836
Total cost 93m + 4e + 23
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The design of a decimal online floating-point multiplier for single-precision (m = 8, e = 7) and double-
precision (m = 16, e = 9), denoted r10-olfp is compared to a radix-2 parallel floating-point multiplier, denoted
r2-fp for both single-precision (m = 24, e = 8) and double-precision (m = 53, e = 11) within the LogicCORE
family of modules, optimized for the Xilinx Virtex-5 FPGA. The results are summarized in Table 7.

Table 7. Comparison of decimal online floating-point multiplier and binary parallel floating-point multiplier

Precision Cost (LUTs) Latency (cycles) Cycle delay (ns) Total delay (ns)
r2-fp r10-olfp r2-fp r10-olfp r2-fp r10-olfp r2-fp r10-olfp

Single 627 795 11 10 2.994 6.221 32.934 62.210
Double 2296 1547 27 18 4.219 6.221 113.913 111.978

5. SUMMARY

In summary, the methodology and design of a decimal online floating-point multiplier were presented. As a
rough estimate of its cost/performance, we compared our design to a binary parallel floating-point multiplier of
equivalent precision: our design has a slightly larger cost for single-precision, but a significantly lower cost for
double-precision. It terms of latency, it has a significantly larger total delay for single-precision, but a slightly
smaller total delay for double-precision. The total delay is expected to significantly improve if the floorplanning
is optimized. The proposed design is attractive for overlapped arithmetic operations to increase the overall
performance of a group of arithmetic operations.
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