

June, 2010

# **Analog Mixed Signal and Power Products for Automotive**

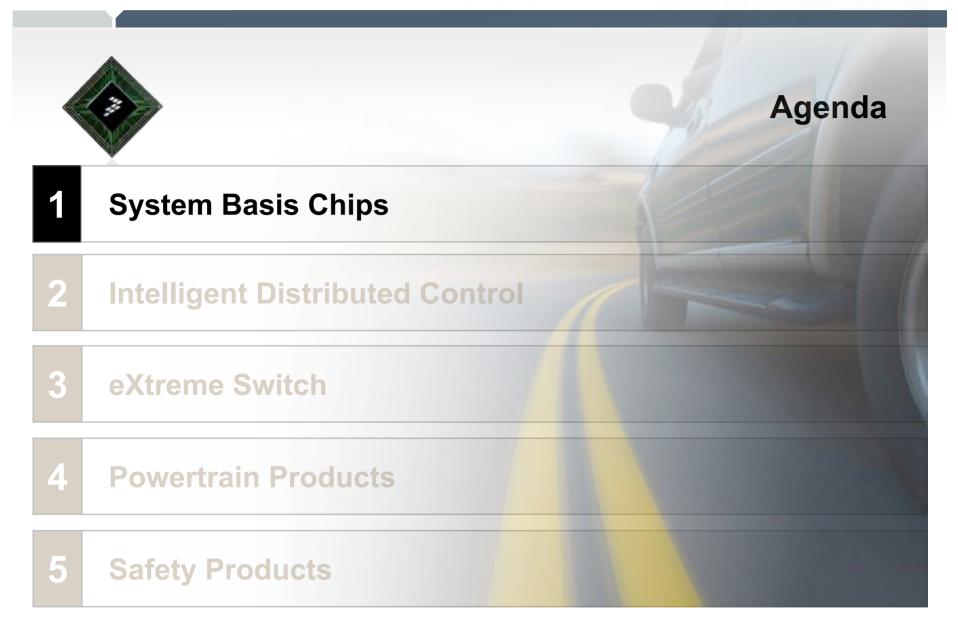
FTF-AUT-F0556

### **David Lopez**

**Product Line Manager** 



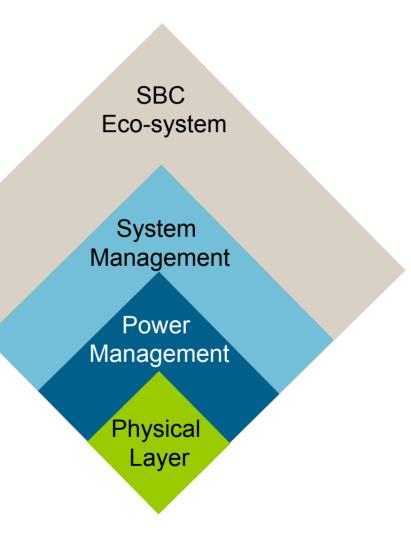
### **Session Introduction**


- ► Freescale means over **50 years** of innovation in semiconductors and over **25 years** in the high-performance analog market
- ► Consumers expect everything to be intelligent and connected
  - Need high-performance analog circuitry combined with digital smarts and power outputs
- ▶ We have industry-leading, differentiated SMARTMOSTM process technology
  - Integrates digital, power and standard analog functions in a single device
- ► Highly integrated System on Chip (SoC) and System in Package (SiP) solutions
- ► Today we will cover new products for:
  - Body Electronics
  - Powertrain
  - Safety



# **Session Objectives**

- ► After completing this session you will be able to:
  - Name the key features and differentiators of our new products in the following families:
    - System Basis Chips
    - Intelligent Distributed Control
    - eXtreme Switch
    - Powertrain Products
    - Safety Products








#### What is an SBC?

- ► SBCs (System Basis Chips) combine:
- ► Physical Layer (CAN & LIN)
  - Transmit digital network information across the network in line with automotive OEM standards
- ▶ Power Management (LDOs)
- Supply MCU, CAN and other loads in linear or DC/DC mode
- ➤ System Management
  - Energy savings: Manage low power modes
  - Functional safety: Participate in system safety strategy
- ► Complete **Ecosystem** 
  - Simplify customer usage (SPI, thermal, ...)
  - Provide EMC compliance reports





# Wide Range of SBC Applications

- ► High-performance Automotive applications
  - Body control modules
  - Lighting modules
  - Door/seat modules
  - Airbag Safety Applications
  - Centralized TPMS



- Cooling Fuel system (electronic control of pump motor)
- Diesel Powertrain (glow plugs)
- Low-end engine management systems



### **Customer Concerns and Freescale Solutions**

► These devices have been designed to help our customers meet the following challenges while providing the associated benefits:

| Customer Concerns                                                                                                                                                     | SBC Benefits                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Increased electrical content can increase battery discharge in parked mode or increase CO2 emission                                                                   | Freescale SBCs save energy by minimizing current consumption and optimizing wake up events                                             |
| Customer platforms can require multiple semiconductors or increase bill of materials                                                                                  | Freescale SBCs offer an ideal scalable (pin-to-pin compatible) power management solution for our MCUs to address multiple applications |
| Need to improve determinism during failure modes                                                                                                                      | Freescale SBCs offer flexible safety solutions and documentation to support application safety integrity level (SIL) assessment        |
| A wide range of networked electronic systems mean scar environments need to be less sensitive to external noise and highly robust (less sensitive to power injection) | Freescale SBCs integrate fully certified CAN and LIN according to latest electrical/ESD/EMC market requirements                        |



# **SBCs: Ideal MCU Companions**

|                     | MCU Type            | 8 bit MCUs    | 16bit MCUs                       | 32bit MCU                             | 32bit MCUs            |
|---------------------|---------------------|---------------|----------------------------------|---------------------------------------|-----------------------|
|                     | TAM 2014 (M#)       | 950M#         | 500M#                            | 580M#                                 |                       |
| Market Segment      | Freescale MCU Core  | SO8           | S12, S12X                        | Power Arch (z0,1)                     | Power Arch (z3,4,5,7) |
|                     | Engine Control      | S08SG/MP      | Fuel pump, Glow                  | Plug/LE <sup>5</sup> ÉMS <sup>1</sup> | Parts TBA             |
| PowerTrain          | Transmission        |               | Fuel pump, Glow                  | MPC563xM                              | Parts TBA             |
|                     | Hybrid              |               | S12DG                            | MPC563xM                              | Parts TBA             |
|                     | BCM/Gateway         | S08SG         | LE/ME BCM                        | MPME/HE(BCM                           | MPC560xB Gateway      |
| Body                | Windows/Doors/Seat  | S08EL / S08SG | S12P, S12XS, HE Door/Seat C560xB |                                       |                       |
|                     | Lighting            | S08DZ         | S12XS, S12XJunction Box C560xB   |                                       |                       |
|                     | HVAC                | S08LG         | S12XH, S12G                      | MPC560xB                              |                       |
|                     | Security            | S08EL / S08SG | S12XS                            |                                       |                       |
|                     | Braking / VSC       | S08SG/SL/EL   |                                  |                                       |                       |
|                     | Suspension          | S08SG/SL/EL   |                                  | MPC560xP                              | MPC564xL & TBA        |
|                     | Steering            | S08SG/SL/EL   |                                  | MPC560xP                              | MPC564xL & TBA        |
| Safety & Chassis    | ICM                 |               |                                  | MPC560xP                              | MPC564xL & TBA        |
| ·                   | ADAS                |               |                                  | MPC560xP                              | MPC564xL & TBA        |
|                     | Airbag              | S08SG/SL/EL   | Seat Belt Pret.                  |                                       |                       |
|                     | TPMS                |               | TPMS receiver                    |                                       |                       |
| Duines Infeteines   | Dashboard           |               | ME Dashboards                    | MPC560xS                              |                       |
| Driver Infotainment | Infotain/Telematics |               | - ME Dasinboards                 |                                       |                       |





# Freescale SBC CAN LIN Gen2 Portfolio & Segmentation

| Features                   | МС                        |                     | MC                                         | МС           | МС                                     |
|----------------------------|---------------------------|---------------------|--------------------------------------------|--------------|----------------------------------------|
|                            | 33902                     | 33903               | 33904                                      | 33905S       | 33905D                                 |
| Vreg MCU (3.3V/5.0V)       |                           | 100mA               | 150mA                                      | 150mA        | 150mA                                  |
| Vreg MCU w Pwr Shar        | ing                       |                     | + 300mA                                    | + 300mA      | + 300mA                                |
| Vreg CAN                   | $\checkmark$              | $\checkmark$        | $\checkmark$                               | $\checkmark$ | $\checkmark$                           |
| Vaux ballast (3.3V/5.0V    | <b>/</b> )                |                     | $\checkmark$                               | $\checkmark$ | $\checkmark$                           |
| eCAN HS (ISO11898-5        | ) 🗸                       | $\checkmark$        | $\checkmark$                               | $\checkmark$ | $\checkmark$                           |
| eLIN                       |                           |                     |                                            | 1            | 2                                      |
| I/O (config. Input/output) | 1 input                   | 1                   | 4                                          | 3            | 2                                      |
| SPI (16bit)                | Pseudo SPI                | Std.                | Adv W/D                                    | Adv W/D      | Adv W/D                                |
| Analog MUX                 |                           |                     | $\checkmark$                               | $\checkmark$ | $\checkmark$                           |
| Low Power (Voff/Von µA     | A) 15                     | 15/25               | 15/25 (+10 osc.)                           | $\checkmark$ | $\checkmark$                           |
| Fail safe                  | Std.                      | new <sup>Std.</sup> | Adv.                                       | Adv.         | Adv.                                   |
| Package                    | SO14                      | SOIC32eP            | SOIC32eP                                   | SOIC32eP     | SOIC54eP                               |
| MCU companion              | Autonomous<br>CAN HS node | 8 / 16 bit MCUs     | S12XE / MPC560xB S<br>MPC560xP, MPC563xMPC |              | S12XE / MPC560xB<br>MPC560xP, MPC563xM |



# **A Unique Combination of Differentiators**

#### **Areas of Focus**

- Advanced Functional Safety
- Innovative Energy Management
- Robust In-vehicle Networking

### **Development Status**

- Three products covering 16 and 32-bit low end MCUs
- Auto Qualified products with industry certified transceivers
- DFMEA and System FMEA
- Safety applications guide
- Innovative development tool ecosystem to save design time (simulators, SW interface)

### Value Proposition

#### Advanced Safety Features

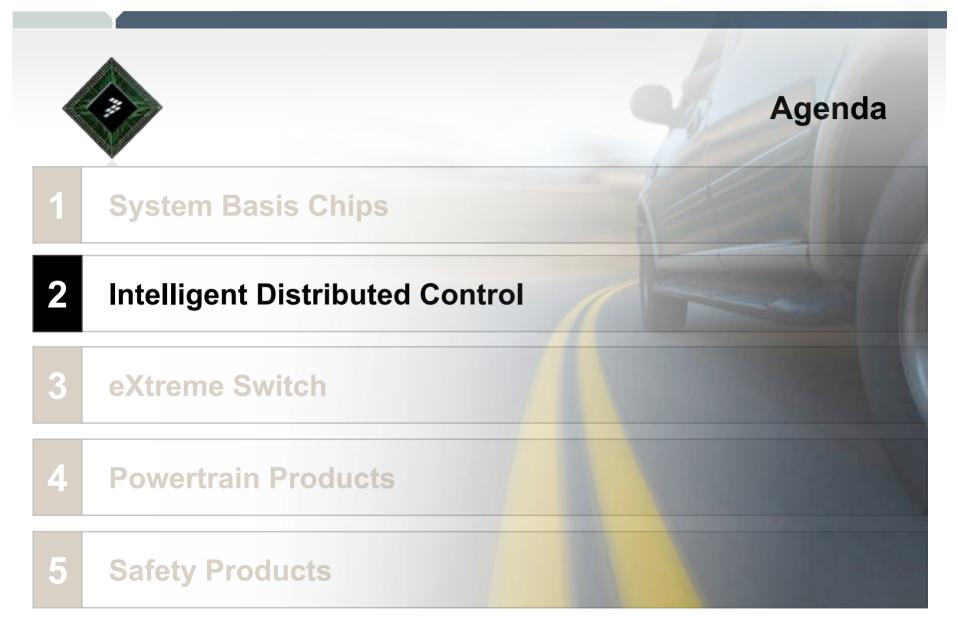
- · Secured SPI (parity checks, EMC dist. Proof ..)
- Monitoring of critical pins (RST, CSB, ...)
- · SAFE pin to drive external ICs in MCU "fault" mode
- · Secured critical changes of state machine
- · Advanced watchdog mechanisms
- Monitors critical analog signals (Vbat, Ivdd, T ..)
- Programmable fail safe default status

#### Innovative Energy Management

- Scalable power supply to reduce thermal constraints, ideal for Freescale's 32-bit MCU
- Innovative cranking pulse management
- Energy savings in low power modes

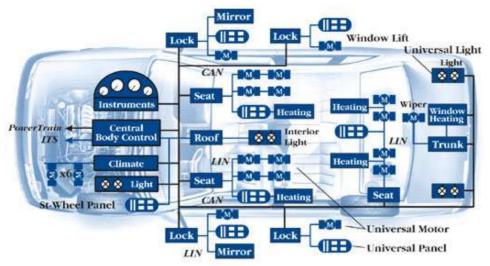

#### Robust In-vehicle Network (CAN HS & LIN)

- ESD +/- 8kV (150pF/330 Ohm) gun stress test
- EMC: Low emission / high Immunity in line with market standards
- Various network diagnostics

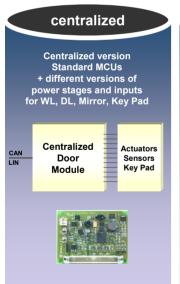


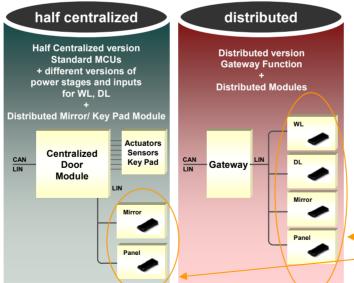

### **SBC Evaluation Board – KITMC33905SEVME**

- ► Quickly evaluate SBC Gen2 with CAN & LIN performance
- ▶ Compréhensive technical documentation
- ► Easy-to-use tools including thermal prediction capability





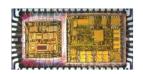



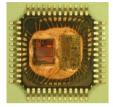

# **IDCs Support the Distributed LIN Systems Approach**



Typical Automotive Body Network







Door Architectures can be Centralized, Half-centralized or Distributed

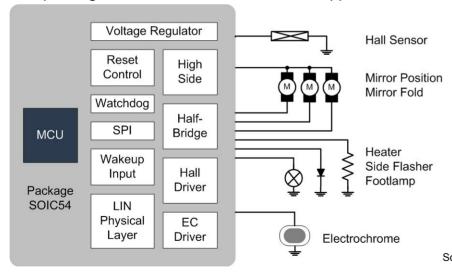
Typical IDC Applications

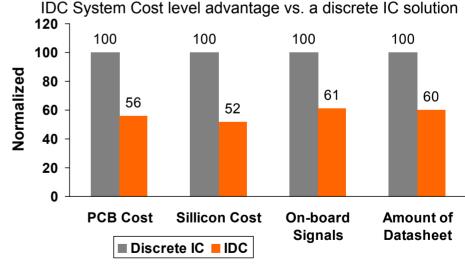


### **IDC – Intelligent Distributed Control**







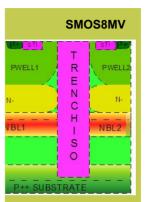


- Single DEVICE solution (2 die in one package, or monolithic solution), allows the **integration** of analog functions with standard microcontrollers each using the appropriate Si process.
- IDCs are a highly integrated products all are optimized for a specific set of applications (e.g. Window Lift, Sunroof, Light Leveling, EC Mirror, Power Seat, Keypad, Steering Wheel, HVAC)
- IDC products are designed for today's LIN distributed systems

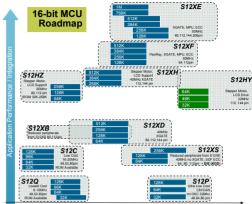
#### **Customer Benefits**

Space / Weight saving
Fewer external components
100% MCU-Analog compatibility
Improved system level reliability
Reduced development cycles
Reduced logistic costs

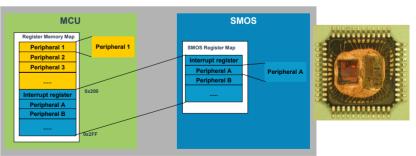
#### Example: High-end Electro Chromeric mirror application





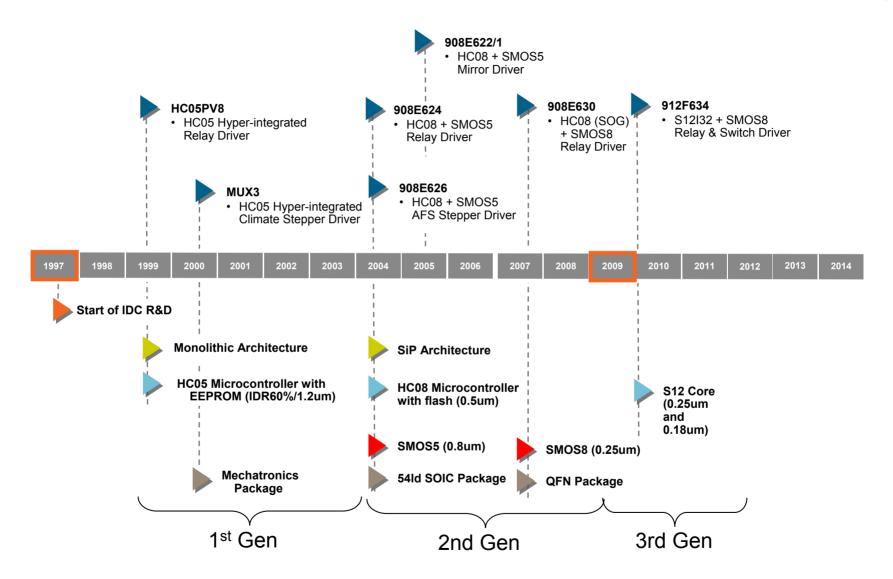


Source: EC mirror application, discrete devices are sampled from various major vendors (anonymous)




#### Added Values of Freescale's IDC Product Line

- FSL Automotive MCU market infrastructure
  - Widely used 8-16-bit HW/SW architectures, SW tools availability and a host of trained SW developers
  - Available FSL Controller architectures:
    - Xgate (programmable state-machine): in use today by AMPD
    - S12 (16-bit MCU): in use today within AMPD/IDC products
    - PPC (32-bit) (potentially in the future)
- FSL's Automotive proven NVM (Flash) technology
  - 0.25um Split Gate Flash (SGF), 0.180um SGF
- ► IDC takes advantage of FSL's Automotive qualified SMOS8MV Analog Mixed-Signal technology
- Transparent Register Access
  - Registers of SMOS die are mapped into MCU memory map and are accessed by MCU like local peripherals
  - Virtually 1 device from a programmer's SW point of view
- ► FSL has more than 10 Years of IDC design and production experience

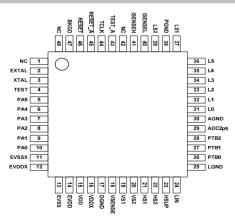


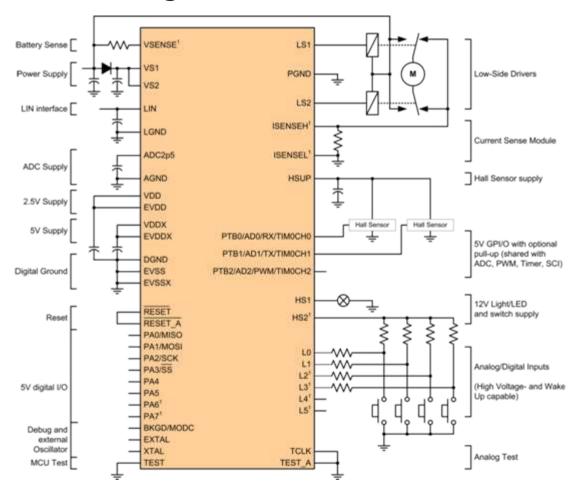










# Freescale has 10+ Years of Experience in IDC/ MCU & Analog



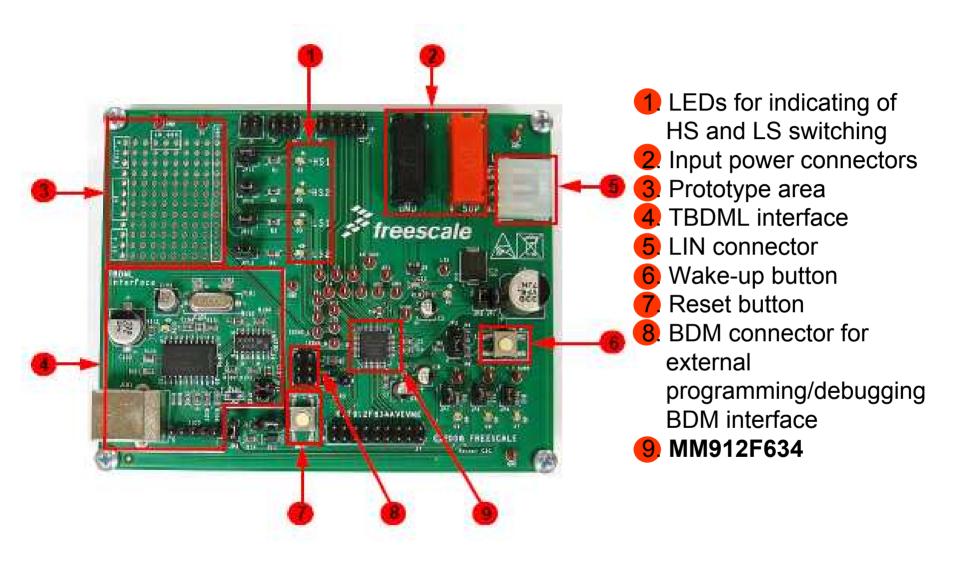



# MM912F634BV1AE - Intelligent LIN DC Motor Controller

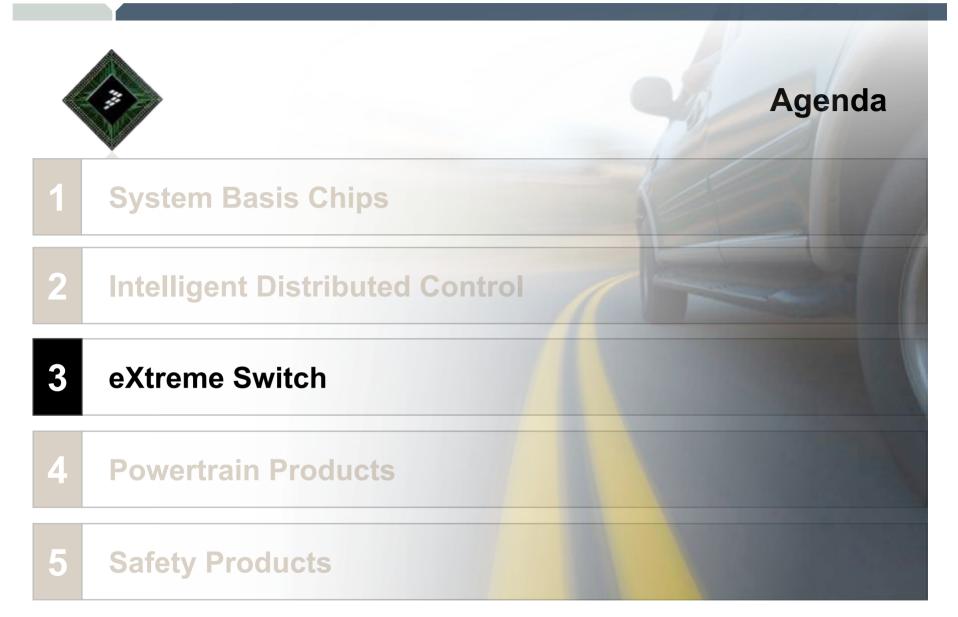
| Key Characteristics |                    |                                         |        |  |  |
|---------------------|--------------------|-----------------------------------------|--------|--|--|
| MCU                 | S12S               |                                         |        |  |  |
| Memory              | Flash              | Data<br>Flash                           | RAM    |  |  |
|                     | 32k                |                                         | 2k     |  |  |
| Power Outputs       | LSD                | HSD                                     | HSUP   |  |  |
|                     | 2x                 | 2x                                      | 1x     |  |  |
| Physical Layer      | LIN                | _                                       | _      |  |  |
| Watchdog            | Yes                |                                         |        |  |  |
| Stop Current        | 35µA               |                                         |        |  |  |
| Sleep Current       | 15µA               |                                         |        |  |  |
| ESD                 | ±8000V LIN         |                                         |        |  |  |
| Operating           | Nominal Functional |                                         |        |  |  |
| Voltage             | 5.5V-18V           | 8V 5.5V-27V                             |        |  |  |
| Temperature         | Ambient            | -40°C <t<sub>/</t<sub>                  | <105°C |  |  |
|                     | Junction           | -40°C <t< td=""><td>&lt;125°C</td></t<> | <125°C |  |  |
| Bus Frequency       |                    | 20MHz                                   |        |  |  |
| Package             | 48LD LQFP          | EP                                      |        |  |  |






#### **Key Features**

- High-Performance 16-Bit S12S CPU
- LIN 2.0 Physical Layer Interface
- Low-Side outputs to drive inductive loads (clamp)
- Battery Voltage Sense with Low Voltage warning (interrupt)
- Chip Temperature Sensor


- Current Sense Module
- Hall Sensor supply (18V VREG with clamp)
- High voltage inputs with digital and analog wakeup
- Digital inputs shared with PWM, Timer, ADC, SCI/LIN
- Digital inputs shared with 1 vvivi, Timer, 7100
- Low voltage (5V) GPIO shared with SPI



### MM912F634 – Evaluation Board



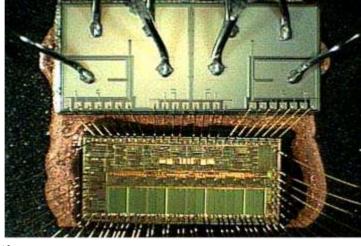






### **Three Innovations in One Product**

#### ► eXtreme Switch


Intelligence - Power - Protection

#### **SMARTMOS**<sup>TM</sup>

- Protection and Diagnostic
  - Over temperature
  - Over current
  - Over/Under Voltage
  - Short circuit
  - Reverse battery
  - Loss of ground/Vbat
  - Energy discharge protection

#### SPI Interface

- Easy connection to the uP
- Programmability
- Daisy chain using SPI
- Programmable over current trip level
- Watchdog



#### **Power MOSFETs**

- Low Rds(on) MOSFETs
  - 1.7mOhm typ. at 25°C
  - 3.4mOhm typ at 150°C
- · Protection in the power stage
  - Temperature sensor
  - Current sensor

#### **PQFN**

- Design Flexibility
- Al power wirebonds
  - Low series resistance
- Low cost power package
  - 0.5 mm thick leadframe
  - Solder die attach
  - Rthj-c < 0.5°C/W
  - Current capability > 200A
- High reliability





# **eXtreme Switch Product Family**

|                  | PhD24/03/10 |                                      |          |               |                   |             |                |        |                                   |
|------------------|-------------|--------------------------------------|----------|---------------|-------------------|-------------|----------------|--------|-----------------------------------|
|                  | Part Number | Number of Outputs and On-Resistance  | Nickname | Package       | System<br>Voltage | Datasheet   | Samples        | Mcqual | EVB                               |
| ъ                | MC10XS3412C | Dual 10mΩ, Dual 12mΩ                 | SPQ1012  | 24-pin PQFN   | 12V               | final       | in production  | done   | yes                               |
| Quad             | MC10XS3435C | Dual 10mΩ, Dual 35mΩ                 | SPQ1035  | 24-pin PQFN   | 12V               | final       | in production  | done   | yes                               |
| Gen III          | MC15XS3400C | Quad 15mΩ                            | SPQ15    | 24-pin PQFN   | 12V               | final       | in production  | done   | yes                               |
| G                | MC35XS3400C | Quad 35mΩ                            | SPQ35    | 24-pin PQFN   | 12V               | final       | in production  | done   | yes                               |
| Gen III<br>Penta | MC10XS3535  | Triple 10mΩ, Dual 35mΩ               | SPP1035  | 24-pin PQFN   | 12V               | final       | now            | May-10 | May-10                            |
| Ger<br>Per       | MC35XS3500  | Penta 35mΩ                           | SPP35    | 24-pin PQFN   | 12V               | final       | now            | May-10 | May-10                            |
|                  | TBD         | Dual 6mΩ, Dual 17mΩ with LFET        | SPQL0617 | 24-pin PQFN   | 12V               | preliminary | now*           | Dec-11 | no*                               |
| 3                | TBD         | Quad 9mΩ with LFET                   | SPQL09   | 24-pin PQFN   | 12V               | preliminary | now*           | Dec-11 | no*                               |
| Gen              | TBD         | Dual 7mΩ with LFET                   | SPDL07   | 32-pin SOICEP | 12V               | preliminary | Jul-10         | Dec-11 | no                                |
|                  | TBD         | Triple $6m\Omega$ , Dual $17m\Omega$ | SPPL0617 | 24-pin PQFN   | 12V               | preliminary | now*           | Dec-11 | no*                               |
| >                | MC06XS4200  | Dual 6mΩ for trucks                  | SPD6_24  | 24-pin PQFN   | 24V               | preliminary | Jul-10         | Jun-11 | Jul-10                            |
| Gen24V           | MC10XS4200  | Dual 10mΩ for trucks                 | SPD10_24 | 24-pin PQFN   | 24V               | final       | now            | Feb-11 | yes                               |
| Ō                | MC20XS4200  | Dual 20mΩ for trucks                 | SPD20_24 | 24-pin PQFN   | 24V               | preliminary | Jul-10         | Jun-11 | Jul-10                            |
| Viper            | MC33981B    | Single 4mΩ, 60KHz                    | Viper    | 16-pin PQFN   | 12V               | final       | in production  | done   | yes**                             |
| itch             | MC33982C    | Single 2mΩ                           | SPSS+    | 16-pin PQFN   | 12V               | final       | in production  | done   | no                                |
| Main switch      | MC33984C    | Dual 4mΩ                             | SPD4+    | 16-pin PQFN   | 12V               | final       | in production  | done   | yes                               |
| Mai              | MC33988C    | Dual 8mΩ                             | SPD8+    | 16-pin PQFN   | 12V               | final       | in production  | done   | yes                               |
|                  |             |                                      |          |               |                   |             | * early proto. |        | * can reuse<br>Gen3 EVB<br>**upon |
|                  |             |                                      |          |               |                   |             |                |        | request                           |



- ► CO₂ regulation drives innovation and integration (weight, space)
- Beyond 2010 most OEMs will require over voltage protection to extend bulb operating lifetime (PWM)
- Protection / Reliability / Safety / Robustness
- ▶ **Diagnostics** for switch, load and wiring harness faults
- ► LED interior and exterior lighting is expected to grow dramatically allows for styling options and higher efficiency. Still needed .... Xenon, Halogen and LED compatibility
- Newer bulb technologies are driving higher inrush currents.
- Higher end architectural variations plus separate Vbatt requirements limit Quad and Penta devices for some loads
- Car OEMS attempt to standardize their Body Control Modules to support global volumes while meeting unique OEM requests



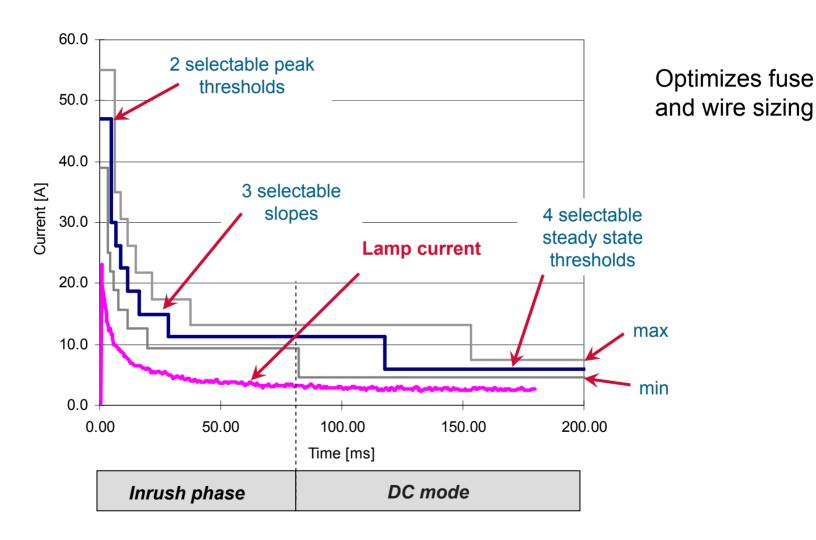
| O utput Channel Name                                                              | Total Pd/device<br>[W] |
|-----------------------------------------------------------------------------------|------------------------|
| RearTurn Signal Lamp RH<br>Tail Lamp RH<br>Tail Lamp LH<br>RearFog Lamp           | 1.018                  |
| Head Lamp Low RH FRT Fog Lamp LH FRT Turn Signal Lamp RH Reverse Lamp             | 1.084                  |
| FRT Fog Lamp RH<br>Head Lamp High RH<br>Stop Lamp RH<br>FRT Turn Signal Lamp LH   | 1.052                  |
| Head Lamp High LH<br>Head Lamp Low LH<br>Stop Lamp LH<br>Rear Turn Signal Lamp LH | 1.219                  |
|                                                                                   | 4.373 W                |



# eXtreme Switch for Lighting Market: Gen3

### **Applications**

- Lighting with PWM management
- 12 V battery systems
- Halogen, LED and Xenon compatible



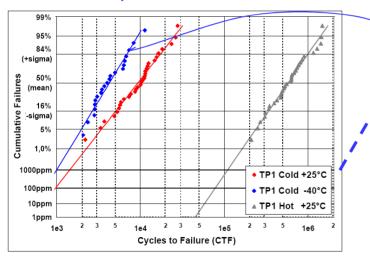

### Key Features and Benefits

- Quad /Penta devices in SM8/HD5
  - Module integration with extremely low sleep state current.
- Multi-step overcurrent strategy with auto restart
  - Robust and reliable solution.
- SPI interface for adaptability
  - Specific configuration for bulbs, HID, LED
- Full fault diagnostics for each output stage viaSPI
  - · Full diagnostics, no real time fault mgt needed
- Embedded PWM function with optimized slew rates
  - Easy PWM management, EMC optimized



# Programmable Overcurrent Profile Example (MC10XS3412)

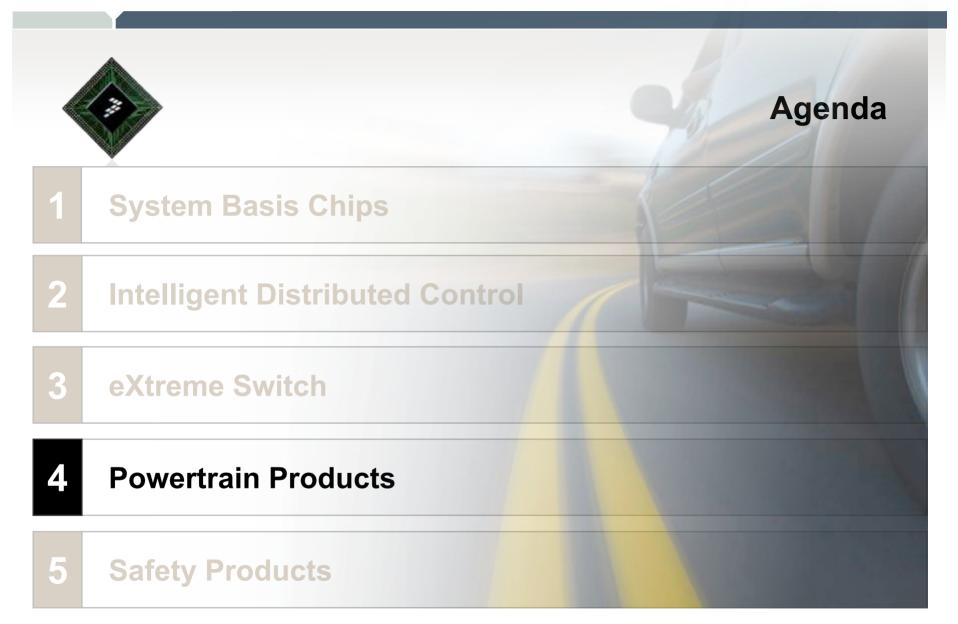





### **AEC Q100-12 Cold Short Circuit – Results**

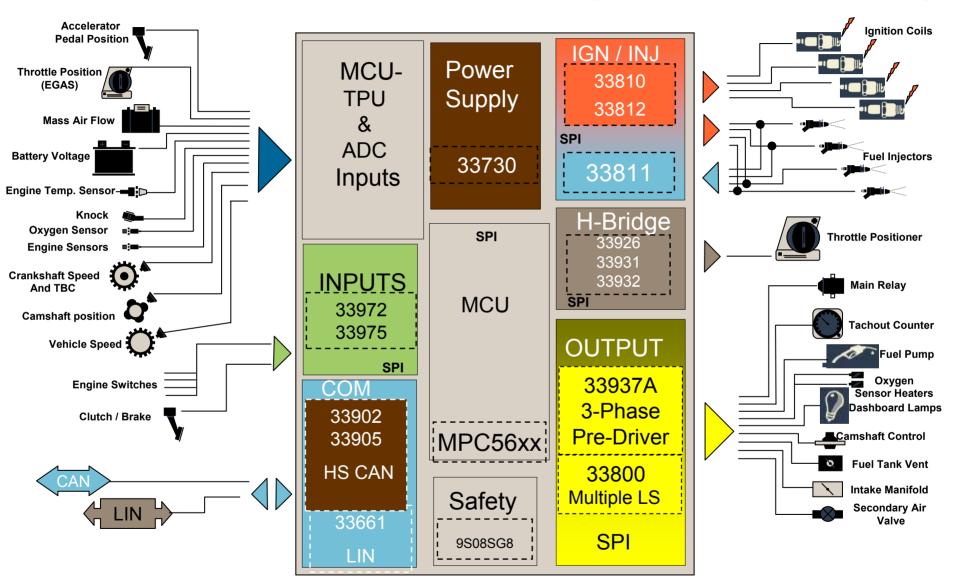
| Grade | # Cycles             | Lots/Samples per lot | # Fails |
|-------|----------------------|----------------------|---------|
| Α     | >1,000,000           | 3/10                 | 0       |
| В     | >300,000 – 1,000,000 | 3/10                 | 0       |
| С     | >100,000 – 300,000   | 3/10                 | 0       |
| D     | >30,000 – 100,000    | 3/10                 | 0       |
| E     | >10,000 – 30,000     | 3/10                 | 0       |
| F     | >3,000 – 10,000      | 3/10                 | 0       |
| G     | >1,000 – 3,000       | 3/10                 | 0       |
| Н     | 300 – 1,000          | 3/10                 | 0       |
| 0     | < 300                | 3/10                 | 0       |

| Test Name              | Ambient<br>Temp. | Activated Device<br>Protection                        | Number of<br>Cycles Passed |
|------------------------|------------------|-------------------------------------------------------|----------------------------|
| Load<br>short-circuit  | -40° C           | Latched overcurrent for 90A at 250 $\mu$ sec          | 1M cycles                  |
| Load<br>short-circuit  | +85° C           | Latched overcurrent for 65A at 250 $\mu$ sec          | > 1.2M cycles              |
| Over-load              | +40° C           | Latched overcurrent for 40A at 95msec                 | > 1M cycles                |
| Terminal short-circuit | +85° C           | Latched severe short-circuit for 40A at $100 \mu$ sec | > 1M cycles                |


# Competitors Overcurrent performance



Freescale MC15XS3400


Superior Robustness & Reliability





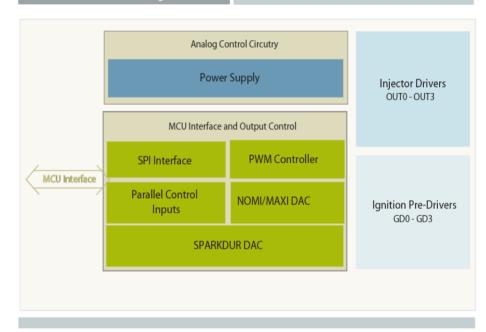


# **Powertrain Systems Product Offering**





# MC33810: Eight Channel Ignition and Injector Driver


#### Features

- 8-channels with 4 low-side drivers & 4 pre-drivers
- Pre-drivers with three different modes:
- · Ignition
- · General purpose gate drive
- · Ten cylinders
- Ignition current & spark detection with programmable thresholds
- MCU SPI and parallel interface
- Power supply/oscillator/band gap reference/POR
- · Diagnostic and error detection logic
- Self protection for:
- Shorts to battery
- Over current
- Over temperature
- Low power (30 µA) "sleep mode"

#### Benefits

- Highly integrated solution minimizes the need for additional external discrete components
- Reduced parts count
- Reduced manufacturing and test cost
- Improved reliability
- Reduced current consumption lowers battery drain during key off
- Small footprint, reduces printed circuit board area
- Simple MCU parallel interface
- Protected against common failure conditions

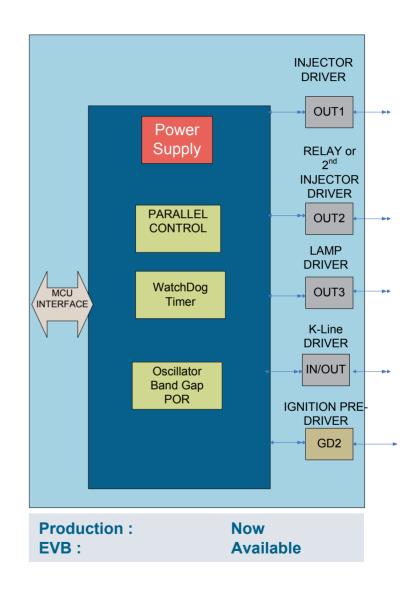
MC33810 - Functional Block Diagram



#### Applications

- · Engine control for:
  - Automobiles
  - Motorcycles
  - Industrial engines
  - Generators
  - Marine systems
  - Recreational vehicles

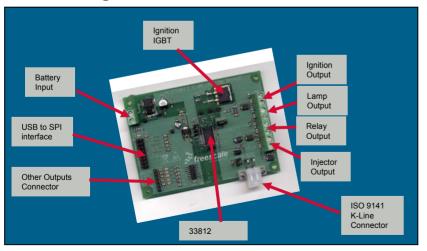



EK (Pb-FREE) SUFFIX 32-PIN SOICW EP

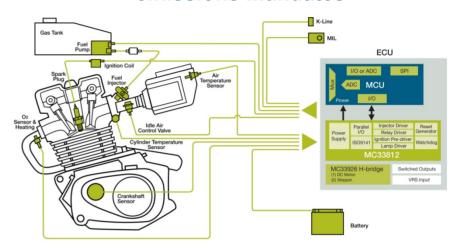


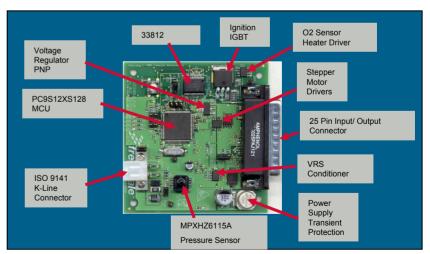
# MC33812 Small Engine Control Overview

### ▶ Block Diagram


- 1 Injector, low side driver
- 1 Relay or 2nd Injector, low side driver
- 1 Lamp, low side driver
- 1 Ignition, pre-driver
  - Two different modes:
    - IGBT
    - Darlington BJT
- Parallel MCU Interface
- +5 V Regulator with ext. PNP
- Oscillator/Band Gap Reference/POR
- Programmable Watchdog Timer.
  - Can be enabled/disabled
- Diagnostic and error detection logic
  - Self protection for:
    - Shorts to battery
    - Over current
    - Over Temperature







# MC33812 Small Engine Control EVB and Reference Design

- ► Small Engine Applications:
  - Scooters
  - Motorcycles
  - Snowmobiles
  - Hybrid car charging engines
  - Generators
  - Personal water craft
  - Riding mowers



# Helps you meet the new small engine emissions mandates





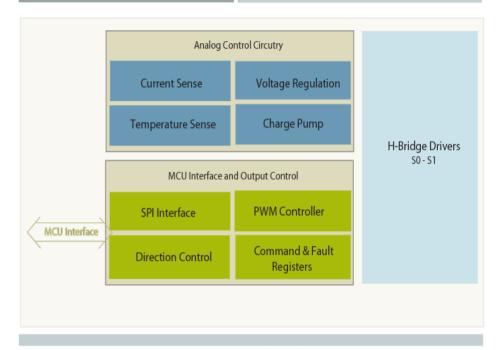
MC33812 Reference Design



### MC33899: Programmable H-Bridge Motor Driver

#### Features

- H-Bridge configuration for bi-directional motors
- Low RDSON outputs (150 mΩ @ 125°C)
- Current mirror output signal (gain selectable via external resistor)
- Short circuit current limiting
- Thermal shutdown (outputs latched off until reset via SPI)
- Internal charge pump circuit MOSFETs
- · SPI selectable slew rate control and current limit
- Detailed fault diagnostics via SPI


#### Benefits

- Configurability and programmability make this DC motor driver very versatile
- Unique fault restart
- Highly integrated solution
- · Robust solution for harsh environment
- Improved reliability

#### Applications

- Electronic throttle control
- DC motor control
- Industrial motors and actuators

MC33899 - Functional Block Diagram





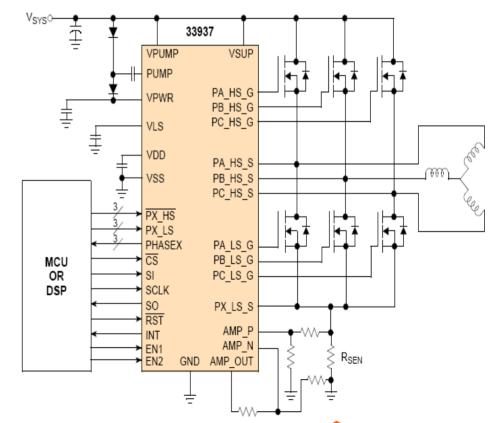


#### MC33937A – 3-Phase Pre-driver

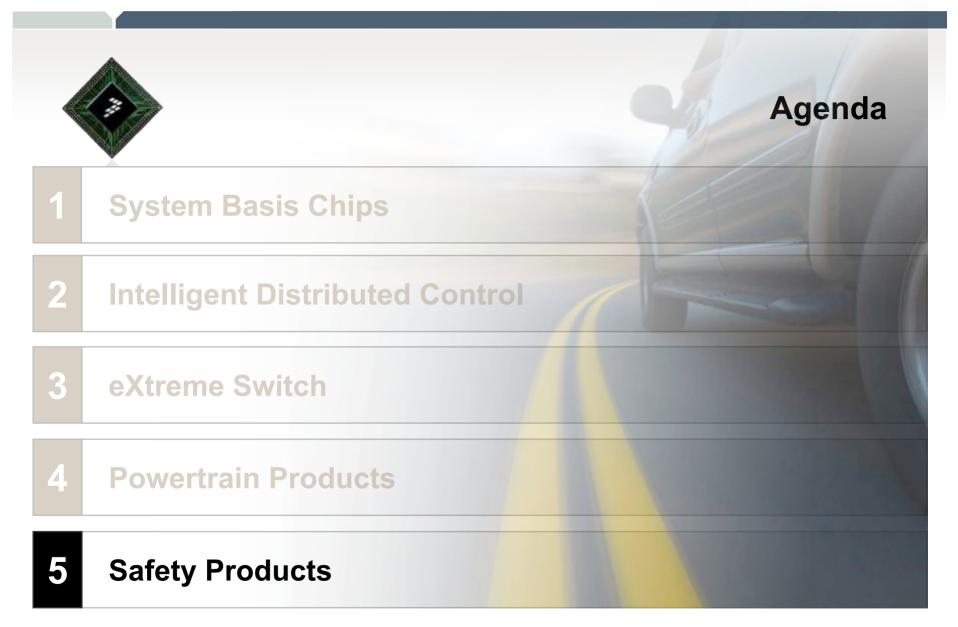
#### Overview

The 33937 device is a FET pre-driver for controlling three-phase motors with stable digital accuracy. It is easily configured for systems driving brushless DC (BLDC), permanent magnet (PM) or switched reluctance (SR) motors with or without sensors.

#### Features


- Extended operating range from 6.0V to 58V
- Protection from reverse charge injection from external FETs
- Charge pump to support full FET drive at low battery voltages
- · Programmable dead time via the SPI port
- Simultaneous output capability via safe SPI command

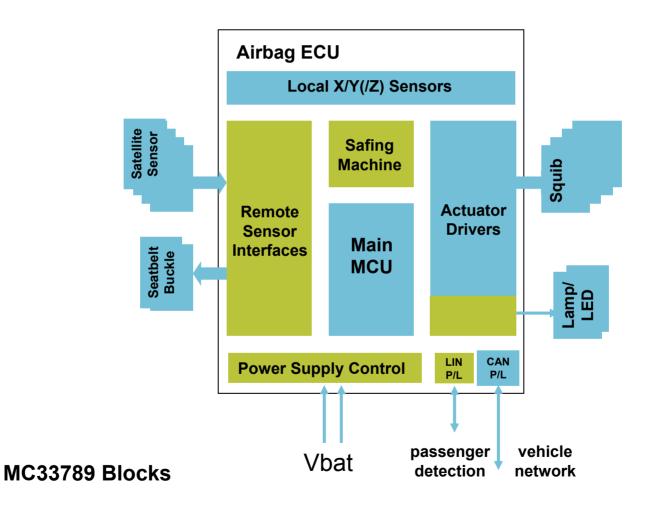
#### Benefits


- Precise, complete control of speed, torque and power
- Explicit control of each driver
- Increased diagnostic and fault reporting that protects the driver and load
- Highly integrated solution
- Robust for harsh environments
- Improved reliability

#### Applications

- Cooling fan
- Water pump
- Actuator controls
- Fuel pump
- Electro-hydraulic and electric power steering









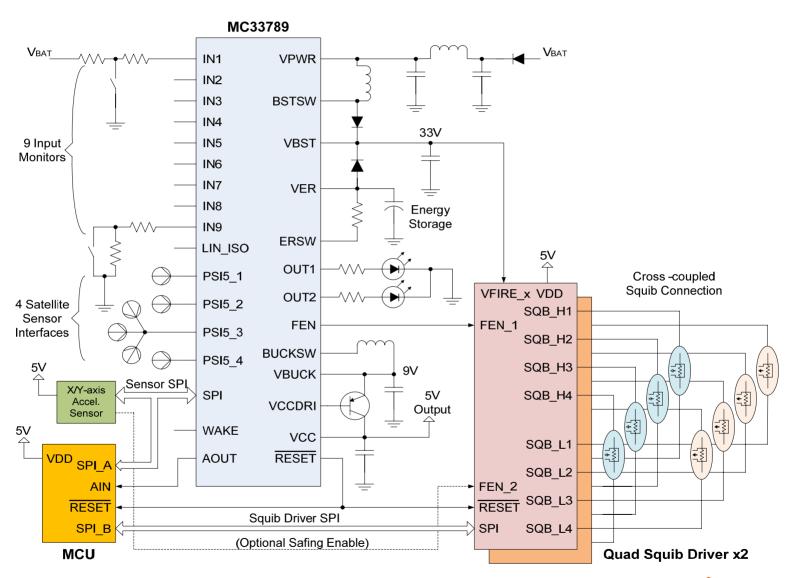

# **Typical Airbag System Block Diagram**

► A Complete Silicon Solution is Available from Freescale





# MC33789 Analog Airbag System Basis Chip (SBC)


### ► Key Product Features:

- 4 Satellite Interfaces (PSI5 V1.3 compliant)
- Boost Regulator
- Buck Regulator
- Linear Regulator with external Power Bipolar Transistor
- Slave mode Serial Peripheral Interface
- LIN2.1/ISO9141 interface
- Reset/Power mode control module (Includes Watchdog and Vcc monitoring)
- 9 DC sensor interfaces with programmable voltage scaling
- Analog Diagnostics Interface
- Safing state machine with programmable sensor configuration and thresholds (includes ADC)
- 2 General purpose driver interfaces

# ► Product Availability:


 Launching Q2 2010 at the PSI5 Forum along with the SASD Oroya Product Launch

# **Simplified MC33789 Application Drawing**





# Freescale Airbag Reference Demonstrator (ARD)





# **Distributed Systems Interface Consortium Update**



### **DSI Consortium Home Page**

Home Page About DSI

About The Consortium

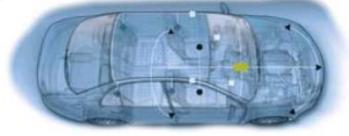
What's New

Frequently Asked Questions

Downloads

Products

Contact Log In


Bookmark This Site

#### Welcome to the DSI Consortium Home Page

The **Distributed Systems Interface (DSI)** is a flexible and powerful bus protocol designed to interconnect multiple remote sensor and actuator devices to a central control module. The principal

target application for the network is automotive airbag systems.

The DSI Consortium is an organization dedicated to the promotion and development of DSI in both automotive and non-automotive



applications. The founding members of the Consortium are TRW Automotive, DENSO CORPORATION, and Freescale Semiconductor.

Other interested parties have the opportunity to become members of the Consortium at various levels. Benefits include the chance to influence future development of the specification and participation in various DSI-related activities.

All content on this site is @2008 - 2009 DSI Consortium

http://www.dsiconsortium.org/



### **DSI 3 Consortium Goals**

#### ► Reduced Cost

 Optimize bus architecture and scale implementation while maintaining existing system cost competitive advantage

#### ► Increased Performance

- Increase slave-to-master channel capacity to support high-end safety applications and enable expansion into other applications
- Optimize master-to-slave channel capacity to support emerging functional safety requirements and enable expansion into other applications
- Improve EM Compatibility to meet increasingly stringent customer requirements while maintaining a system cost advantage
- ► Maintain DSI prominence as an Open Standard
  - DSI is proven as an open standard with multiple suppliers of components and systems



### **DSI Consortium Status**

### ► Organization:

- Founders: DENSO, Freescale, TRW
- New Member Recruitment: Beginning Jan. 2010

### ► Specification Status:

- DSI2 Available now for download
- DSI3 Founders Draft in Dec.2009
- DSI3 Members Draft in Q1-Q2 2010
- DSI3 Approval & Formal Release in Q2 2010



# **Automotive Analog Mixed Signal and Power Products**

- ▶ By now, you should be able to:
  - Name the key product features and differentiators of our new products in the following families:
  - System Basis Chips
  - Intelligent Distributed Control
  - eXtreme Switch
  - Powertrain Products
  - Safety Products



