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We have studied the critical and compensation temperatures of a ferrimagnetic Ising system with mixed spins SA
i = ±3/2,±1/2 and

σB
j = ±5/2,±3/2,±1/2, by using Monte Carlo simulations. The spins are alternated on a square lattice, such that nearest neighbor

interactions occur between different spins (SA
i ↔ σB

j ) and next nearest neighbors interactions between spins of the same type (SA
i ↔ SA

j ).

We investigate the effects of crystal field D and the J2 ferromagnetic coupling of spins SA
i on the critical and compensation tempera-

tures of the system, calculating the phase diagrams at finite temperature at the (D/|J1|, kBT/|J1|) and (J2/|J1|, kBT/|J1|) planes. When

the Hamiltonian includes antiferromagnetic couplings between spins SA
i and σB

j , ferromagnetic between spins SA
i and the term of single

ion anisotropy D, the system presents compensation temperatures in a certain range of parameters, which depend on the intensity of the

ferromagnetic interaction of spins SA
i .
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1. Introduction

Simulation and numerical study by mixed Ising spin models

in various molecular magnets, in equilibrium and nonequi-

librium [1–4], has become an important theoretical tool for

analysis and comprehension [5–8]. Currently these models

are proposed as an excellent laboratory for understanding of

certain thermomagnetic properties of some magnetic molec-

ular materials two and three dimensional [9, 10], among the

highlighting ferrimagnetic ordering [11–14], presence of gi-

ant magnetic moments of some doped materials [15], high

critical temperatures, photoinduced magnetization [11, 16],

magnetic ordering at room temperature, spontaneous mag-

netic moments, magnetoelastic transitions [4, 8], tricritical

phenomena [17, 18], character changes of the phase transi-

tion from a second order to first order [19], reentrant and

double reentrant phenomena [20–22], and the appearance of

compensation temperatures in a certain range of concentra-

tion of the components [23]: temperatures below the critical

temperature where the magnetizations of the sublattices have

equal magnitude and opposite sign so that the total magne-

tization is zero. Experimentally, were obtained some com-

pensation temperature measurements in Fe3O4 and Mn3O4

superlattices [24], and studies by Kageyama et al. [25] on

the magnetic properties of nickel (II) formate dihydrate com-

pound Ni(H-COO)2·2H2O, show that in addition to the phe-

nomenon of magnetization reversal, presents compensation

points. In like manner, previous studies show that at the com-

pensation temperature, the coercivity of a material increases

dramatically and at this point only is required a small conduc-

tor field to invert the sign of the magnetization [26–30]. This

episode has interesting technological applications, especially

in the magneto-optical recording [31, 32]. Other systems of

interesting magnetic behavior, which have been studied using

mixed Ising spin models are magnetic nanoparticles. As in-

dicated by Zaim and Kerouad [33, 34] are useful models in

industrial applications of emerging nanotechnology, which

can be used for a variety of nano-devices, due to their re-

duced size and important magnetic properties such as high

density magnetic memories, sensors and molecular imaging

devices, etc. Similarly, some of these mixed Ising models as

multispin interactions [35] and random crystal field can be

used from the experimental point of view, to describe diverse

physical systems such as classical fluids, solid 3He, lipid bi-

layers and rare gases [36]. Furthermore, these mixed Ising

models are used to explain experimental results in amorphous

ferrimagnetic oxides, wherein F3+
e ions are present [37]. A

particularly interesting class of mixed Ising systems are those

with relatively high value and half-integer spins, such as spin

(SA
i = 3/2, σB

j = 5/2), which have been analyzed less

than those of spins of low values [4, 19], and in most cases

have been studied with mean field approaches and perturba-

tive methods. These methods, in some cases, have been ques-

tioned by discarding all interactions between the spins [38].

Recent studies, based on Monte Carlo methods with finite

size scaling analysis, have shown new features of the com-

portment of the mixed Ising models [5, 39, 40]. In this pa-

per we develop Monte Carlo simulations, reliable technique

in solving mixed Ising models [5, 40, 41], to investigate the

magnetic properties of a ferrimagnetic system of SA
i = 3/2

and σB
j = 5/2 spins. The model has been studied by various

methods, among which highlights the exact recursion rela-
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tions [8, 19], mean field theory [4, 42], Monte Carlo [43] and

effective field theory [21]. In each of these investigations it

is established that the system exhibits a rich variety of multi-

critical phenomena.

2. Methodology

The model studied is a mixed Ising ferrimagnet with spins

3/2 and 5/2, alternating on a square lattice of side L = 80.

The interaction Hamiltonian of the system is defined as:

H = −J1

∑

i,jǫ〈nn〉

SA
i σB

j − J2

∑

i,kǫ〈nnn〉

SA
i SA

k

− D
∑

iǫA

(SA
i )2 − D

∑

jǫB

(σB
j )2 (1)

where SA
i = ±3/2,±1/2 and σB

j = ±5/2,±3/2,±1/2, are

the spins on the sites of the sublattices A and B, respectively.

J1 is the exchange interaction between pairs of spins to near-

est neighbors, J2 is the exchange parameter between pairs

of spins next nearest neighbors of the sublattice A, and D is

the crystal field, it causes anisotropy of the system. The first

sum is performed over all pairs of spins with nearest neigh-

bor interaction, i.e. between sites with spins SA
i = 3/2 and

σB
j = 5/2, the second sum runs over all pairs of spins with

next nearest neighbors interaction of spins SA
i , and sums

∑

i

and
∑

j are performed on all sites of spins of the sulattices

A and B, respectively. We choose a ferrimagnetic coupling

to nearest neighbors, J1 < 0, and we take periodic boundary

conditions. All variables in the Hamiltonian are in units of

energy.

The simulation of the model is carried out by the Monte

Carlo method, generating states ramdomly by a heatbath al-

gorithm, described below. We choose a spin at random, and

calculate the energy difference ∆Eij and the transition prob-

ability exp(−β∆Eij) associated with each possible change.

Then, is considered whether the spin changes its value, gen-

erating a random number θ in the interval (0,
∑

Pi), where
∑

Pi represents the sum of transition probabilities. The data

are generated with 5 × 104 Monte Carlo steps per site after

discarding the first 104 steps per site to reach equilibrium of

the system. Error calculation is estimated using the method

of blocks, where the sample L-size is divided in nb blocks of

length Lb = L/nb. When Lb is greater than the correlation

length, the averages of the blocks can be considered statisti-

cally independent. Thus, the errors are calculated taking the

averages of the blocks instead of the original measurements.

Error bars are calculated by grouping all the mensurations in

10 blocks and taking the standard deviation [44].

The magnetization per site of the sublattices (MA,MB),

and the total magnetization per spin, MT , are defined as:

MA =
2

L2

〈

∑

iǫA

SA
i

〉

(2)

MB =
2

L2

〈

∑

jǫB

σB
j

〉

(3)

MT =
MA + MB

2
(4)

Defining β = 1/kBT , we calculate the specific heat per

site, C, by the expression:

C =
β2

L2

(

〈H2〉 − 〈H〉2
)

(5)

where 〈H〉 represents the internal energy of the system. An

efficient way to locate the compensation temperatures is to

find the intersection point of the absolute values of the sub-

lattice magnetizations [45], i.e.:

|MA(Tcomp)| = |MB(Tcomp)| (6)

with the conditions:

sign(MA(Tcomp)) = −sign(MB(Tcomp)) (7)

Tcomp < Tc (8)

3. Results and discussions

In a previous work De la Espriella et al [46] obtained sev-

eral diagrams of ground states of the spin system (3/2, 5/2).
Among these, studied the energies and the ground state dia-

gram J1 −J2 −D model on the plane (D/|J1|, J2/|J1|). We

compare the values of the magnetization, internal energy and

specific heat of the system to T = 0K, with those obtained by

De la Espriella et al [46]. Knowledge of the phase diagrams

at T = 0K, is important for interpretation the results of the

phase diagrams at finite temperature, because are relevants

to identify regions where the system could present important

magnetic behavior. Then we analyze the effects of crystal

field D
′

= D/|J1| and the exchange parameter J
′

2 = J2/|J1|
on the magnetization, the specific heat per spin, the internal

energy, critical and compensation temperatures of the sys-

tem. To do this, initially we fix the value of J
′

2 and change

the values of D
′

, then D
′

is fixed and change J
′

2.

3.1. Crystal Field Effects D

The Fig. 1 indicate the comportment of the total magneti-

zation per spin as functions of temperature, for D
′

< 0 and

J
′

2 = 3. Is observed that increasing of the absolute value of

the field, entails a diminution of Tcomp. This behavior in ac-

cording to reports of Ekiz [47] for a mixed Ising model with

spin SA
i = 1/2 and σB

j = 1. Whereas in Fig. 2, growing

the crystal field (D
′

≥ 0), implies an increment of the tem-

peratures Tc and Tcomp. When D
′

= 0, in Fig. 2 is presented

the particular model J1 − J2 and there is a compensation

point, implying that the parameter J2 contributes heavily to

the arising of Tcomp, this behaviour was observed by Buendı́a

et al [45] and Dakhama et al. [48]. Figures 1 and 2 show that
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FIGURE 1. Behavior of the magnetization of the system, |MT |, as

a function of temperature for J
′

2 = 3 and D
′

< 0.

FIGURE 2. Behavior of the magnetization of the system, |MT |, as

a function of temperature for J
′

2 = 3 and D
′

≥ 0.

there is a range of values of crystal field in which exist com-

pensation points. When J
′

2 = 3 and D
′

vary positively or

negatively, the system passes through different ground states.

When the temperature increases above Tcomp, the total mag-

netization first aggrandize until reach a maximum and then

decreases until it becomes zero at T = Tc. The results of

the magnetizations at T = 0K, coincide with those reported

by De la Espriella et al [46] in the phase diagram of ground

states (Fig. 4 and Table III of [46]). The upper right inset,

in the Fig. 2, shows an enlargement of the region where are

located the compensation points.

The compensation phenomenon can be understood by ex-

amining Figs. 3 and 4, these display the comportment of

|MT |, |MA| and |MB |, for the particular cases D
′

= −1.3
and D

′

= −1.7. For the range T < Tcomp, sublattice A is

more ordered than the sublattice B due to the ferromagnetic

interaction J2, and the magnetizations of the sublattices have

FIGURE 3. Behavior of magnetization per spin of the sublattices

|MB |, |MA| and the total magnetization per spin, |MT |, for J
′

2 = 3

and D
′

= −1.3.

FIGURE 4. Behavior of magnetization per spin of the sublattices

|MB |, |MA| and the total magnetization per spin, |MT |, for J
′

2 = 3

and D
′

= −1.7.

opposite signs, but the cancellation is still incomplete, be-

cause there is a residual magnetization in the system pro-

duced by J1, which tends to align the spins close in opposite

directions. When the system temperature augment, the resid-

ual magnetization direction can change, that is, at this instant

prevails the thermal energy, and many spins tend to change

the direction, until at T = Tcomp, sublattices are compen-

sated, i.e. |MT | = 0. For T > Tcomp, both sublattices tend to

become disordered, and at T = Tc the system is completely

disordered, entering the paramagnetic phase. The compensa-

tion effect occurs due to the different rates at which is disor-

dered each of the sublattices, and the antiferromagnetic inter-

action between them.

We estimate the critical temperatures through the location

of the maximum of the specific heats. In Figs. 5 and 6, the
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FIGURE 5. Specific heat per spin for different values of D
′

and

J
′

2 = 3.

FIGURE 6. Energy per spin for different values of D
′

and J
′

2 = 3.

the behavior of the specific heat and internal energy per spin

are shown, respectively, for varied values of the field D
′

and

J
′

2 = 3. The graphs in the Fig. 5, show that if |D
′

| (D
′

< 0)

raise, the Tc abatement. For D
′

= −1.9, the curve exhibits

a second peak at low temperatures, which is considered inde-

pendent of lattice size and does not correspond to any critical

point. This feature was reported by Selke and Oitma [5], ex-

hibiting the effect of the crystal field on the Ising ferrimagnet

in a square lattice, in according to our results. The forma-

tion of these ”anomalous” maximums, occurs when the spins

of the sublattice B try to reorganize thermally, because when

T → 0K, this sublattice gets disorder very quickly, as shown

in Figs. 3 and 4. In the Fig. 6 is obseved that the internal

energy per spin increases with the increase of the absolute

value of the crystal field D
′

(D
′

< 0), which is consistent

with previous research on mixed Ising systems of spins: 2

and 5/2 [49,50], 1 and 2 [51], and 3/2 and 5/2 [21]. The ener-

FIGURE 7. Critical (Tc) and compensation (Tcomp) temperatures,

as a function of D
′

.

gy values for T = 0K, coincide with those reported in Ta-

ble III de [46]. For example, when J
′

1 = −1, D
′

= −1.7
and J

′

2 = 3 the system is in region II (Fig. 4 of [46]) with

energy E0 = −18|J1| − 9J
′

2 − 9D
′

= −7.425 (Table III

of [46]), which is consistent with that exhibited in Fig. 6,

for given values of crystal field and exchange parameter J
′

2.

This is a way to check the reliability of our results, hence

the importance of ground state diagrams. In the inset in the

upper left, you can see how changing the concavity of the

curves in the region where the second-order phase transition

is present, the temperature at which the magnetizations of the

sublattices go to zero continuously, separating the ferrimag-

netic phase of the paramagnetic phase. Fig. 7 summarizes

the results obtained on the dependence of Tc and Tcomp with

respect to D
′

. In the range of selected values of parameters of

the Hamiltonian, critical temperature increases with the crys-

tal field, looking reach a constant value, dependent on the

exchange J
′

2 parameter. For each value of J
′

2, there is a range

of values of D
′

for which compensation points exist. When

J
′

2 = 3, are found compensation temperatures in the range

−2 ≤ D
′

≤ 2. For the case J
′

2 = 5, compensation points

are in the range −2 ≤ D
′

. For D
′

≈ 21, Tcomp is almost

independent of crystal field, since it has a constant value that

depends heavily on J
′

2. Notably, while Tc strongly depends

of J
′

2, only the upper limit of Tcomp depends on J
′

2.

3.2. Interaction Effects J
′

2

To analyze the effect of J
′

2, is fixed D
′

= −1.9 and vary

J
′

2. The Fig. 8 evidence the total magnetization per spin

as a function of temperature for different values of J
′

2, and

Fig. 9 testify to the behavior of the total magnetization and

the sublattices, as a function of temperature for the specific

case J
′

2 = 2. In Fig. 8 we see that once appears Tcomp, this

depends very weakly of J
′

2, otherwise to the Tc, which mark-
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FIGURE 8. Total magnetizations per spin as a function of tempera-

ture for D
′

= −1.9 and J
′

2 > 0.

FIGURE 9. Behavior of magnetization per spin of the sublattices

|MB |, |MA| and the total magnetization per spin, |MT |, for J
′

2 = 2

and D
′

= −1.9.

edly augment with the increase of the parameter J
′

2 exchange.

A special feature, shown in Fig. 8, is that the deportment of

the total magnetization for T < Tcomp is independent of the

value of J
′

2, whereas for T > Tcomp maximum value of the

total magnetization rise with J
′

2 increased.

With reference to Fig. 9 is observed that |MA| falls from

its saturation value (1.5) at T = 0K, until it becomes zero at

T = Tc, indicating that the sublattice A remains ferromag-

netic more ordered than the sublattice B, by J
′

2 interaction

effects, whereas |MB | decays more rapidly. The |MA| plot

has a similar comportment to the recently reported by Selke

and Ekiz [40], about the study of Ising ferrimagnets in square

lattice with next nearest neighbors coupling. Again the ex-

istence of Tcomp is due to the different decay rates of mag-

netizations of the sublattices. Specific heat curves, shown in

Fig. 10, indicate that the critical temperature, estimated at the

FIGURE 10. Specific heat per spin for different values of J
′

2 and

D
′

= −1.9.

FIGURE 11. Energy per spin for J
′

2 > 0 and D
′

= −1.9.

the maximum of the curves, aggrandize with increasing J
′

2

and the peaks shift to the high temperature region.

We can see at low temperatures, a thermal rearrangement

of the spins of the sublattice B for the crystal field effect.

Figure 11 exhibit the deportment of the energy per spin of the

system. There is a change of concavity of the curves in the

critical region. Minimum energy for each value of J
′

2, in ac-

cording with the ground state of the model depicted in Fig. 4

in [46]. As you increase the value of the interaction J
′

2, the

internal energy of the system decreases, this is consistent with

previous investigations [21, 49–51]. Critical behavior of the

system as a function of J
′

2, is summarized in Fig. 12. Above

a minimum value J
′

2, which depends on the crystal field, the

compensation temperature is almost independent of the value

of J
′

2 and has a constant value which depends strongly on

D
′

. In contrast, we find that the critical temperature augment

linearly with J
′

2, and is practically independent of the crystal
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FIGURE 12. Critical (Tc) and compensation (Tcomp) tempera-

tures, as a function of J
′

2.

field value. For D
′

= −1.9, the range of values of parame-

ter J
′

2 where exist Tcomp is J
′

2 ≥ 0.6 and for D
′

= −1.7 is

J
′

2 ≥ 1. This tells us that minimum value of J
′

2 for which ex-

ists Tcomp decreases, by increasing the absolute value of D
′

.

4. Conclusion

We develop a numerical study of the magnetic comportment

of a ferrimagnetic mixed Ising model of spins SA
i = 3/2

and σB
j = 5/2, alternating on a square lattice. When the

Hamiltonian includes antiferromagnetic interactions to near-

est neighbors, ferromagnetics to next nearest neighbors on

sublattice A, and crystal field, exists a range of parameter

values where the system presents Tcomp. We calculated the

phase diagrams at finite temperature of the internal energy,

|MT |, |MA|, |MB | and the specific heat, indicating the Tcomp

and Tc for various combinations of parameters. To J
′

2 fixed,

Tc augment with D
′

to reach a limit value that depends on

the field. The Tcomp increases rapidly with D
′

, but its value

is independent of J
′

2, since it has a constant value which de-

pends markedly on this parameter (J
′

2 = 5). When D
′

is

fixed, the Tc raise linearly with J
′

2, but is almost independent

of D
′

, whereas Tcomp occurs when J2 > J2min(D) and its

value depends only on D. We found Tcomp in the particular

case J1 − J2, indicating that the parameter J2 strongly in-

fluences the occurrence of compensation points. Finally, is

evident that increasing J
′

2 increases the range of Tcomp and

increases Tc.
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