
Reverse Engineering of

Parametric Behavioural Service Performance Models

from Black-Box Components

Klaus Krogmann, Michael Kuperberg, and Ralf Reussner

Institute for Program Structures and Data Organisation

Universität Karlsruhe (TH)

{krogmann,mkuper,reussner}@ipd.uka.de

Abstract: Integrating heterogeneous software systems becomes increasingly impor-
tant. It requires combining existing components to form new applications. Such new
applications are required to satisfy non-functional properties, such as performance.
Design-time performance prediction of new applications built from existing compo-
nents helps to compare design decisions before actually implementing them to the
full, avoiding costly prototype and glue code creation. But design-time performance
prediction requires understanding and modeling of data flow and control flow accross
component boundaries, which is not given for most black-box components. If, for
example one component processes and forwards files to other components, this effect
should be an explicit model parameter to correctly capture its performance impact.
This impact should also be parameterised over data, but no reverse engineering ap-
proach exists to recover such dependencies. In this paper, we present an approach that
allows reverse engineering of such behavioural models, which is applicable for black-
box components. By runtime monitoring and application of genetic programming, we
recover functional dependencies in code, which then are expressed as parameterisa-
tion in the output model. We successfully validated our approach in a case study on
a file sharing application, showing that all dependencies could correctly be reverse
engineered from black-box components.

1 Introduction

Nowadays, more and more applications integrate existing software systems. New soft-

ware components are therefore combined with legacy systems or existing components

from code repositories to form new applications. Predicting the performance of such ap-

plications is inherently complex as the performance of legacy applications or reused parts

of existing components in a new environment (used by the new application) is not known

beforehand.

Thus, it is desirable to have a performance prediction approach allowing to estimate the

performance of the new application before implementing it to avoid high risks of inade-

quate performance. Predictions based on models are one solution to this problem. Ac-

cordingly, the performance impact of utilised components needs to be made explicit in

the model to reflect the different usage contexts of existing components. If an existing

component from a repository is going to be reused, it should be possible to estimate its

performance impacts in the new context without implementing the new application.

Some parametric performance models exist that explicitly parameterise over the usage

context to allow model reuse (e.g. [?, ?, ?]) for performance predictions. However, cur-

rently no automated approach exists to reverse engineer such parametric behavioural per-

formance models from existing code that explicitly state context dependencies. Instead,

they need to be reverse engineered manually.

In this paper we present a reverse engineering approach for parametric behavioural service

performance models making the context dependencies explicit. Therefore, the reverse

engineered service models capture control and data flow parameterised over service argu-

ment data (“method arguments”). Our reverse engineering approach uses monitoring to

capture runtime effects at the service interface level. Based on this monitoring, genetic

programming is used to find functional dependencies (for example how often a required

service is called and which arguments are used for the call, depending on the input data of

this service).

We successfully validated our approach in a case study on a component-based file shar-

ing application by comparing (partially) automated reverse engineered results from our

approach with those manually recovered.

The contribution of this paper is a reverse engineering approach for behavioural models

of component services. By monitoring call frequencies and data characteristics at the

interface level, the black-box properties of components is preserved. Machine learning

(genetic programming) enables automatically recovering functional dependencies from

the monitoring data, leading to a behavioural model of component services whose control

and data flow is explicitly parameterised to express dependencies between provided and

required services.

The rest of this paper is structured as follows: In Section 2 we briefly talk about founda-

tions of this work, before going into related work in Section 3. Section 4 then presents

our approach, which is validated in Section 5. Section 6 lists assumptions and limitations

before Section 7 concludes this paper.

2 Foundations

Terms. In the rest of this paper we will refer to the term “service” as something pro-

vided by software components. It has a signature like void compressFile(byte[]

file). The term “external service” will refer to component services implemented by

another component, from the perspective of a considered service.

The “assembly context” expresses which components are connected to a component, for

example which component is called if a required service is invoked. The “usage context”

declares which other components use a provided component service and how users interact

with a system (e. g. using large or small file for a upload service). The “deployment

context” defines the execution environment (application server, virtual machine, operating

system, hardware) a component is executed on. All contexts are not known a-priori at

design time (or for a design time model) and thus need to be made explicit to allow model

reuse.

Performance Model. In this paper, we explicitly deal with scenarios where these con-

texts change. The Palladio Component Model (PCM, [?]; a performance model) supports

these requirements of third-party reuse (the model for each component is created once,

independent from the context). Hence, we use it as the target model for reverse engineer-

ing in this paper. Within the behavioural service model of the PCM, a control and data

flow abstraction parameterised over input data is supported for every provided service of

a component. In line with the PCM, we focus on performance-relevant abstractions of

data and control flow. Thus, we are not investigating performance itself but parametric

dependencies that have influence on performance.

The behavioural model of the PCM supports scenarios where performance impacts are

propagated through an architecture. For example, if the load of a load balancer increases,

following components will have a higher load likewise; if a large amount of data is passed

from one to another component following component need to handle increased amounts

of data; or if parameters of one service decide on which following services are selected

(due to a strategy or for delegating work) it depends on the selection which following

component has an increased load – this is captured by the PCM’s behavioural service

model.

Genetic Programming. Genetic programming, which will be used in this paper as a ma-

chine learning approach (cf. [?]), is a kind of genetic algorithm, where chromosomes have

a tree structure (like an abstract syntax tree) instead of a linear form. Genetic algorithms

are used for optimisation problems as a meta-heuristic. Solution candidates are represented

by a chromosome (an individual), which itself consists of multiple genes. Each gene is a

building block (in the case of genetic programming for example an if statement). Iter-

ating for multiple generations, genetic algorithms optimise a set of chromosomes using

crossing and mutation of genes and a selection strategy of “fittest” individuals. The fitness

of an individual is judged by a fitness function, which leads the optimisation. Koza [?]

provides more background on genetic programming.

Genetic algorithms usually involve non-deterministic behaviour by using random initiali-

sation, random mutation, and random crossover. This will be important in the validation

section, as one run of the genetic algorithm is not indentical to another one. Thus, the

results and convergence speed vary from run to run.

The way genetic programming is used in this paper, it can be considered as a data mining

approach (see for example [?]). In this paper, genetic programming is used for finding

parametric dependencies in monitoring data, though the origins of genetic programming lie

in finding program code that performs a given task. Due to the development in both fields

and the resulting variety of data mining algorithms and variations of genetic programming,

a strict borderline between them is hard to draw.

3 Related Work

Work in this paper is related to reverse engineering of software performance models,

component-based software engineering, and search-based software engineering.

Reverse engineering of performance models using traces is performed by Hrischuk et

al. [?] in the scope of “Trace-Based Load Characterisation” (TLC). In practice, such traces

are difficult to obtain and require costly graph transformation before use. The target model

of TLC is not component-based.

Trace data is used by Israr et al. in [?] to determine the “effective” architecture of a

software system. Using pattern matching, this approach can differentiate between asyn-

chronous, blocking synchronous, and forwarding communication. Similar to our ap-

proach, Israr et al. support components but have no explicit control flow, yet they do

not support inter-component data flow and do not support internal parallelism in compo-

nent execution as opposed to the approach presented in this paper. As in TLC, Israr et al.

use Layered Queueing Networks (LQNs) as the target performance model.

Search-based software engineering. Search-based approaches such as simulated an-

nealing, genetic algorithms, and genetic programming have been widely used in software

engineering [?]. However, these approaches have not been applied to reverse engineering,

but to problems like finding concept boundaries, software modularisation, or testing.

“Classical” approaches like regression splines are used by Courtois et al. in [?] to recog-

nise input parameter dependencies in code. Their iterative approach requires no source

code analysis and handles multiple dimensions of input, as does the approach described by

us. However, the output of the approach in [?] are polynomial functions that approximate

the behaviour of code, but which are not helpful in finding non-continuity in component

behaviour. The approach is fully automated, but assumes fixed external dependencies of

software modules and fixed hardware.

Dynamic program analysis. Denker et al. [?] provide a short overview on methods

for dynamic analysis of programs and discuss typical problems of dynamic analysis tech-

niques. They point out the frequent re-implementation of analysis approaches in differ-

ent flavours; specific to a certain need. Briand et al. focus on reverse engineering of

behavioural models. They reverse engineer UML sequence diagrams [?] from running

applications. For that, they apply a distributed monitoring approach that is able to deal

with concurrency [?] which is comparable to our approach but does not capture data flow

information. Systä [?] deals with reverse engineering of the behaviour of Java programs

by combining static and dynamic analysis. In [?] reverse engineering is based on event

trace information, without considering data flow and dependencies in code.

Component-based software engineering. The reverse engineering target of our ap-

proach are parameterised component behaviour models that allow capturing the effect of

load and parameter propagation through a component-based architecture. Hamlet et al.

[?] handle parameter propagation, but use a very restricted component model. They do not

parameterise resource demands, while our approach focuses on load and parameter prop-

agation, only. The Robocop component model [?] targets embedded low-level services.

Bondarev et al. [?] extend Robocop by a specification language for parameterisation which

allows parameter for required services and resource usage. Here, parameter values can be

only constants, which limits expressiveness. Parameterisation introduced by Eskenazi et

al. [?] is simplified and has only limited support for reusability.

4 Reverse Engineering

Output m odel

Executable
Com ponent

Monitoring
of input and
output data

at interface- level

Machine
Learning

Param eterised
Behavioural

Com ponent Model

1 2 3

Source

Code

extCall

2 * inputB

arg1 = inputA.SI ZE

p

extCall

Figure 1: Reverse Engineering Process

The reverse engineering process (see Fig. 1) creates a parametric behavioural compo-

nent service model (“service model” for short) from source code by monitoring executed

services. The process starts with executing component services under investigation in a

testbed (which can be a running application). Services are executed using representative

workloads and their execution behaviour is monitored ❥1 at the interfaces. For exam-

ple, call frequencies of required services and characterisations of parameters (e.g. values,

size) are monitored. In the second step ❥2 , a machine learning approach (in our case

Genetic Programming [?]) is used to find functional dependencies in the monitoring data.

This might, for example be “call an external method x for each element of input parameter

collection c”.

The third step ❥3 creates the final parameterised model describing the behaviour of a

component service. The control and data flow described by the model are parameterised

over input data. A more detailed example of such a service behaviour model follows below.

4.1 Example

The example from Figure 2 shows the BusinessLogic component, which will also be used

in the validation in Section 5. The component provides the service uploadFiles for up-

loading a number files to a web-based service. Files then might be shared with other users.

In the simplified version shown, there are two required services: storeLargeFile for

storing large and storeSmallFile for storing small files, responsible for persisting file

data.

Users upload a number of files which then are stored either via the storeLargeFile

service if a certain threshold (e.g. 1024 KB) is passed or via storeSmallFile other-

wise.

Thus, for the simplified example an ideal behavioural service model would express the

following functional dependencies:

BusinessLogicvoid uploadFiles(

void storeLargeFile(byte[] file)

void storeSmallFile(byte[] file)

byte[][] inputFiles,

...) ...

Figure 2: Simplified BusinessLogic Component; some required services are left out

• for each element of the method argument uploadFiles[x][] (“length”) either

storeLargeFile or storeSmallFile are called,

• the size of the files passed to storeLargeFile/storeSmallFile corresponds

to the size of elements in uploadFiles[][x],

• storeLargeFile is only called of files are larger than 1024 KB (in this exam-

ple); otherwise storeSmallFile is called.

4.2 Step 1: Component service execution and monitoring

Monitoring
Data

MonitoringMonitoring

Figure 3: Gathering Monitoring Data from Black-Box Components

To capture the parametric dependencies between the application input and output, our

approach monitors at the level of component interfaces (see Fig 3; the monitoring approach

is to a certain extent comparable to [?]). First, a component service under investigation

is executed in a testbed to gather runtime information about component behaviour. Such

a testbed provides at least stubs for all required services of the component and has a load

generator to call the provided service under investigation.

For this paper, we assume that a representative test load is given (for a recent overview

on test data generation see [?]), having a broad selection of input data that causes the

component service to be executed in different ways with every repetition. The datasets

obtained from monitoring serve as the input for the machine learning (Fig. 1, Step ❥1) to

learn the parametric dependencies between input and output.

For the service, it is monitored which input data (arguments of the provided service) causes

which behaviour at the requires side (required services) of the component. Monitored data

properties are:

• for primitive types (i.e. int, float, boolean etc.): their actual values

• for all one-dimensional arrays (e.g. int[], String[]), Collection, or Map

types: the number of their elements

• for one-dimensional arrays of primitive type (e.g. int[], boolean[]), addition-

ally aggregated data, such as number of occurrences of values in an array (e.g. the

number of ‘0’s and ‘1’s in an int[])

• for a multi-dimensional array (e.g. String[][]): its size, plus results of indivi-

dual recording of each included array (as described above)

For the service under investigation, we additionally monitor which required services are

called by it how often and with which parameters. The described data monitoring and data

recording can be applied to component interfaces without a-priori knowledge about their

semantics, and without inspecting the internals of black-box components. Supporting and

monitoring complex or self-defined types (e.g. objects, structs) requires domain expert

knowledge to identify important properties of these data types. Still, generic data types

(for example defined in a standard library) are used very often, and our approach can

handle these cases automatically.

4.3 Step 2: Learning from Monitoring Data

Our approach uses genetic programming as machine learning approach for recovering

functional dependencies in the monitored data. We use the Java Genetic Algorithm Pack-

age JGAP [?] to support machine learning (a general introduction for genetic program-

ming, a special case of genetic algorithms, can be found in [?]).

For every gathered input data point (e.g. size of an input array or value of a primitive type)

a gene representing that parameter in the resulting model is introduced. In the example

from Fig. 2 the dimensions of the input uploadedFiles array, the size of individual

elements, and the size of files passed to storeLargeFile/storeSmallFile are

such genes.

For our approach, we combine genes representing mathematical functions to express more

complex dependencies. Simple approaches like linear regression could be applied as well,

but cannot handle non-continuous functions and produce little readable approximations by

polynomials.

To express functional dependencies, in addition to default JGAP genes (e.g. mathematical

operations for power, multiplication, addition, constants), we introduced new genes to

support non-continuous behaviour (e.g. jumps caused by “if-then-else”). Such new genes

are for example required to express when storeLargeFile/storeSmall File from

Fig. 2 are called.

4.4 Step 3: Created Model

« ExternalCall»

Service: int add(int a, int b)

a = input1 * 2

b = IF(input2 > 1) THEN 100

 ELSE input1^input2 * 0.3

return = ...

« ExternalCall»

Service: byte[] store(byte[] file)

File.SIZE = input1^1024

return = ...

« NumberOfLoops»

IF (input2 * 3 > 10)

 THEN 20

 ELSE input2

int myService(int input1, int input2):

Figure 4: Example Instance of the Output Model

The target model is an instance of the Palladio Component Model [?]1, which is a software

performance model. The model is comparable to UML2 activities. The model instance has

a behavioural model for each provided service of a component (an example, independent

from the one in Fig. 2, is shown in Fig. 4). A component service’s behaviour model

describes

• the control flow of the service:

– which services of other components are used/required (ExternalCalls),

– how often those services are called (NumberOfLoops) depending on input

argument of the provided service, and

– conditions under which required services are called.

• Additionally, the data flow captures:

– which parameters are passed to used/required services, and

– where return data from used/required services is passed to.

For the external calls (add and store in Fig. 4), the model includes dependencies be-

tween component service input arguments and external call parameters, with one formula

per input parameter of an external call (e.g. a = input1 * 2 in Fig. 4). Also, the

number of calls to each required (external) service is annotated using parameterisation

over input data (cf. NumberOfLoops grey box in 4).

As the target model is a performance model, we do only consider performance-relevant

abstractions of control and data flow. For example, we are not interested in the content

of a byte array. Instead, we focus on performance relevant characteristics like the size of

1see http://www.palladio-approach.net

the array. Imagine a service compressing a byte array; its processing time will dominantly

depend on the size of the array.

5 Validation

We validated the reverse engineered model produced by our approach by comparing it with

manually reverse engineered models. The manual reverse engineering was done by the

authors by investigating the source code and manually extracting a parametric performance

model. Manual extraction was done independently, without inspecting the results of the

automated approach.

5.1 Example System

PalladioFileShare

Com pression

Hashing

Exist ingFilesDB

LargeFileStorage

BusinessLogic

CopyrightedFilesDB

Sm allFileStorage

Figure 5: Evaluation Component Architecture – Considered Component: BusinessLogic

For evaluating our approach, we created a Java implementation of a file sharing application

called “PalladioFileShare”. Users upload files and share them with other users who can

download these files. For the evaluation, we concentrated on the “upload” use case. Within

the application architecture (Fig. 5), we focus on the BusinessLogic component.

The BusinessLogic offers the primary upload service. It itself relies on two system-

external components LargeFileStorage and SmallFileStorage, responsible for

persisting data amounts of different size. The BusinessLogic is controlling file up-

loads by triggering required services of other components. Compression allows to

compress uploaded files, while Hashing allows to produce hashes for uploaded files.

ExistingFilesDB is a database of all available files of the system; Copyrighted-

FilesDB holds a list of copyrighted files that are excluded from file sharing.

The component BusinessLogic (c.f. Fig. 6) considered in this evaluation provides

the uploadFiles service, which itself coordinates the processing of each uploaded file.

BusinessLogicvoid uploadFiles(

byte[] compress(byte[] file)

byte[] getMessageDigest (byte[] file)

void storeLargeFile(byte[] file)
byte[][] inputFiles,

int[] Types)

void storeLargeFile(byte[] file)

void storeSmallFile(byte[] file)

bool isCopyrighted(byte[] file)

bool isFileInDB(byte[] file)

Figure 6: BusinessLogic Component

Therefore, it utilises its required services available from the architecture (Fig. 5).

The uploadFiles service has two arguments: first, a byte array of files inputFiles;

and second, an int array Types characterising uploaded files. Uploaded files can have

different filetypes (i.e. compressed files like JPEG, ZIP or non-compressed files like text

files, xml documents).

Compress file

fileType==FileType.TEXT

fileType==FileType.COMPRESSED

Get file hash

Check copyright

File in DB? No

Inform the user

File in DB? Yes

Accept file

Copyrighted? No

Reject file

Copyrighted? Yes

Store large file

Store small file

compressedFile.length <=

SIZE_OF_LARGE_FILES

compressedFile.length >

SIZE_OF_LARGE_FILES

call for another component

Figure 7: File Processing Steps – Control Flow Model of BusinessLogic Implementation (depicted
here for reader’s convenience; the reverse engineering approach does not have this model as an input
but operates on BusinessLogic code directly)

The data dependent control flow of BusinessLogic is visualised in Fig. 7. The con-

trol flow is executed for every uploaded file. First, based on a flag derived from each

uploaded file, it is checked whether the file is already compressed (e.g., a JPEG file). An

uncompressed file is processed by the COMPRESSION component.

Afterwards, it is checked whether the file has been uploaded before (using Existing-

FilesDB and the hash calculated for the compressed file), since only new files are to

be stored in PalladioFileShare. Then, for files not uploaded before, it is checked

whether they are copyrighted using CopyrightedFilesDB. Finally, non-copyrighted

files are stored, either by LargeFileStorage for large files (if the file size is larger

than a certain threshold) or SmallFileStorage otherwise.

5.2 Results

In the case study, we monitored the behaviour of BusinessLogic in 19 test runs, each

with different input data (number of uploaded files, characterisation of files: text or com-

pressed, and file sizes). The test runs were designed to cover the application input space as

far as possible. The monitoring data was gathered once for the component. Then, for each

required external service of the monitored component’s service, genetic programming was

started to answer:

• how often and under which conditions an required external service is called and

• for every parameter characterisation, how it depends on service input arguments and

other services’ return values.

In the rest of this section, we show some interesting excerpts from the complete results. We

will go through the decisions in the control and data flow and point out which dependencies

have been learned and which were expected to be learned by manual reverse engineering.

As the names of input parameters are used hereafter, we use the signature of the file sharing

service,

void uploadFiles(byte[][] inputFiles, int[] fileTypes)

(c.f. Fig. 6). In the signature, inputFiles contains the byte arrays of multiple files

for upload and fileTypes is an array indicating corresponding types of the files, e.g.

FileType.COMPRESSED or FileTypes.TEXT (i.e., uncompressed).

Data dependent control flow: Use of Compression component for multiple files. In

the BusinessLogic, the number of calls of the Compress component depends on the

number of uncompressed files (FileType.TEXT) uploaded. Using genetic program-

ming (JGAP), the correct solution for the number of calls was found to be:

inputF iles.length − fileTypes.SUM(FileType.COMPRESSED)

The number of all files reduced by those already compressed, where SUM is aggregated

data from the monitoring step. The reverse engineering dependency exactly fits the ex-

pected one. The search time was less than one second, meaning that the fitness function

indicated an optimal solution being found after that time, leading genetic programming to

terminate.

When to use LargeFileStorage or SmallFileStorage. For answering this question, mon-

itoring data from uploads with just one file was analysed. A set of eleven different input

files (different file types, different size) was used as test data. JGAP (generally; see below)

found an optimal solution: If the file size is larger than 200,000 (bytes), a file with the same

size like the file passed to the Hashing component is passed to LargeFileStorage,

else nothing is stored with LargeFileStorage (an opposite dependency was found

for the usage of SmallFileStorage).

For LargeFileStorage the following expression resulted:

if(hashingInputF iles.length > 200, 000){..}

where hashingInputFiles is the size of an individual uploaded file passed to Ha-

shing. In this case genetic programming selected the correct input variable (hashing-

InputFiles instead of for example inputFiles, or one of the other measuring data

point) and guessed the constant ‘200,000’.

The search time was less than five seconds. The implementation-defined constant ‘200,000’,

which was identified by manual reverse engineering, was not always identified correctly

by the approach due to the limited number of input files (there were no input file with a

size of 200,000 and 200,001). Yet, the recovered function did not contradict the monitor-

ing data. Adding further input files would have enabled the approach finding the correct

constant in all cases.

We tested an additional run of JGAP where the monitoring data was disturbed by calls

of uploadFiles that did not lead to a storage write because the file already existed in

the database (one out of eleven calls did not lead to a write). Such effects depending on

component state are visible at the interface level only as statistical noise that cannot be

explained based on interface monitoring data. In this case the optimal solution could still

be found, but within more time: less than 20 seconds (in average). For monitoring data

with uncertainty, the confidence in the correctness (“fitness function” calculated by JGAP)

of the result decreased: There was a deviation between monitored data and approximation

of genetic programming due to the disturbed monitoring data.

The average behavioural impact of uploads where no storage takes place can be captured

by computing the long-term probability of such uploads independently of the uploaded

files.

SingleFileAnalysis – Size of files passed to the Compress component. The size of

single files passed to the compression service was learned in another run of genetic pro-

gramming. The input consisted of a series of eleven input files again. The dependency

recovered was:

inputF iles[x].length ∗ fileTypes[x]

where inputFiles[x] is the size of an individual uploaded file and fileTypes[x]

the integer encoded type of a file, where 0 represented non-compressed files. Within a

search time of less than one second the optimal solution could always be found.

Estimation of the compression ratio. In addition to applying the approach for the

BusinessLogic component, we used it for estimating the compression ratio of the

Compression component. BusinessLogic itself relies on the compression ratio of

this component, as the size of non-compressed input files that are passed to the storage

components is larger than the ones being compressed by Compression beforehand.

Compression is a Lempel-Ziv-Welch (LZW) implementation. The compression ratio

of LZW strongly depends on the data characteristics (e.g. entropy, used encoding), no

optimal solution exists to describe the compression ratio. Therefore, JGAP produced a

large variety of approximations of the compression ratio. A good approximation found

after 30 seconds had the following form:

0.9 ∗ 0.5 ∗ (X3 − (0.9 ∗ 0.5 ∗ (X3 − (0.9 ∗ (0.9 ∗ 0.5 ∗ X3) ∗ 1.0))))

where X3 is the size of the file input for the Compression component, which was found

(by the genetic programming) to be significant.

The complexity of these functions, which for approximations can get even more verbose,

will be hidden from the user in a tool chain.

Findings In the investigated example, all dependencies (eleven in total) identified by

manual reverse engineering by a human were also found by our automated approach.

Hence, we consider our approach to be applicable for reverse engineering of parameteri-

sations from business components comparable to BusinessLogic.

6 Limitations and Assumptions

For the monitoring step, we assume that a representative workload (including input pa-

rameter values) can be provided, for example by a test driver. For running systems, this

data can be obtained using runtime monitoring. Otherwise, a domain expert needs to judge

which scenarios are interesting or critical (for example [?] provides an overview on test

data generation).

In the monitoring step of our approach, asynchronous communication (e.g. message-based

communication) is not supported by the used logging framework. Hence, if there is asyn-

chronous communication inside the component under investigation, monitored results will

be misleading. This limitation will be addressed in next versions of our implementation.

To support the black-box component principle, monitoring should be performed in an

automated way. In general, collecting dozens of metrics for input and output data is not

justified by the requirements of our approach. At the moment, we provide heuristics for

important characteristics only for primitive types or general collection types like List.

Thus, currently a domain expert needs to specify important data characteristics manually

for more complex data structures.

In the machine learning step, heavily disturbed results originating from sources not visible

at the interface-level, decrease the convergence speed and lower the probability of finding

a good solution.

The termination condition for genetic programming currently is very simple. Search ter-

minated after a fixed number of generation (iterations) or if the fitness function shows that

an optimal solution was found: Genetic programming perfectly matches the monitoring

data.

7 Conclusion

In this paper we presented a reverse engineering approach capable of reconstructing be-

havioural service models of component-based applications. The approach recovers func-

tional dependencies in control and data flow of component services, allowing to estimate

the performance impact of a component on other components. As the approach only mon-

itors data and control flow visible at the interface level, it supports black-box components,

for which no internals need to be known.

Utilising genetic programming as machine learning technique, the validation showed that

the approach is able to deal with the complex data and control flow of a typical information

systems business logic component. Genetic programming supports data and control flow

dependency recovery by: 1) appropriately selecting input variables from a large input

space, 2) correctly finding multi-dimensional criteria, dealing with unknown constants,

and 3) handling disturbed monitoring data, as the validation showed.

The approaches enables automating reverse engineering for parametric service perfor-

mance models, which beforehand required costly manual reverse engineering. Through

the unique combination of machine learning and monitoring, the field of control and data

flow analysis is enriched with an approach to find parametric dependencies in software

components.

For the future, we plan to improve automation of the approach for having an “integrated

monitoring-learning-model-output” tool chain.

Though performance effect propagation is captured in this approach, the performance

impact of component-internal behaviour (for example an internal sorting algorithm) is

currently not captured. An improved version of the approach should reverse engineer this

internal behaviour as well.

