Noven Pharmaceuticals, Inc.

Innovations in Passive Transdermal Drug Delivery:

High Doses in a Small Patch

A Releasing Technology Workshop CRS 2006 Annual Meeting July 23, 2006

Presenters

- Juan A. Mantelle
 - Vice President of R&D and Chief Technical Officer
 - Transdermal State of the Art
- David Kanios
 - Director Research & Development
 - DOT MatrixTM Technology for Developing Transdermal Drug Delivery Systems
- Christopher W. McDaniel, Ph.D., MBA
 - Director New Technology Assessment
 - Transdermal Product Development Considerations:
 - **Passive and Active Transdermal Delivery Systems**

🔹 Pavan Handa

 Vice President - Business Development
 - NOVEN - Bringing Transdermal Product Innovations to Market

Transdermal State of the Art: Passive Systems

Juan A. Mantelle Vice President – Research & Development and Chief Technical Officer Transdermal State of the Art: Passive Systems

- OUTLINE
 - Background on Noven
 - Why transdermals? Which type?
 - Dot Matrix[™] Technology: What is it?
 - In Vivo In Vitro Correlation (IVIVC)
 - Intellectual Property
 - Potential Markets
 - Summary and Conclusions

Who We Are – Background on Noven

World's Leading Transdermal Technology

- Founded: 1987
- HQ: Miami, Florida
- Employees: 500
- HQ/Manufacturing: 200,000 sq/ft
 - > Annual capacity of 650+ million patches for general and controlled substances
- > \$120+ million plus HT business through JV
- > Vivelle-Dot #1 Transdermal ET product
- > DaytranaTM transdermal patch approved by FDA for treatment of ADHD
- > Profits, cash, no long-term debt
- Stock Nasdaq: NOVN

Why Transdermals? Which Type?

Why Transdermals?

Benefits of Patches vs. Pills

As compared to pills, patches:

- Eliminate first pass metabolism
- Provide steady delivery/blood levels
- Increase compliance/convenience
- Reduce systemic drug interactions
- Can minimize abuse/diversion
- Permit dose discontinuation via removal
- Provides product life cycle extension opportunities at lower cost with lower risks

Transdermal vs Oral Delivery

Oral delivery

Transdermal delivery

Patch History & Hurdles

The Patch Design Dilemma

- Patients demand patches with the following attributes:
 - Comfortable (non-irritating)
 Adherent (stay put)
 Reproducible blood levels
 Small (discreet)

Limitations to Permeation

- 1. Stratum Corneum
- 2. Molecular Weight of the API
- 3. Melting Point / Volatility of API
- 4. Hydrophilic / Hydrophobic properties
- 5. Doses
- 6. Solubility of API

Optimization of Passive Transdermal Delivery

- Maximize thermodynamic driving force (solubilization to quasi-saturation)
- PRO-DRUG Formulation (i.e., NETA vs. NET)
 - Lower melting point
 - Enhanced lipophilicity
- GRAS listed chemical enhancement
 - Enable channeling through stratum corneum
 - Avoid irritant molecules
- Mechanical Enhancement

- Micro needles/projections, heat enhancement

Summary

Barriers to transdermal delivery can be overcome in many cases by techniques such as:

- 1. Polymer Composition Selection
- 2. Solubilization
- 3. Esterification or Pro-Drug formation
- 4. Effective Concentration Enhancement
- 5. Lower of Melting Point
- 6. Hydrophylic/Lipophylic Balance Modification
- 7. Stratum Corneum Modification (mechanically or chemically)

Which Type of Transdermal Best Suits My Application ?

- Reservoir Systems
 - Volatile API
 - Expensive API higher yields
- Traditional Drug in Adhesive Systems
 - Inexpensive API
 - Low doses / smaller molecules
- Dot Matrix[™] System
 - Expensive API
 - Higher doses / larger molecules
 - Customizable Wear Properties

DOT MatrixTM **Technology**

Patented through 2014

- New class of highly-efficient passive transdermal systems
- 33 U.S. patents issued or allowed
- Advantages over reservoir and the traditional drug-inadhesive patches
 - More drug through smaller area
 - Excellent adhesion
 - Minimize or eliminate the need for irritating enhancers
 - Reproducible pseudo zero order delivery

DOT Matrix Technology

How it works

- Drug is solubilized in acrylic in very high concentrations
- Drug/acrylic then mixed with silicone adhesive
- Forms concentrated drug cells in uncompromised silicone adhesive
- Concentration gradient between drug and skin causes highly efficient diffusion
- Precise content ratios control rate of delivery

Circular image is the surface of the drug/adhesive layer of a DOT Matrix patch photographed with a scanning electron microscope.

Confidential

June 2003

In Vivo- In Vitro Correlation: The Vivelle- Dot Story

Figure #1 - In Vitro Human Cadaver Skin Permeation Study Summary. Averages For Five Different Skin Donors

Confidential

June 2003

18 June 2003

Confidential

Less Drug, Smaller Area, Same Effect Based on Label Claim for 0.05 mg/day Dose

		Estradiol	% 0
Product	Patch Size	Content	Depletion
Vivelle-Dot	5.0 cm ²	0.8 mg	22.4%
Vivelle	14.5 cm^2	4.3 mg	4.0%
Climara ^{***}	12.5 cm^2	3.9 mg	9.0%
Estraderm	18.0 cm^{2*}	4.0 mg	4.4%
Mylan ^{***}	23.7 cm^{2**}	1.9 mg	0-18.0%
Alora	18.0 cm^2	1.5 mg	11.6%
Esclim	22.0 cm^2	10.0 mg	H 1.8%

- * Active area is 10.0 cm^2 .
- ** Active area is 15.5 cm².
- *** 7-day patch; others are 3.5-day.

INTELLECTUAL PROPERTY

U.S. Patents Incorporating the Word Transdermal" in the Specification or Claims

Who Are These Transdermal Patents Assigned To ? – The "Expected" List

- Alza -249
- Lohman 147
- Ciba Geigy 139
- 3M 121
- Cygnus 85
- Dow Corning 45
- Noven 33
- Monsanto -31
- Theratech -29
 - Merrell Dow 25

- Key 23
- J & J 19
- Hexal 13
- Berlex 12
- Lectec 11
- Hercon -10
- Bertek 9
- Lavipharm 9
- National Starch 8
- Watson -7

Who Are These Transdermal Patents Assigned To ? – The "Unexpected" List

- Merck 636
- Schering 583
- Pfizer 328
- GD Searle 271
- Sanofi 212
- American Home 194
- Procter & Gamble 192
- Aventis 192
- GSK 165

- Syntex -155
- Upjohn -119
- Warner Lambert 114
- Novartis 87
- Elan 78
- Rhone Poulenc 53
- Avon 6
- Colgate 5

Future IP Strategies

- "Picture" Claims
 - Narrow composition windows
 - New methods of manufacturing
- Expiring Patents
 - Making older technology new again.
- New Chemical Entities
- Pharmacokinetic based IP
- Novel Skin Permeation Enhancers
- Novel Polymeric Systems / Combinations

Potential Markets and Opportunities

Properties of Commercialized Transdermals

		Molecular	Daily TD	Smallest Patch	In-Vivo Permeation
	Drug	Weight	Dose	Size (cm ²)	Rate (µg/cm²/hr)
1.	Scopolamine	303.35	0.33 mg/day	2.5	5.5
2.	Nitroglycerin	227.09	1.6 mg/16 hrs.	5.0	20.0
3.	Clonidine	230.10	0.1 mg/day	3.5	1.19
4.	Estradiol	272.38	0.1 mg/day	10.0	.42
5.	NETA	340.45	0.14 mg/day	9.0	0.65
6.	Ethinyl Estradiol	296.40	0.02 mg/day	20.0	0.042
7.	Norelgestromin	327.47	0.15 mg/day	20.0	0.31
8.	Nicotine	162.23	7.0 mg/day	7.0	42.0
9.	Testosterone	288.42	2.5 mg/day	7.5	OH 14.0
10.	Fentanyl	336.50	0.6 mg/day	10.0	2.5
11.	Lidocaine	234.34	21.33 mg/12 hrs.	140.0	12.0
12.	Oxybutynin	357.49	3.9 mg/day	39.0 _H	4.16
13.	Methylphenidate	233.31	12.0 mg/12 hrs.	12.5	80.0
14.	Selegiline	187.28	6.0 mg/day	20	12.5
15.	Buprenorphine	467.64	0.12 mg/day	6.25	0.8

Examples of Noven's transdermal drug development opportunities

Depression Buspirone Bupropion	<u>Parkinson's</u> *Ropinirole Pergolide	<u>Alzheimers</u> Tacrine <u>Anxiety</u> Memantine Alprazolam	ADHD Methylphenidate Amphetamine
Urinary Incontiner *Tolterodine	*Rotigotine		<u>Birth Control</u> Estrogen/Progestin Combinations (various)
Oxybutynin			Motion Sickness
Allergies		$\Lambda \setminus \lambda = \alpha$	Scopolamine
Azelastine			<u>Epilepsy</u> Clonazenam
<u>Obesity</u>	Contraction (Contraction)	1 h e	Cionazepani
Phentermine			UH C
Methamphetamine			<u>Pain</u>
Hypertension Enalapril			Buprenorphine (Chronic) Fentanyl (Chronic) Sufentanyl (Chronic)
Clonidine			Levorphanol (chronic)
*Ramipril			Various NSAIDs (Arthritic)
Timolol Na	ausea Male	e Hypogonadism/	*Triptans (Migraine)
	Female	e Sexual Dysfunction	Lidocaine
PHARMACEUTICALS, INC		Testosterone	3 7
	* Under pate	nt protection by originat	or27

Potential Patch Markets

Therapy	Year 2003	Year 2005	Year 2007
Angina pectoris	\$1.2 billion	\$1.5 billion	\$1.8 billion
Arthritis	\$8.5 billion	\$12.5 billion	\$16.0 billion
Attention deficit hyperactivity disorder	\$1.3 billion	\$1.5 billion	\$1.7 billion
Contraception, prevention of pregnancy	\$5.6 billion	\$7.0 billion	\$8.6 billion
Dermatologicals	\$5.2 billion	\$6.5 billion	\$7.8 billion
Erectile dysfunction	\$2.2 billion	\$3.0 billion	\$3.7 billion
Estrogen replacement therapy	\$3.8 billion	\$4.5 billion	\$5.1 billion
Female sexual arousal disorder	\$1.1 billion	\$1.5 billion	\$1.9 billion
Hypertension	\$18.0 billion	\$19.3 billion	\$24.6 billion
Male testosterone replacement therapy	\$0.6 billion	\$1.0 billion	\$1.3 billion
Pain * (only selected conditions)	\$7.2 billion	\$9.8 billion	\$12.6 billion
Parkinson's disease	\$1.9 billion	\$2.5 billion	\$3.0 billion
Smoking cessation	\$0.8 billion	\$1.2 billion	\$1.5 billion
TOTAL	\$ 57.4 billion	\$ 63.9 billion	\$ 72.0 billion

* Source: 2004 Transdermal Drug Delivery Report by Jain PharmaBiotech.

Summary and Conclusions

- Transdermal Drug Delivery Systems provide low cost / reduced risk opportunities for product life cycle extension.
- Predictive models work very well but are NOT flawless.
- Intellectual Property examination and "navigation" have become two of the more critical aspects of new transdermal product development.
- As a "novel" technology, the upside potential for transdermal delivery of new molecules in almost all therapeutic categories is still very significant.
- Dot Matrix[™] Technology is uniquely suited to provide access to larger molecules and larger doses as can be seen by the Daytrana[™] experience.

DOT MatrixTM Technology For Developing Transdermal Drug Delivery Systems

OVERVIEW

- Transdermal Drug Delivery Systems (TDDSs)
- Adhesives
- Additives
- Films
- Packaging Materials
- Stability Properties
- In-Vitro Permeation
- Physical Properties
- Research Case Studies
- Conclusion

TRANSDERMAL DRUG DELIVERY SYSTEMS

- DOT Matrix[™] Technology
 - Silicone / Acrylic Pressure Sensitive Adhesive Blend
 - Reduced Size
 - Enhanced Wear
 - Passive Drug Delivery
- Drug-In-Adhesive TDDS Matrix
 - Adhesives
 - Additives
 - Release Liners
 - Backing Films
 - Drug(s)

DOT MatrixTM Technology

How It Works

- Drug solubilized in acrylic in very high concentrations
- Drug/acrylic mixed with silicone adhesive
- Concentrated drug cells formed in silicone "sea"
- Concentration gradient causes highly efficient diffusion
- Precise content ratios control rate of delivery

Concentrated drug eel bor ingh delivery efficiency

optimal adhesion

Circular image is electron microscope view of the surface of a DOT Matrix[™] patch.

Illustration 1: Drug-in-Adhesive Transdermal System

ADHESIVES

- Acrylic Pressure Sensitive Adhesives (PSAs)
 - Functional PSAs
 - Reactive PSAs
 - Non-Functional/Non-Reactive PSAs
 - Drug Solubility
- Silicone Pressure Sensitive Adhesives (PSAs)
 - Silanol (Si-OH)
 - SiOH Silylated (Si-O-SiMe₃)
 - Wear Properties
- Blended Pressure Sensitive Adhesives (PSAs)
- Drug Compatibility/Stability

ADDITIVES

- Co-Solvents
 - Solubility
 - Physical Properties
 - Plasticizers
 - Physical Properties
 - Polymers
 - Solubility
 - Physical Properties
- Natural Ingredients
 - Physical Properties
- Drug Compatibility/Stability

FILMS

- Release Liner Films
 - Thermoplastic
 - Release Agents
 - Silicone
 - Fluorocarbon
 - Neat
- Backing Films
 - Neat Films
 - Composite Layers
 - Functional Layers
- Drug Compatibility/Stability

PACKAGING MATERIALS

Primary Packaging for Individual TDDSs

- Pouchstock

• Paper/Foil/Seal Layer

- Plastic/Foil/Seal Layer
- Plastic/Seal Layer

Secondary Packaging for Individual/Multiple TDDSs

- Thermoplastic Material
- Primary Packaging Material
- Drug Compatibility/Stability

STABILITY PROPERTIES

- Formal Stability Testing
 - ICH Storage Conditions
 - TDDS Analytical Analysis
 - TDDS Physical Properties
 - Informal Stability Testing
 - Developmental/Investigative
 - Packaged/Unpackaged
 TDDSs/Laminate
 - Extreme Stressed Storage Conditions
 - Analytical Analysis
 - Related Substances at Extremes
 - Physical Properties at Extremes

IN-VITRO PERMEATION

- Developmental/Investigative Qualitative Tool
- Modified Franz Flux Cell
- Isotonic Saline Receiver Solution
- Human Cadaver Skin
- In-Vitro Permeation Control
- Sampling Regimen
- HPLC Analysis for Drug Concentration at Sample Points
- Graphical Representation of HPLC Analysis
 - Average Cumulative Permeation (ug/cm²)

Average Flux (ug/cm²/hr)

Illustration 2

MODIFIED FRANZ FLUX CELL

PHYSICAL PROPERTIES

- Shear Testing
 - Modified Test Method PSTC-7
 - Function of Time
- Peel Testing
 - Modified Test Method PSTC-2
 - Function of Force
- Shear (Time) and Peel (Force) are Inverse Functions
- Placebo Wear Studies
 - Sans Drug TDDS Matrix

Modified Placebo TDDS Matrix to Replicate Active
 TDDS Matrix Physical Properties

RESEARCH CASE STUDIES

- Research Case Study I
 - Comparison of Hormone Multi-Polymer and DOT Matrix[™] TDDSs
- Research Case Study II
 - DOT MatrixTM Technology of Methylphenidate TDDSs
- Research Case Study III
 - Backing Film Influence on In-Vitro Permeation of DOT MatrixTM TDDSs

- Comparison of Hormone Multi-Polymer and DOT Matrix[™] TDDSs
 - Estradiol Multi-Polymer TDDS (Vivelle®)
 - Estradiol DOT Matrix[™] TDDS (Vivelle-Dot[™])
 - Estradiol/Northindrone Acetate DOT MatrixTM TDDS (Combipatch®)
 - Components
 - In-Vitro Permeation
 - Results

Table 1: Active Matrix Example Components

Ingredient	Example 1	Example 2	Example 3
PSA Neat	 Copolymer COOH, XL 	 Copolymer OH, unXL Silicone 	 Copolymer OH, XL Silicone
PSA Blend	A-B-A Rubber		
Elastometric Polymer	Polyisobutylene		
Thermoplastic Polymer	Ethylene Vinyl Acetate	Polyvinylpyrolidone	Polyvinylpyrrolidone
Plasticizer/ Co-Solvents	 Dihydric Alcohol Phospholipid Monosaturated Fatty Acid Petroleum Oil 	 Dihydric Alcohol Unsaturated Alcohol 	 Dihydric Alcohol Monosaturated Fatty Acid
Natural	Colloidal Clay		
Drug	 17-β Estradiol 	 17-β Estradiol 	 17-β Estradiol Norethindrone Acetate

FIGURE 1 : In-Vitro Flux Data for Active Matrix Examples Samples Fluxed @ 32.2C; n=5

AVERAGE FLUX (ug/cm2/hr)

- Results : Research Case Study I
 - Simplified Formulary Utilizing DOT Matrix[™]
 Technology
 - Size Reduction for TDDSs Utilizing DOT Matrix[™]
 Technology

DOT Matrix[™] Technology of Methylphenidate TDDSs

- In-Vitro Permeation : Acrylic PSA Functionality
- Stability Properties : Acrylic PSA Functionality
- In-Vitro Permeation : Effect of Acrylic PSA to Silicone PSA
 Ratios
- In-Vitro Permeation : Drug Concentration
- Physical Properties : Acrylic PSA Monomer Composition
- Results

Acrylic PSA Functionality

Ingradiants	Formulations			
ingreatents	1A	1B	1 C	
MPB	20	20	20	
Silicone PSA	60	60	60	
PSA1 (AA)	20			
PSA2 (NF/NR)		20 H ₃ C	OH H OH	
PSA3 (OH)			20 20	

All formulations are based on Dry Weight Percent

FIGURE 1

Methylphenidate Drug Permeation: Acrylic PSA

- Stability Properties
 - Units Die-Cut from Active Laminates from the Acrylic
 - PSA Functionality In-Vitro Permeation Study
 - TDDS Units Packaged in Tri-Layered Pouchstock
 - Accelerated Aging of Packaged TDDSs
 - TDDSs Analysis
 - HPLC
 - Related Substances

Stability Properties

	Formulations		
Ingredients	1A	1B	
МРВ	20	20	
Silicone PSA	60	60	
PSA1 (AA)	20		
PSA2 (NR/NF)		20	
All formula	ations in Dry Percent	Weight	

	Formulations			
Degradants	1A	1B		
% RS1	41.0	0.52		
% RS2	22.6	6.23		
% RS3	9.6	DH 2.44		
% RS4	3.7	1.65		
Total %	76.9	I0.84		
%RS = %PA/%Drug				

Effect of Acrylic/Silicone PSA Ratios

Ingredients			Formulation	18	
	2 A	2B	2 C	2D	2E
мрв	20	20	20	20	20
Silicone PSA	20	30	40	50 OF	H 60
Acrylic PSA 2	60	50	40	30	20

FIGURE 2

Methylphenidate Drug Permeation: Acrylic/Silicone PSA Ratios

Drug Concentration

	Formulation			
ingreatent	3 A	3B	3 C	
MPB	10	20	30 OH	
Silicone PSA	85	75	65 1 H	
Acrylic PSA 2	5	5	5	

FIGURE 3

Methylphenidate Drug Permeation: Maximum Drug Loading

Physical Properties

Ingradiants	Formulations			
Ingredients	1B	1D	1E	
MPB	20	20	20	
Silicone PSA	40	40	40	
PSA4 (NF/NR: 70/30)	40			
PSA2 (NF/NR: 50/50)		40 H _a O	OH V H	
PSA5 (NF/NR: 20/80)		HH3C	H 40	
Shear Results (min.)	1	H	20	
All formulations are based on Dry Weight Percent				

PHARMACEUTICALS, INC.

- Results : Research Case Study II
 - Acrylic PSA Functionality Influences In-Vitro Permeation
 - Acrylic PSA Functionality Influences Stability Properties of TDDSs
 - Acrylic PSA to Silicone PSA Ratio Influences In-Vitro
 Permeation
 - Skin can become the Rate Limiting Membrane
 - Physical Properties Modulated With Adhesive Selection

- Backing Film Influence on In-Vitro Permeation of DOT MatrixTM TDDSs
 - In-Vitro Permeation : Effect of Acrylic Monomer Ratio
 - In-Vitro Permeation : Effect of Acrylic Monomer
 Functionality
 - Results

- In-Vitro Permeation : Effect of Acrylic Monomer Ratio
 - Low Molecular Weight Amine (R050) at 20% Concentration
 - Silicone to Acrylic PSA Ratio at 15:1
 - Acrylic Backing Comprised of High T_g and Low T_g Monomers

- In-Vitro Permeation : Effect of Acrylic Monomer Functionality
 - Low Molecular Weight Amine (R050) at 20% Concentration
 - Silicone to Acrylic PSA Ratio at 15:1
 - Acrylic Backing Comprised of High T_g and Low T_g Monomers
 - Functional Acrylic Monomer (COOH) at 0% to 8% Concentration

• Results : Research Case Study III

Acrylic Monomer Ratio Influences In-Vitro Permeation

Acrylic Monomer Functionality Influences In-Vitro
 Permeation

CONCLUSION

- Complex TDDS Formulary Problems Simplified with the use of DOT MatrixTM Technology
- TDDS Permeation Modulated with the Proper Selection of Materials
- TDDS Adhesion Modulated with the Proper Selection of Materials
- Drug Stability Decreases Safety Concerns for the Patient with Proper Selection of Materials

ACKNOWLEDGMENTS

- 3MTM
- BASF
- Cytec
- Dow Corning Corporation
- National Starch and Adhesives
- Rohm & Haas Company
- Noven Pharmaceuticals, Inc.
 - Research and Development Dept.
 - Analytical Research Dept.

Transdermal Product Development Considerations: Passive and Active Transdermal Delivery Systems

Christopher W. McDaniel, Ph.D., MBA Director, New Technology Assessment

Transdermal Product Development

From Transderm Scōp® to Daytrana[™]: Product development and regulatory requirements have undergone extensive changes over the years.

- Advances in materials
- Advances in technologies
- Advances in understanding how drugs penetrate the skin
- Clinical experience

Active Transport Transdermal Technologies

Patch and Device Technologies

Electric Field Force Assisted

Novosis AG's SmartPatch®

Microneedles

NanoPass' MicroPyramidTM

- Alza's Macroflux®
- − BioValve Technology's Micro-TransTM

Active Transport Transdermal Technologies

Patch and Device Technologies

Thermal Assisted

ZARS' CHADD Technology

Microporation

Altea Therapeutics' Passport[™] System
TransPharma Medical's ViaDerm[™] System

Active Transport Transdermal Technologies

 Active Transdermal Technologies Continue to Use Patch Technology

 Many of the same requirements as passive transdermal patches

- Comfortable (non-irritating)
- Adherent (stay put)
- Reproducible blood levels
- Small (discreet)

Transdermal Development Considerations

- Irritation
- Sensitization
- Toxicity
- Residual Monomers
- Residual Solvents
- Wear (Adhesion)
- Residual Drug
- Other Issues
EMEA Development Considerations

•Type of TDDS, matrix or reservoir •Description of TDDS including material, function, dimensions, compatibility •Description of development manufacturing process •Description of excipients in PSA •Description of penetration enhancer used and its relationship with drug absorption •Drug load versus total amount released from the TDDS over the intended use period

EMEA Development Considerations (cont.)

•Adhesive properties of TDDS covering intended period of use including information on local tolerance (irritation) and waterproofness if relevant

- Residual solvents
- •Proportionality of different strengths if relevant
- Occlusion
- Dissolution
- Content uniformity

CPMP: Note for Guidance on Quality of Modified Release Products:

A: Oral Dosage Forms

B: Transdermal Dosage Forms

Product Irritation Studies

- Irritation one of the primary AEs reported for transdermal products
- Drug irritation vs. product irritation
- Withdrawn!
 - USFDA Guidance for Industry: Skin Irritation and Sensitization
 Testing of Generic Transdermal Drug Products
- Present need to demonstrate minimal irritation
- Propose irritation study to FDA or EMEA
- Possibly use study outline in Guidance

Skin Sensitization Studies

 Dermal sensitization is a leading concern for possible AEs for regulatory agencies

Use of preliminary indicators for sensitization

– Guinea pig study

Local Lymph Node Assay (LLNA)

 Guidance for generics withdrawn but possible to use the same study design if acceptable to FDA

Transdermal Product Component Toxicity

- If possible, use components on GRAS list
- FDA asking to review
 - DMF of adhesives
 - Residual monomer content
 - Polymerization initiators
 - Explain why components are safe
 - Residual solvent content
- ICH Guidelines
 - Q3C(R3): Impurities: Guideline for Residual Solvents
 - "Higher levels of residual solvents may be acceptable in certain cases such as short term or topical application. Justification of these levels should be made on a case by case basis."
- Active transport technologies may have higher burden of proof required

Transdermal Product Adhesion

- FDA requesting wear studies protocols, data
- Possible to use criteria outlined in the withdrawn Guidance
 - 5-point scale
 - $0 \ge 90\%$ adhered (essentially no lift off of skin)
 - $1 = \geq 75\%$ to < 90% (some edges only lifting off skin)
 - $2 \ge 50\%$ to < 75% (less than half of the system lifting off skin)

3 = < 50% adhered but not detached (more than half of the system lifting off skin without falling off)

4 = patch detached (patch completely off the skin)

Transdermal Product Adhesion

- The product works only if it stays in place the duration of the intended wear time
 - Efficacy
 - Safety
 - Compliance

Adhesion, A Case in Point: Fentanyl

- July 2005 FDA Alert for Healthcare Professionals
 - Fentanyl Transdermal System (marketed as Duragesic)
- July 2005 FDA Public Health Advisory
 - Safety Warnings Regarding the Use of Fentanyl Transdermal (Skin) Patches
- In some cases, poor adhesion led patients to try to improve adhesion by methods that compromised the patch leading to the patient receiving an overdose

Adhesion, A Case in Point: Fentanyl (cont.)

- Citizen Petition from Mylan Laboratories (March 2006, Docket # 2006P.0123
 - "...the patch may have problems "sticking" to the skin."
 - "...patients have taken this problem in their own hands by using some type of overlay to help the patch stick to the skin."
 - "The use of an unapproved and untested overlay may cause adverse consequences."
 - "...the Agency should require all applicants <u>and</u> holders of approved applications for Fentanyl transdermal systems to conduct a study to support the safe and appropriate use of an overlay."

Adhesion, A Case in Point: Fentanyl (cont.)

- EMEA requiring similar wear studies including a demonstration of waterproofness (if relevant)
- Implications for the future
 - Products will have to demonstrate appropriate wear characteristics
 whether or not delivering controlled substances
 - Generic products will have to demonstrate comparable adhesion as innovator
 - Possibly shorter wear times (i.e., daily patches rather than multiple day)

Residual Drug

Had not been an issue historically

- Vivelle® estradiol transdermal system 96% residual drug
- Became an issue with transdermal systems containing controlled substances
 - Duragesic® Fentanyl transdermal system
 - − DaytranaTM Methylphenidate transdermal system
- Generics

"FDA's regulations recognize that extended-release products that deliver the identical amounts of active ingredient over the same dosing period can be pharmaceutical equivalents even if the residual (i.e., undelivered) volumes differ."

- FDA response to transdermal Fentanyl Citizen Petitions, 28 Jan 2005

Residual Drug (Cont.)

Safety issues

- Generic transdermal Fentanyl ANDAs denied due to safety concerns relative to residual drug
- Abuse Potential
 - Duragesic® Fentanyl transdermal system
 - DaytranaTM Methylphenidate transdermal system

Disposal: Fold and Flush

- Risk Management Programs
 - May be required for transdermal products containing controlled substances

"We conclude that both matrix and reservoir formulations may be subject to abuse.... We intend to monitor reports of abuse; RMPs may be considered in the future to address any concerns. We would support and assist any efforts by a manufacturer to develop an RMP."

FDA response to transdermal Fentanyl Citizen Petitions, 28 Jan 2005

Active Transport Transdermal Systems

 Requirements for approval may be higher due to breaching the barrier function of the skin Submit a Request for Designation to FDA - Is it a drug, device, biological product, or combination product? -Office of Combination Products • What is a combination product? -21 CFR 3.2(e)

Active Transport Transdermal Systems

• 21 CFR 3.2 (e) states...

(e) Combination product includes:

(1) A product comprised of two or more regulated components, i.e., drug/device, biologic/device, drug/biologic, or drug/device/biologic, that are physically, chemically, or otherwise combined or mixed and produced as a single entity;

(2) Two or more separate products packaged together in a single package or as a unit and comprised of drug and device products, device and biological products, or biological and drug products;

(3) A drug, device, or biological product packaged separately that according to its investigational plan or proposed labeling is intended for use only with an approved individually specified drug, device, or biological product where both are required to achieve the intended use, indication, or effect and where upon approval of the proposed product the labeling of the approved product would need to be changed, e.g., to reflect a change in intended use, dosage form, strength, route of administration, or significant change in dose; or

(4) Any investigational drug, device, or biological product packaged separately that according to its proposed labeling is for use only with another individually specified investigational drug, device, or biological product where both are required to achieve the intended use, indication, or effect.

Conclusions

Transdermal product approval requirements have increased in sophistication as transdermal products have increased in sophistication

- Excipient performance AND nontoxicity
 - Justify residual solvents, monomers, penetration enhancers, etc.
- Product performance much more critical for safety and efficacy
- For innovators as well as generics, residual drug in the patch may be an issue
- Risk Management Programs may soon be required
- Active transport transdermal products may be subject to higher level of review due to breach of barrier properties of the skin
 - The approval process may be more rigorous due to the possible designation as a Combination Product --- Device + Drug

NOVEN – Bringing transdermal product innovations to market

Pavan Handa

Vice President – Business Development

Novel drug delivery technologies can solve some of the major problems facing the pharmaceutical industry

- > How to replace lost sales as R&D productivity continues to decline?
- > How to extend product life cycle in the face of generic competition?
- How to manage the escalating costs of developing new products?
- What pharmaceutical industry biases need to be changed to improve product opportunities?

Over the last 10 years, both growth in R&D investment and sales of pharmaceuticals have almost doubled, while new product introductions continue to decline

RMACEUTICALS, INC.

Pharmaceutical companies have \$40 billion in U.S. sales exposed to generic competition and another \$47 billion at risk to Paragraph IV patent challenges between 2005-2011

Average risk-adjusted cost of bringing a new drug to market has grown more than six-fold between 1987 and 2003

Cost of Development (Millions of Dollars)

198720002003Note: Estimates include cost of failure and opportunity costs: 2003 Bain estimates also
include \$250 million in drug launch costs

* The price of innovation: new estimates of drug development costs. Joseph A. DiMasi, Roland W. Hansen, Henry G. Grabowski, Journal of Health Economics 22 (2003) 151-185

** Bain drug economics model 2003; excerpt from "Rebuilding Big Pharma's Business Model", In-Vivo The Business & Medicine Report, November 2003

We need to overcome traditional pharma industry biases to prevent missed product opportunities

Bias for only developing blockbuster brands

Bias for oral route of delivery

- Bias for developing drugs targeting large primary care physician office markets
- > Bias for shunning "not invented here" technologies
- Bias from negative perception as a result of poor performance of 1st generation drug delivery technologies

Examples of Transdermal Patch Innovations

The 72-hour Duragesic transdermal patch revolutionized the use of fentanyl in chronic pain management and reached over \$2 billion in sales before patent expiry in January, 2005

Duragesic® Transdermal Patch – U.S. Sales Growth

J&J's Ortho Evra Transdermal Patch was named one of Time magazine's best inventions of 2002. After a successful launch product sales have fallen due to the possibility of delivering higher estrogen levels compared to oral product.

Innovative patch technologies such as Vivelle-Dot[™] have displaced older technologies

Transdermal patch ERT market evolution (U.S. Market Share)

^{1st} generation reservoir patch = Estraderm 2nd generation matrix patch = Climara, Vivelle, Mylan, Esclim, Alora, Fempatch, Menorest 3rd generation Dot Matrix[™] patch= Vivelle Dot[™] **Source: IMS Health; NDC Health**

...Noven's Strategy

Leverage DOT Matrix Technology

We have patented, best-in-class transdermal drug delivery technology
Our strategy is to create value by leveraging this technology across diverse markets with strong partners
Our strategy is succeeding

Patch Partner of Choice

Why Noven?

Leading Edge Technology : Commercialized Products

- > Vivelle[®]
 - First U.S. approved matrix estradiol patch
- > DentiPatch[®]
 - The first FDA approved transmucosal patch
- CombiPatch[®]
 - The first 2-drug patch available in U.S.
 - Vivelle-DotTM
 - World's smallest HT patch by far!
- DaytranaTM
 - The first and only patch approved for ADHD

Why Noven?

Leading Edge Technology : Developmental Products

FSD patch

- Targeting hypoactive sexual desire disorder
- Partnership with P&G Pharmaceuticals
- Partnered Development Pipeline
 - Amphetamine patch with Shire
 - Undisclosed compounds with Endo and several other partners in multiple therapeutic areas
- Noven's Development Pipeline
 - Several compounds under development for internal commercialization or future outlicensing

World's First Patch for ADHD

Latest transdermal innovation from Noven – DaytranaTM Methylphenidate Patch for ADHD

True once daily therapy

- Labeled 9-hour wear time, with therapeutic effect lasting several more hours
- Control over duration of dosing
 - Can be removed early if shorter duration is desired or late day side effects appear
- May be appropriate for patients who cannot swallow or tolerate pills
- Marketed by Shire plc, the market share leader in ADHD therapy
- Approved patch doses of 10, 15, 20 and 30 mg/day
- Dosage of 60mg/day in clinical trials demonstrating delivery of large doses through a small patch

Sizing Up the Competition

Vivelle Family Market Share: 47.3%

U.S. Transdermal Estrogen Market

	TRx Market Share
Product	as April '06
Vivelle Family	47.3%
- Vivelle-Dot	45.4%
Climara	25.5%
Mylan	14.4%
Estraderm	7.4%
EstroGel	1.9%
Menostar	1.8%
Alora	1.7%
Estrasorb	0.9%
Fempatch	0%
Esclim	0%

DOT Matrix Opportunities

ADHD Amphetamine

Allergies Azelastine Cetirizine

Alzheimer's Tacrine

Angina Nitroglycerin Isosorbide Dinitrate

Anxiety Alprazolam *Birth Control* Estrogen/ Progestin Combinations

Depression Buspirone

Bupropion

Epilepsy Clonazepam

Hypertension Enalapril Ramipril Clonidine Timolol Guanfacine *Hypogonadism/FSD* Testosterone

Incontinence

Tolterodine Oxybutynin

Motion Sickness Scopolomine

Nausea Granisetron

Obesity Phentermine Pain

Buprenorphine Fentanyl Sufentanil Levorphanol Lidocaine Various NSAIDs Various Triptans

Parkinson's

Pergolide Pramipexole Ropinirole Rotigotine

Certain listed compounds are subject to third-party patents.

Noven's Manufacturing Capacity General & Controlled Substance Manufacturing

Proven scale-up with four marketed products

 Vivelle-Dot, Vivelle, CombiPatch &
 DentiPatch

- FDA and MHRA inspected and GMP compliant
- Recently established CS production capabilities
 - CS II vault/security/procedures
 - FDA and DEA inspected and cGMP compliant
 - Daytrana currently in production
- Expandable to meet additional demand/products

Transdermal drug development of known drugs can be short and inexpensive

Accelerated Transdermal Drug Development Program

Transdermal drug delivery for product-life and lineextension strategy has a compelling risk/reward profile

Illustration of expected return on investment for a hypothetical transdermal product (risk adjusted for success probability)

✓ Peak annual sales in the 4th year after launch \checkmark 50% pre-tax profit margin, and 10 years of sales

 \checkmark Prior to value sharing with partner

Patch Partner of Choice

HARMACEUTICALS.

For Additional Information

Juan Mantelle David Kanios Chris McDaniel Pavan Handa

305-964-3110 305-964-3171 305-964-3212 305-964-3330

