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Abstract

The absence of R parity violating operators can be naturally ensured in the presence of

a SU(N)H (N = 4; 6:::) horizontal gauge symmetry, independently of the vertical gauge
group. We study an extension of the supersymmetric standard model with four families
and gauged SU(4)H . Beyond preserving R parity, the model gives rise to the realistic
fermion mass matrices which naturally ensure the heaviness of the fourth family fermions
b0; t0; � 0; �0. Their masses are all in the 100 GeV range. Phenomenological implications

of the model are discussed. It is shown that cosmological constraints on the lifetime of

the fourth family quarks translate into a lower bound on the � -neutrino mass of a few

eV. Hence this neutrino can provide a hot component of the cosmological dark matter,

while in our R{parity conserving model a cold component can be naturally provided by
the stable lightest supersymmetric particle.
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1 Introduction

In the Standard Model (SM), Baryon (B) and Lepton (L) numbers are conserved as a

result of accidental global U(1)B and U(1)L symmetries that follow from the requirement

of gauge invariance and renormalizability.1 In the Supersymmetric version of the Standard

Model (SSM) this is not true anymore. Consider in fact the quark and lepton left-handed

chiral super�elds, which transform under SU(3) � SU(2) � U(1) as follows:

q =
�
u

d

�
� (3; 2; 1=6); uc � (3; 1;�2=3); dc � (3; 1; 1=3);

l =
�
�

e

�
� (1; 2;�1=2); ec � (1; 1; 1): (1)

The two Higgs super�elds �1;2 transform as (1; 2;�1=2) respectively. As the scalar com-

ponents of �1;2 acquire nonzero vacuum expectation values (VEVs), the fermions acquire

a mass through the superpotential terms �1qd
c, �2qu

c and �1le
c. Since l and �1 have

the same transformation properties under the gauge group, the L and B violating terms
obtained by substituting �1 ! l are also allowed, as well as an additional term involving
three quark super�elds. Explicitly these three terms read

lqdc; llec; ucdcdc: (2)

If both the �rst and third of these terms are present, their combination would lead to

catastrophically fast proton decay mediated by dc-type squark exchange.
The relevant symmetry that ensures the B and L conservation in the SSM is called

R parity, which is de�ned as R � (�1)2J+3B+L, where J is the spin of the particle and
B(L) its baryon (lepton) number [2]. R parity does not commute with supersymmetry.
On the other hand, it is an automatic consequence of a Z2 matter parity under which the

fermion super�elds change the sign while the `Higgs' ones �1;2 remain invariant. It is a
well known fact that an unsatisfactory feature of the SSM is that the Z2 (or equivalently

R) parity conservation has to be imposed by hand.

In the context of Grand Uni�cation Theories (GUT) based on the gauge group SU(5),
the fermion super�elds are assigned to the 10+�5 representation of SU(5), while �1 and �2

belong respectively to the �5�1
and 5�2

. The down-quark and lepton masses are generated

through the coupling 10 �5 �5�1
, and the gauge invariant term obtained by �5�1

! �5, namely
10 �5 �5, leads again to the set of B and L violating couplings in (2). Thus, with respect

to automatic R-parity conservation the supersymmetric (SUSY) SU(5) model does not

di�er much from the SSM. The SO(10) model o�ers an elegant solution to this problem,
since the fermion super�elds are in the spinor representation 16 whereas the Higgs ones

are generally assigned to vector representations as 10, 45, 54, 126 etc.. The masses of the
fermions, including the neutrinos, can be generated through the gauge invariant couplings
16 16 10� and 16 16 126� [3], while the term (16)3 is forbidden since it does not contain

an SO(10) singlet. In other words, as long as all the SO(10) invariant couplings allow

1These symmetries can be broken only by higher order non-renormalizable operators, cuto� at the

Planck scale, which can arise from non-perturbative quantum gravity or string e�ects [1]. For example,

the lepton number violating term (1=MPl)ll�� provides the neutrino Majorana masses of about 10�5 eV,

which could be relevant for the solar neutrino oscillations. However, analogous terms violating baryon

number are very small to cause any observable e�ect.
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only pairs of 16-plets, the theory has an automatic Z2 matter parity under which 16-plets

change the sign whereas the super�elds in vector representations remain invariant. This is

not true anymore for the SO(10) models in which the symmetry breaking is triggered also

by the scalar components of super�elds belonging to the 16� + 16�. (Examples of SUSY

models in which these representations play the role of the standard 126+126 can be found

in ref. [4]). In fact, after substituting the VEV h16�i, the couplings
1
M
16316� which are

allowed by the gauge symmetry lead again to R-parity violating terms. Since in these

models the right handed neutrino masses are generated by operators � 1
M
162162� which

have the same structure, the ratio h16�i=M cannot be very small, implying in turn that

the magnitude of the resulting R-parity violating terms is again in con
ict with the limits

on the proton lifetime. We conclude that R-parity conservation is not automatic anymore

for the SO(10) models with Higgs �elds belonging to the 16�: in this case some additional

discrete symmetry has to be imposed by hand in order to distinguish the fermion 16-plets

from the Higgs ones.
In this paper we wish to put forward the idea that R (or equivalently Z2) parity

conservation can be naturally ensured in models based on gauged horizontal symmetries.

Such models are particularly interesting since they can explain the observed pattern of
fermion masses and mixing. Namely, the structure of the fermion mass matrices can be
related to the horizontal symmetry breaking pattern, while the mass hierarchy between
families is due to certain hierarchy in this breaking (see for example the models [5, 6] based
on SU(3)H horizontal symmetry). In this kind of models it is natural to assume that

the horizontal group GH acts only on the quark-lepton super�elds, while the Higgses �1;2

responsible for the electroweak symmetry breaking are GH -singlets. Hence, independently
of the choice of the vertical gauge group and/or of the particular super�eld assignments
to its representations, the Higgs and fermion super�elds can be always distinguished since
they carry di�erent horizontal quantum numbers. This leads to the possibility of allowing
the necessary mass terms which are bilinear in the fermion super�elds, while forbidding

the B and L violating trilinear couplings in (2).

Our task is now to �nd and classify the theories in which the horizontal gauge group

GH naturally forbids the terms in (2) due to gauge principles, or in other words in which
R parity (or equivalently Z2 matter parity) appears as an automatic consequence of the
horizontal gauge symmetry and of the �eld content of the model. We demand that the

models we are interested in should satisfy the following list of basic requirements:
(i) In order to ensure a straightforward de�nition of the horizontal gauge symmetry,

all the fermion super�elds q, l, uc, dc and ec should be assigned to the same representation

of the horizontal group GH . In other words, we forbid GH singlet families. For example,
for the group GH = SU(N) each fermion super�eld can be assigned either to the N or to

the N representation of the group.
(ii) We require that the couplings in (2) are forbidden by gauge invariance. Therefore

SO(3)H and chiral SU(3)H , which are the only simple groups containing three dimensional

representations, are excluded since in both cases 33 contains a gauge singlet. However
we immediately notice that for SU(N)H (N > 3) the term N3 does not contain gauge

singlets. Hence these groups represent a class of interesting candidates.
To have phenomenologically realistic theories, the following additional constraints

should be also imposed:
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(iii) In order to avoid the proliferation of Higgs doublets with masses at the electroweak

scale, the standard Higgs super�elds �1;2 must be GH singlets. The presence of several

Higgs doublets (as implied by non-singlet horizontal representations) would in fact spoil

the natural suppression of Flavor Changing Neutral Currents (FCNC) [7]. It would also

destroy gauge coupling uni�cation, thus preventing any attempt to embed the model in

some vertical GUTs.

(iv) The fermion masses should arise from e�ective operators with the structure

Oeff �
P(n)(�k)

Mn
ff c�1;2; (3)

where f; f c are the fermion super�elds in eq. (1), P(n) represents some n-order polynomial

of the scalars �k responsible for the breaking of GH , and M is some cuto� mass scale.2

Clearly, in order to ensure GH invariance, P(n) should transform as the conjugate of the

tensor product of f and f c. We must also require that the operators (3) should produce

a realistic pattern of fermion masses and mixings. In this respect, models based on chiral
SU(3)H [5, 6] have proven to be quite e�ective, since the fermion mass hierarchy can
be related to the hierarchy in the SU(3)H breaking, that is to the hierarchy among the
horizontal VEVs h�ki. Even if chiral SU(3)H fails to satisfy condition (ii), its success
in accounting for the pattern of fermion masses and mixings points again towards chiral

SU(N)H (N > 3) as possible interesting candidates.3

(v) A �nal strong condition is that R-parity breaking terms should not appear even
after GH breaking. More precisely, all e�ective operators of the form

P(n)(�k)

Mn
fff c;

P(n)(�k)

Mn
f cf cf c; (4)

should be forbidden by the GH symmetry, since after the horizontal symmetry breaking
�k ! h�ki these terms would generate again the R parity violating couplings (2).

In particular this last condition restrict the viable SU(N)H models to the cases when

N is even. Consider in fact SU(N)H with the f and f c fermion super�elds assigned to the

fundamentalN dimensional representation. The mass terms transform as N�N and thus
belong to two-index (symmetric and antisymmetric) representations. In order to construct
horizontal gauge invariant mass terms, the horizontal Higgses �k can be also taken in two-

index representations. Then for N=4,6,: : : terms of the form N�N�N�P(n) (that is the

R-parity violating e�ective operators (4)) cannot arise, since it is impossible to saturate

all the indices and construct horizontal gauge invariants. In contrast, for SU(N)H with

N odd the totally antisymmetric � tensor allows to rewrite some combinations of Higgs

2The non-renormalizable couplings (3) with M � MPl could appear due to quantum gravity e�ects.

Alternatively, these operators with arbitrary M can be e�ectively generated through the exchange of

some superheavy �elds with O(M ) masses [8].

3We note that vectorlike SU (3)H with q; l transforming as 3 and u
c
; d

c
; e

c as 3, forbids the �rst two

terms in (2), which is enough to ensure the proton stability. However, this case can be hardly regarded as

realistic, since it allows the SU (3)H invariant terms ffc�1;2. Then the mass splitting between di�erent

families can be achieved by means of the additional e�ective operators (3) only in a very unnatural way,

at the price of many �ne tunings. In addition vectorlike SU (3)H would also impede the uni�cation of

the fermions (1) within one irreducible GUT multiplet.
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�elds with an even number of free indices as tensors with an odd number of free indices

which are suitable for generating gauge invariants, when matched with the N � N � N

term. Indeed, after the horizontal symmetry breaking (� ! h�i) operators of the form

f (c)
� f

(c)
� f (c)




(�1�2 : : : �n)�:::�
Mn

���
�:::� (5)

(which can be constructed also when the �'s belong to the symmetric part of N �N) will

again spoil R-parity.

This �rst brief analysis suggests that natural conservation of R-parity could be

achieved in models based on chiral horizontal symmetries SU(N)H with N even, under

which the quark and lepton super�elds transform as fundamental N -plets. Then un-

wanted terms transforming as N3 are automatically forbidden by horizontal gauge invari-

ance. Clearly this implies that the number of families must be extended to Nf = 4; 6; : : :.

As is well known, the possibility of extra families with a light neutrino is ruled out by
the results of the Mark II and LEP collaborations [9]. However, they do not exclude
sequential generations with heavy neutrinos (m > MZ=2). On the other hand, detailed

studies [10] of the e�ects of radiative corrections due to additional families show that pre-
cise electroweak data are not incompatible with a fourth family, while six families (which
would be our next interesting case) are ruled out [10]. In addition, a dedicated analysis
showing the viability of supersymmetric models with four families with respect to gauge
coupling uni�cation was presented in ref. [11]. These results are relevant for our analysis,

since the condition (iii) ensures that the �eld content in our SU(4)H model is the same
than that of the four family SSM of ref. [11], up to some large energy scale where the
horizontal symmetry breaks down (see Sect. 2). Hence, we conclude that if natural R
parity conservation has to be achieved by means of some horizontal gauge symmetry, then
theoretical and phenomenological constraints hint to models based on the SU(4)H group,

on which we will concentrate in the rest of the paper.

2 Horizontal symmetry SU(4)H

Let us now consider the standard SU(3)�SU(2)�U(1) vertical gauge group, with local
chiral SU(4)H horizontal symmetry acting on four families of left chiral super�elds

f� : q� =

 
u

d

!
�

� (3; 2; 1=6; 4); l� =

 
�

e

!
�

� (1; 2;�1=2; 4)

f c� : uc� � (�3; 1;�2=3; 4); dc� � (�3; 2; 1=3; 4); ec� � (1; 1; 1; 4) (6)

where each super�eld is assigned to the fundamental 4 representation (� = 1; : : : 4 is the

SU(4)H index). With this �eld content the horizontal SU(4)H is anomalous. In order to

cancel the horizontal anomaly we introduce the following super�elds which are vectorlike
with respect to SU(3)� SU(2) � U(1) and belong to the �4 of SU(4)H :

F � : U�� (3; 1; 2=3; �4); D�� (3; 1;�1=3; �4); E�� (1; 1;�1; �4)

F �
c : U�

c � (�3; 1;�2=3; �4); D�
c � (�3; 1; 1=3; �4); E�

c � (1; 1; 1; �4); N�
c � (1; 1; 0; �4) (7)

As we will see in short, these super�elds turn out to be necessary also for providing masses
to the known fermions.
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In the Higgs sector, we choose the standard Higgs doublet super�elds �1;2 to be singlets

under SU(4)H . The additional Higgs scalars needed for the breaking of the horizontal

symmetry at some large scale cannot couple to the standard SU(2)�U(1) gauge bosons,

and thus must be singlets under the electroweak group. In order to break completely

the horizontal symmetry and to generate realistic mass matrices for the fermions, we

introduce a set of SU(3) � SU(2) � U(1) singlet `horizontal' super�elds, transforming

either as the symmetric 10 (�f��g) or as the antisymmetric 6 (�[��]) representations of

SU(4)H . Let us �rst consider the case with the �elds �k, k = 1; 2 : : : in symmetric

representation. Additional super�elds ��k transforming as 10 are then needed to render

the Higgsino sector free from chiral anomalies. However, these additional scalars do not

contribute to the fermion masses.4

What remains now to show, is that within the framework of the gauge horizontal

symmetry SU(4)H one can obtain a realistic mass pattern for three families, ensuring at

the same time that all fermions of the fourth family are naturally heavy, say in the 100
GeV range. Although we have started our considerations by a general analysis which
included also non-renormalizable operators as in (3) and (4), in building the model we

will restrict ourselves to consider only renormalizable interactions.
The most general Yukawa superpotential for the down (up) quark and for the lepton

super�elds allowed by gauge invariance reads

WF = gff�F
�
c �1(2) +

X
k

hkFF
�F �

c �
k
�� + �fF

�f c� (8)

with f and F respectively from (6) and (7). The analogous couplings for the neutrinos
have the form

WN = g� l�N
�
c �2 +

X
k

hkNN
�
c N

�
c �

k
��: (9)

Here the g's and h's are Yukawa couplings which we assume to be O(1). The last term

in eq. (8) is a gauge invariant bilinear, and the �f 's are gauge invariant large mass

parameters. As already stated, no terms trilinear in the quark and lepton super�elds are
allowed by the SU(4)H gauge symmetry, ensuring naturally the absence of the B and L
violating couplings lqdc, llec and ucdcdc. We are facing here a situation analogous to the

SO(10) model, since R-parity does not have to be imposed by hand, but appears as an

accidental symmetry that follows from the requirement of horizontal gauge invariance.

Indeed, the superpotential is invariant with respect to the Z2 transformation under which

the fermion super�elds f; f c; F and Fc (which have an odd number of SU(4)H indices)

change sign, while the Higgs super�elds �1;2 and � (with an even number of SU(4)H
indices) stay invariant. More in general, the superpotential WF +WN has an automatic
global symmetry U(1)H under the following transformations:

f; f c ! ei!f; f c; F; F c
! e�i!F;F c; �k ! e2i!�k; �1;2 ! �1;2 (��k ! e�2i! ��k) (10)

4Let us note that ��f��g in the 10 cannot couple in renormalizable way to the heavy vectorlike `matter'

�elds in the 4, and being an SU (2) singlet, neither it can couple to quarks and leptons. However, it is still

possible to introduce a direct non-renormalizable terms cuto� by the Planck scale (1=MPl)f�f
c
��1;2

����.

In this case, in order to reproduce the observed values of the fermion masses, the SU (4)H symmetry

should be broken at a scale very close to MPl . On the other hand, as we will see in Sect. 3, the

phenomenology of the model requires a horizontal symmetry breaking scale substantially smaller than

MPl . As a consequence, these non-renormalizable terms would provide only negligible contribution to

the fermion masses.
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where a Z2 subgroup (! = �) remains unbroken even when the scalars � get non-zero

VEVs. This Z2 matter parity ensures R parity conservation and hence proton stability.

The Yukawa couplings (8) lead to the so called "universal seesaw" mechanism [12]

for the fermion mass generation, which for the case of neutrinos reduces to the ordinary

seesaw mechanism [13]. Indeed, after the horizontal scalars �k develop non-zero VEVs,

the extra fermions F and Fc of eq. (7) acquire large masses through the second term in

eq. (8). Then the �rst and third terms cause a \seesaw" mixing of the ordinary quarks

and leptons f; f c with the heavy ones. As a result, in the base (f; F ) (f c; Fc), the 8 � 8

mass matrix for the down (up) type charged fermions f = e; d; (u) reads 5

Mf =

 
0 gfv1(2)

�f M̂F

!
; M̂F

�� =
X
k

hkF h�
k
��i (11)

where v1;2 = h~�1;2i are the VEVs of the two electroweak Higgs doublets. As for the

neutrinos, in the base (�;Nc) the 8 � 8 Majorana mass matrix has the form

M� =
�

0 g�v2
g�v2 M̂N

�
; M̂N

�� =
X
k

hkN h�
k
��i: (12)

The universal seesaw picture provides a natural possibility to obtain three light families,
while the fourth one is heavy, say with masses of the order of the electroweak scale.
Indeed, let us assume that the 4 � 4 mass matrices M̂F (N) for the heavy fermions are
rank-3 matrices of the following form

M̂F =

 
M

(3)
F 0
0 0

!
; F = U;D;E;N (13)

where the 3�3 blocksM
(3)
F contain non-zero entries. In other words, we assume that all the

VEVs of the type h�k�4i are vanishing, so that a diagonal
~U (1) subgroup of SU(4)H�U(1)H,

given by the generator ~T = diag(0; 0; 0; 1), is left unbroken. In this case there is no seesaw
mechanism for the fermions of the fourth family: the right-handed components of the �elds
f4 = b0; t0; � 0; �0 are actually the F 4

c states, whereas the f c4 form with the F4 superheavy
particles of mass �f .

From eqs. (11) and (12) we obtain for the fourth family fermions

mb0 = gdv cos � mt0 = guv sin�
m� 0 = gev cos� m�0 = g�v sin� (14)

where v = 174GeV is the electroweak breaking scale and tan � = v2=v1. Since all the
Yukawa couplings are assumed to be O(1), for moderate values of tan � all the masses in

(14) are of the order � 100 GeV. On the experimental side, the �rmest constraints on the
masses of any new sequential fermion, quark or lepton, have been set at LEP:mf >�MZ=2.

This indeed represent the best constraint on m� 0 and m�0 . Searches for new quarks at

5The scheme considered here is a direct SU (4)H extension of the model [14] based on the horizontal

symmetry SU (3)H . In the case when the vertical gauge symmetry is extended to the left-right symmetric

model SU (2)L�SU (2)R�U (1)B�L, the values of �'s are given by the scale of the SU (2)R breaking [14].
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the TEVATRON collider could in principle give much better bounds for mt0 and mb0[16].

However, let us note that the structure of the heavy mass matrix (13) implies that the

fourth family is unmixed with the three lighter ones. Hence the usual signatures, as for

example b0 ! c; u, that have been used to set the limits on new sequential quarks [16] do

not occur in our case. In the absence of a detailed experimental analysis of the unmixed

case, the only reliable limit is again the LEP one also for the new quarks. Hence we can

safely conclude that the predictions in (14) are by no means in con
ict with the existing

experimental limits. However, it is clear that for the masses of the fourth family fermions

not much room is left. The allowed parameter space is in fact strongly constrained by the

CDF measurement of the top mass, mt = 174 � 10 � 13GeV [15], by the precision tests

of the SM which do not leave much space for additional sizeable radiative corrections as

would be induced by a too large mt0-mb0 splitting, and by renormalization group (RG)

analysis of the Yukawa couplings, much in the spirit of ref. [11].

In particular, while the general analysis in [11] do allow for the possibilities mt0 < mt

or mt0 < mb0, in our model these pattern of masses are not allowed. In fact the universal
seesaw mechanism outlined before implies mt0 � mt, and most likely mt0 � mb0. Then,

according to [11], for mt0 � mt > 150GeV the consistency of the model implies not too
large values for the masses of the other fermions in fourth family. Namely, for the low
values of tan � we are interested in (e.g. tan � � 2), the maximal values allowed are about
mb0 � 100GeV and m� 0;�0 � 50GeV, that is within the reach of LEP II.

Let us now consider the mass matrices for the �rst three families. In this case the

seesaw mechanism is indeed e�ective for suppressing the fermion masses from the elec-
troweak scale down to the observed values. By assuming M

(3)
F > �f , it is apparent from

(11) that the fermions of the �rst three families will acquire their masses through a mixing
with the superheavy F fermions. Namely, after decoupling the heavy states, the 3 � 3
mass matrices of the light charged down (up) type fermions are 6

m
(3)
f = gf�f (M

(3)
F )�1v1(2); f = d; e; (u) (15)

while the 3 � 3 Majorana mass matrix for the light neutrinos obtained from (12) reads

m(3)
� = (M

(3)
N )�1(g�v2)

2: (16)

In contrast to the SM and to most GUT models, in our picture the fermion mass
hierarchy is not generated by an ad hoc choice of the Yukawa coupling constants. In

fact, in our scheme all the Yukawas are assumed to be of the same order of magnitude, for

exampleO(1) or close to the size of the gauge couplings. As long as the o�-diagonal blocks

in eqs. (11) and (12) are 
avour blind (unit) matrices, all the informations on the fermion

mass and mixing pattern is contained in the heavy fermion mass matricesM
(3)
F . Since the

structure of the latters is determined by the di�erent VEVs h�ki (modulo di�erences in
the Yukawa constants hkF ), the observed hierarchy of the light fermion masses is ultimately

determined by the hierarchy in the VEVs which break the horizontal symmetry. In other

6After decoupling the heavy states at the horizontal symmetry scale VH , our model simply reduces

to the SSM with four families. In fact, eqs. (14), (15) and (16) de�ne the fermion running masses at

� = VH . In order to deduce the fermion physical masses the RG running has to be taken into account.
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words, the VEV pattern should provide the step-by-step breaking of the chiral horizontal

symmetry

SU(4)H � U(1)H
V1
! SU(3)H � U(1)0

H

V2
! SU(2)H � U(1)00

H

V3
! ~U (1) (17)

so that the �rst breaking (at the scale V1 � h�11i) de�nes the mass terms for the �rst

heavy family F1, the second breaking (at V2 � h�12i; h�22i) for the second family F2 etc.

Through the seesaw mechanism this horizontal VEV hierarchy is re
ected in the observed

pattern of fermion masses. Namely, from (15) and (16) it is clear that the hierarchy

among the light families is inversely proportional to the one between the heavies [14] (see

also [17]), while the unbroken global symmetry ~U (1) ensures the natural heaviness of the

fourth family fermions.

Let us now brie
y analyse the issue of horizontal symmetry breaking. The simplest

way to achieve non-zero VEVs for the scalars � is to introduce a set of super�elds Sa
and �a, respectively in SU(4)H singlet and adjoint representations (a = 1; 2 : : :), and to

consider, according to our `renormalizability' paradigm, the general superpotential

WH =Mk�k�k + �aklSa�k�l + �0
akl�k�a�l + P (S;�) (18)

where P (S;�) is a general 3rd order polynomial of the Sa and �a �elds (containing linear,
bilinear and trilinear terms). Notice that this superpotential automatically respects the
U(1)H invariance (10), but has no additional accidental global symmetries.

The superpotential (18) in itself does not break SUSY. Moreover, in the exact SUSY
limit the vacuum state is highly degenerated { there are several zero-energy vacua with

di�erent con�gurations of horizontal VEVs. It would be a di�cult task to provide an
exhaustive analysis of all the possible vacua in the general case, that is to decide which
con�guration of VEVs is chosen as the true vacuum once the soft SUSY breaking terms
are included. However, taking into account that after SUSY breaking the potential of the
horizontal scalars has to a large extent the general structure of usual (non-SUSY) Higgs

polynomial, one can argue that for a certain choice of parameters it is possible to obtain
the needed pattern of VEVs (see for example the analysis in refs. [6, 18] for the case of

SU(3)H symmetry).

Indeed, let us consider a �rst case with only one pair of �1 + ��1 super�elds, the ones

which have the largest VEV (V1) in the exact SUSY limit. The constraint from the
D�term tells us that in this case h�1i = h ��1i. Then it is easy to show that after SUSY

breaking, for a proper choice of the range of values for the relevant parameters, the true

vacuum can have the con�guration h�1i = V1diag(1; 0; 0; 0) which breaks SU(4)H�U(1)H
down to SU(3)H �U(1)

0
H . Therefore, at this stage only the �rst family of F fermions gets

a mass through the couplings (8) while the others, being protected by the residual chiral
symmetry SU(3)H � U(1)0

H , remain massless.7

In analysing the scalar potential of the �elds �2 + ��2 with next largest VEV (V2), we

have to take into the account that after `decoupling' �1 (i.e. substituting �1 ! h�1i), the
symmetry group is reduced to SU(3)H �U(1)0

H, under which �2 branches as 10=6+3+1.

7Alternatively, for the complementary choice of the parameter range, one would have the vacuum

h�1i / diag(1; 1; 1; 1) which breaks SU (4)H � U (1)H down to SO(4)H . This pattern, however, does not

maintain chirality and leads to degenerate fermion masses.
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The VEVs which give masses to the second heavy generation belong to the 6 and 3, and

can be chosen in the form h�22i and h�12i respectively. These break SU(3)H�U(1)
0
H down

to SU(2)H � U(1)00H , thus respecting a residual chiral symmetry for the third and fourth

family of heavy fermions which at this stage remain massless. Finally, yet another pair

�3+ ��3 can develop VEVs in the �3 directions (� = 1; 2; 3) thus breaking SU(2)H�U(1)
00
H

down to ~U (1), which acts only on the fourth family.

One could try to avoid introducing the adjoint representations �a and keep in the

superpotential (18) only the singlet �elds Sa. Then, in the exact SUSY limit the vac-

uum state would have a continuous degeneration { there will be vacuum valleys. The

reason for this is that in this case the superpotential would have an accidental global

symmetry SU(10) larger than local SU(4)H . In the SUSY limit these valleys correspond

to massless Goldstone modes given by certain components of the horizontal super�elds.

When SUSY breaking is taken into account, the radiative corrections explicitly break the

extra global symmetry, lifting the vacuum degeneracy and providing � 100 GeV masses
to the horizontal Goldstone modes, which would then become pseudo-Goldstone, massive
familon-like scalars. In general these states would have diagonal as well as non-diagonal

Yukawa couplings with the fermions, and in particular the strength of the couplings to
the light fermions would be suppressed by a factor � v=VH .

It is a very di�cult task to provide a full analysis of the VEV pattern in this case and
deduce which con�guration of VEVs is �xed as the true vacuum state after SUSY breaking.
Namely, already for two pairs of � + �� the general VEV structure of vacuum valleys

completely breaks the SU(4)H symmetry, not maintaining the ~U(1) subgroup. One can
still argue that for a proper choice of the relevant parameters the needed pattern of VEVs
can be obtained. Though this possibility can be interesting from the phenomenological
point of view, it deserves a special investigation. Therefore, in the following we will assume
that there are no light familon-like scalars and that all the horizontal �elds have O(VH )
masses.

As we have mentioned at the beginning of this section, in order to generate masses for
the heavy states F and Fc it is also possible to introduce horizontal Higgs �elds �[��] in
the antisymmetric 6 representations of SU(4)H . The h�ki VEVs would then contribute

to the mass matrices of the heavy charged fermions through the term
P

k h
k
FF

�F �
c �

k
[��],

while the corresponding term for the Majorana mass matrix of the heavy neutral states

N c is forbidden due to the antisymmetry of the representation. However, in this case the
appearance of the terms likeM 0

k�k�k in the superpotential for the horizontal �elds would
break explicitly the global U(1)H in eq. (10) and hence the residual ~U(1) invariance,

thus rendering unnatural the degenerate structure of the heavy matrices M̂F in eq. (13).

Although for h�ki � �f the heaviness of the fourth family charged fermions would still

be guaranteed, we would lose a natural explanation for a heavy � 0. In fact, through

additional terms like � �� sizable VEVs in the �4 directions would be induced also for
the � �elds. If, as it seems natural to occur, the induced VEVs are larger than the
electroweak scale, the fourth family neutrino mass will also result from a seesaw giving

m�0 � (g�v2)
2=h�iinduced . That is, the � 0 will also be light, thus rendering the model

phenomenologically unacceptable.

9



3 Phenomenological consequences of the model

As was discussed above, the quark and charged lepton masses at the scale VH are given

by eqs. (14) and (15). By assumption, the heavy fermion mass matrices M
(3)
F are non-

degenerate, and thereby have three massive eigenstates, with mass hierarchy re
ecting

the SU(4)H symmetry breaking pattern. The weak mixing angles are determined by the

structure of these matrices, whereas the quark and lepton masses are inversely propor-

tional to the masses of their heavy partners. For the down quark and charged lepton

masses we have

md;s;(b) ' �d;(b)mb0
�d

MD;S;(B)

< mb0 ; me;�;(�) ' �e;(�)m� 0

�e

ME;M;(T )

< m� 0 (19)

where D;S;B (E;M;T ) are the mass eigenstates of M
(3)
D(E), and the factors � account for

the di�erences in the RG running of masses from the horizontal scale to lower energies.
The fact that the b and � masses are of order a few GeV, implies that the masses of

the corresponding heavy states B and T are not much larger (say, within one or two
orders of magnitude) than the mass scale �d;e. As for the top quark, the value of its mass
mt >� 150GeV requires MT � �u. In this case corrections to the seesaw formula (15)
should be taken into account in relating mt to the heavy scales (see e.g. ref. [17]).

As a result of the seesaw mechanism for the fermion masses generation, the light

charged states correspond to some superposition of the (f ,f c) and (F ,F c) states. It is
well known that a mixing between the light SU(2) doublet states f and the heavy SU(2)
singlets F could induce FCNC in the electroweak interactions and will also alter the

avor diagonal couplings of the light states [19]. However, in our case such a mixing
is suppressed as the ratio v1;(2)=M̂F and thus negligibly small when compared with the

present experimental bounds [20, 21]. On the other hand, the mixing between the SU(2)
singlets f c and F c can be large, since it is controlled by the ratio of the two mass scales

�f and M̂F which, as we have seen, can be as large as � 10�1 or even close to unity in
the case of the t quark. However, this kind of mixing between states transforming in the
same way under SU(2)�U(1) cannot a�ect the electroweak quantities, and is essentially

unobservable.

Let us discuss now the neutrino masses. As we have already stated, three neutrinos

�e; ��; �� are light Majorana particles. Their running masses at � = VH are determined by

the heavy 'right-handed' neutrino eigenstates Ne; N�; N� at their decoupling, according
to the seesaw formula (16). As for the fourth neutrino � 0, it appears to be a heavy Dirac
particle with mass � 100GeV. Then for the neutrino physical masses we have

m�e;��;�� = ��
(m�0)2

MNe;N�;N�

; m�0 �
MZ

2
(20)

where the factor �� accounts for the di�erent RG running of Majorana and Dirac masses

from the SU(4)H breaking scale to lower energies (for the RG running of Majorana neu-
trino masses see e.g. [22]). Therefore, modulo the di�erent Yukawa couplings hF , the

neutrino mass hierarchy is expected to be qualitatively the same as the hierarchy between

the quarks or the charged leptons:

m�e : m�� : m�� � mu : mc : mt or me : m� : m� (21)
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Below the scale VH our theory is just the SSM, and all FCNC phenomena related with

the horizontal symmetry are strongly suppressed. Therefore, all neutrinos are e�ectively

stable on a cosmological scale. In order to respect the cosmological upper bound [23] on

the light stable neutrino masses m�� � 92
h2 eV (here 
 = �=�c � 1 is the ratio of

the energy density of the Universe to the critical density, and h = 0:4 � 1 is the Hubble

parameter in units of H0 = 100Km s�1Mpc�1) the following lower bound on the mass of

N� must be respected :

MN�
= hNVH �

��

4
h2

 
m2

Z

92 eV

!
>� 1011 GeV: (22)

In deriving this limit we have taken into account that the present age of Universe t0 >� 12 �

109 yr requires, for 
 = 1, the Hubble parameter h ' 0:5, and we have assumed that

�� � 1. As long as the Yukawa constants hN are O(1), this bound translates into a lower

bound on the smallest scale VH = V3 in the SU(4)H symmetry breaking chain (17).
Let us now address some phenomenological issues regarding the fourth family fermions.

The structure of the heavy mass matrix (13) which leaves unbroken the diagonal ~U(1)

subgroup of SU(4)H�U(1)H , also ensures that the fourth family is unmixedwith the three
lighter ones. We assume that the lightest member of the fourth generation is the neutral
one � 0, as is also suggested by the analysis of ref. [11]. for simplicity we also assume that
mt0 > mb0. Then b

0 and � 0 are stable with respect to electroweak interactions.
The presence of stable neutrinos � 0 with mass in the 100 GeV range is phenomeno-

logically and in particular cosmologically acceptable, since their contribution to the cos-

mological energy density is vanishingly small. Only in the presence of a sizeable � 0-� 0

primordial asymmetry the stable relics �0 would contribute to the present cosmological
density, and this contribution would still be acceptable as long as their present number
density n�0 does not exceed the baryon number density nB. However, as we will argue
in the following, in our model no sizeable asymmetry has to be expected for the fourth

family fermions.

In contrast, the existence of stable heavy quarks carrying colour and electric charge
would constitute a potential problem for the model, since it will con
ict with the con-
straints arising from superheavy element searches, as well as with other cosmological and

astrophysical constraints [24, 25]. Indeed, the stable b0 would behave essentially as d

quarks, hadronising into heavy `protons' and giving rise to heavy hydrogen-like `isotopes'
with masses � 100 GeV. The existing experimental limits on this kind of isotopes are ex-

tremely tight. For example for masses mb0 < 1 TeV the limit on their abundance relative
to normal hydrogen is nb0=nB < 10�28 [26].

However, the exchange of the SU(4)H gauge bosons ZH would allow the heavy quark

to decay, dominantly through the channel b0 ! b����
0, with a lifetime 8

�b0 �

�
VH

v

�4 �m�

mb0

�5
�� =

�
VH

1012 GeV

�4 �150 GeV

mb0

�5
� 4 � 1017 s (23)

where VH = V3 is the lowest scale in the horizontal symmetry breaking (see eq. (17)), v is

the electroweak scale and �� = � (�! e��e��) ' 2:2�10�6 s. is the muon lifetime. We can

8Much faster decay b
0
! b+ J can occur if there are pseudo-Goldstone familon-like scalars J , arising

from the breaking of accidental global SU (10) symmetry of the superpotential (see the discussion in Sect.

2). However, here we will not consider such a possibility.
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use cosmological arguments, together with the experimental limits on searches of heavy

isotopes, to put an upper bound on �b0 , which in turn will translate in an upper limit on VH .

Indeed, taking into account the �nite lifetime of the heavy quarks, their present number

abundance relative to baryons is nb0=nB = r0 exp(�t0=�b0) � 10�28, where r0 = (nb0=nB)0
represents the relic abundance for stable b0. From this equation we get the upper limit on

the b0 lifetime

�b0 � 3 � 1015h�1(1 + 0:036 lg r0)
�1 s: (24)

One cannot say de�nitely what is the value of r0, due to many theoretical uncertainties

related to the actual annihilation cross section for the b0. However, an estimate of the relic

abundance of heavy stable d-type quarks has been given in [24]. Under the assumption

that there is no cosmological baryon asymmetry between the b0 and �b0, it was found that

for mb0 � 150GeV the energy density of these relics, relative to critical density (namely


b0h
2 ) could range from 10�9 to 10�4 (smaller values are obtained for lighter b0 masses).

The lower limit corresponds to the case when the relic density is determined by the
annihilation after the QCD phase transition, and it was obtained by taking as an upper
bound on the annihilation cross section the geometrical cross section (�0 � 100mb ).

The upper limit was obtained under the opposite assumption, namely that annihilation
after con�nement is negligible, and that the relic density is essentially determined by the
QCD annihilation cross section for free quarks. Then the ratio of the b0 to baryon number
densities r0 = (nb0=nB)0 = 
b0=
B �mB=mb0 lies in the range 3 �10�10 < r0 < 3 �10�5 where
we have taken 
B � 0:02 as suggested by nucleosynthesis estimates. As is discussed in

[24], the most reasonable assumption is that the relevant annihilation process happens
after con�nement, however with a cross section much smaller than the geometrical one,
giving r0 � 10�7 � 10�8. Clearly, in the presence of a sizeable Baryon asymmetry in the
fourth family sector, the relic abundance of the heavy b0 quarks would be some orders of
magnitude larger than the quoted estimates.

As we see, the bound (24) very weakly depends on the initial b0 abundance. Even if

we allow for a large primordial asymmetry for the b0, and let r0 range between 1� 10�10,

by taking h = 0:5 we obtain �b0 � 6 � 1015 � 1016 s. On the other hand, according to eq.

(23), this bound translates into an extremely strong upper limit

VH � (1:1 � 1:3) � 1011 �

�
mb0

150 GeV

�5=4

GeV: (25)

Thus, the scale VH cannot exceed 2 � 1011GeV unless mb0 � 200GeV.
More stringent limit on r0 and �b0 can be derived by considering that the late decay

of the b0 can cause a signi�cant contribution to observed cosmic ray 
uxes, in particular
to the isotropic di�use gamma-ray background [27]. Indeed, at the moment of decay, the

b0 quarks are bounded within colorless hadrons like b0ud or b0u [24]. Then in the decay

b0 ! b���
0 an unstable hadronic state emerges with the excitation energy E0 '

1
3
mb0.

This will essentially appear as a hadronic jet with the b quark being the leading particle.

The fragmentation of this jet produces �0, � etc., with the subsequent radiative decay

resulting in a speci�c photon spectrum. Obviously, the amount of produced photons is
directly proportional to r0. In order to estimate their 
ux in the present Universe, the

redshift of their energies has to be taken into account as well. As long as the decay happens

at the matter dominated epoch, and the small amount of relativistic decay products does

12



not a�ect sensibly the Universe expansion rate, we have 1 + z = (t0=�b0)
2=3 � 10 � 20 for

the values of �b0 estimated above. We also need to know what fraction of the jet energy E0

is taken by the photons and what is the energy spectrum. These issues were studied in ref.

[28], where the photon spectra produced at jet hadronization were computed for di�erent

leading particles using a Monte Carlo simulation program [29]. It was shown that these

spectra exhibit a remarkable scaling property in terms of the variable x = E
=E0, and in

the case of leading particle being a b quark, the photons carry away about 25 percent of

the initial jet energy. Using the results of ref. [28] we have computed the value of the

isotropic cosmological gamma-
ux d�
=dE
 and we have compared it with the existing

observational limits (see [30] and references therein). For example, for E
 = 100 MeV

the experimental upper bound on the 
-
ux is of about 10�7 cm�2 s�1 sr�1MeV�1. We

have obtained that the cosmic gamma-
ux produced due to b0 decay at z = 10 � 20,

saturates the above bound for r0 � 10�7 which is close to, but still not in con
ict with

our estimate of the b0 relic abundance in the b0-b0 symmetric case. Substantially larger r0
would require much larger redshift, and hence much smaller �b0. On the other hand, the
lower bound (22) on the horizontal symmetry breaking scale VH already excludes much
smaller lifetimes.

This analysis implies that r0 should be rather small, so that any sizeable cosmological
baryon asymmetry between b0 and �b0 is excluded. This severely constrains the possible

baryogenesis mechanisms applicable to our model. The appearance of baryon asymmetry
in the fourth family in itself is hardly expected, since it is unmixed with the other three
families and hence it has no source of CP violation. However, the sphaleron e�ects [31, 32]
would immediately redistribute the baryon asymmetry produced within the �rst three
families to the fourth family fermions. Therefore, no mechanism is acceptable which

generates the baryon asymmetry before the sphaleron e�ects are switched o�, that is
before the electroweak phase transition.9 In the context of our model the most appealing
possibility is to to assume that no baryon asymmetry is produced before the electroweak

epoch, and baryogenesis takes place at the electroweak (�rst order) phase transition. Such
a baryogenesis mechanism is associated with the walls of the expanding bubbles of the

broken phase [35]. Outside of the bubbles electroweak symmetry is unbroken, quarks are
massless and the rate of the fermion number violation due to sphaleron transitions greatly
exceeds the Universe expansion rate. Inside the bubbles the quarks are massive due to

non-zero VEVs of the Higgs �elds, while the sphaleron processes are strongly suppressed

and fermion number is e�ectively conserved. Then baryon asymmetry inside the bubbles
could be produced (and maintained) due to CP violating e�ects, as a di�erence between

the quark and anti-quark 
uxes penetrating the walls from the unbroken phase to the

9In principle, in our model the baryogenesis with non-zero B�L could occur due to CP violation e�ects

in out-of-equilibrium decays N c
! l+� of the heavy right-handed neutrino [33] (for the viability of this

mechanism in the SUSY case see ref. [34]), or in the decays of SU (4)H gauge or scalar bosons. Then

sphaleron e�ects would immediately transfer the produced net lepton number into a baryon asymmetry

also in the fourth family sector. Fortunately, our model naturally avoids the possibility of such a lepto-

baryogenesis. As it was shown in ref. [34], the large scale density 
uctuations hinted by the COBE

measurements require rather low in
ationary reheat temperature (TR � 108GeV) and correspondingly

low in
aton mass (m� � 1011GeV). On the other hand, the lower bound (22) on MN (and respectively

on VH ) tells us that masses of the right-handed neutrinos and horizontal bosons should exceed 1011GeV,

and therefore they are not produced after in
ation.
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broken one. Obviously, this concerns only the �rst three family fermions. Since the fourth

family is unmixed, has no CP violation, and moreover all the fermions are very heavy,

no baryon excess is expected in this sector. Although the viability of such a baryogenesis

in the SM is still disputed in the literature [36], in the context of SSM it could be more

e�ective and su�cient for providing the observed baryon asymmetry. Clearly this topic

deserves additional special considerations.

According to eq. (20), the upper limit on the horizontal symmetry breaking scale

VH <� 2 � 1011GeV together with the experimental limit m�0 � MZ=2 translates into a

lower bound on the � -neutrino mass:

m�� �
��

hN

m2
Z

4VH
>� (1� 10) eV (26)

where in the numerical estimate we have taken into account the O(1) uncertainties in

the relative renormalization factor �� and in the Yukawa coupling hN (for perturbativ-

ity we have to assume hN < 3 at � = VH). A �� with mass in the range 1 � 10 eV
will give a sizeable contribution to the cosmological energy density as a hot dark mat-
ter (HDM) component, while according to (21) �� and �e are expected to have much
smaller masses. We remind here that the COBE measurements of the cosmic microwave
background anisotropy, together with other data on the density distribution of the Uni-
verse at all distance scales (galaxy-galaxy angular correlations, correlations of galactic

clusters, etc.), can all be �t by assuming some HDM admixture to the dominant CDM
component [37]. The best �ts hint to a neutrino mass m�� � 5 � 7 eV [38] which does
appear naturally in our model. As for the CDM itself, in our R parity conserving SUSY
model it is naturally provided by the lightest supersymmetric particle (LSP), presumably
a neutralino.

As we commented earlier, the neutrino mass hierarchy should be qualitatively the

same as that for the charged quarks and leptons. However, the spread in the Yukawa
coupling constants hF does not allow to put severe limits on the other neutrino masses.
For example, by taking m��=m�� � mc=mt, as is suggested by the �rst estimate in eq.
(21), one obtains m�� � (2� 5) � 10�3. This range corresponds to the Mikheyev-Smirnov-

Wolfenstein (MSW) solution of the solar neutrino problem [39] via �e ! �� oscillations.

Alternatively, if we had to attempt an explanation of the de�cit of the atmospheric ��
via �� ! �e oscillations, then we would need m�� � 0:1 eV [40] which is compatible with
the second estimate in eq. (21). Obviously the MSW explanation to the solar neutrino

de�cit would not be viable in this latter case.

4 Conclusions

In this paper we have put forward the idea that natural conservation of R parity in SUSY

models can be guaranteed in the presence of some suitable horizontal gauge symmetries.

We have shown how these symmetries can indeed forbid all the dangerous terms in the

superpotential, which are trilinear in the fermion super�elds, and how an accidental Z2

matter parity (equivalent to R parity) then follows in a quite satisfactory way only due to

gauge invariance and to the �eld content of the model. On theoretical and phenomeno-
logical grounds, we have uniquely identi�ed SU(4)H as the only viable horizontal gauge
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group. As a consequence, our scheme requires a fourth generation of super�elds in addi-

tion to the three known families. Hence we have focused our analysis on a four generation

SUSY model based on the SM vertical gauge group SU(3)�SU(2)�U(1) and equipped

with an SU(4)H anomaly free horizontal gauge symmetry. We have discussed in some

details the structure of the fermion mass matrices arising in the model, as well as some

possible patterns for the breaking of the horizontal symmetry. We have shown that the

simplest symmetry breaking scheme which ensures that all the horizontal modes acquire

large masses, can also lead to a particular form for the fermion mass matrices which

ensures that the masses for the fourth generation fermions are naturally close to the elec-

troweak scale. A recent RG analysis of SUSY models with four generations [11] does

apply straightforwardly to our case, and suggests that if the hypothesis of uni�cation of

the vertical gauge group is correct, then at least the new leptons should be well in the

reach of LEP II. As regards the light masses of the �rst three families, our model leads to

a seesaw suppression of their magnitude from the electroweak scale down to the observed
values. In particular, this is achieved without the need of any tuning for the Yukawa
couplings, which can be assumed to be all O(1) or close to the typical values of the gauge

couplings. By means of cosmological and astrophysical arguments, we have managed to
constrain rather precisely the scale VH at which the horizontal gauge symmetry is com-
pletely broken, obtaining a very narrow window around 1011GeV. Below this scale, our
model is essentially the SSM with four generations. In turn, the upper bound on the
scale VH feeds back into the neutrino mass matrix, implying a mass for the � -neutrino

not much lighter than a few eV. A neutrino mass in this range will then give a sizeable
contribution to the present energy density of the Universe. Thus, our model naturally
provides cosmological HDM in the form of �� 's and, due to R parity conservation, also
CDM in the form of stable LSPs. Since in our scheme conservation of R-parity is ensured
by the horizontal gauge symmetry independently of the particular choice for the vertical
gauge group, it would be interesting to extend the present analysis to phenomenologi-

cally appealing GUT models, such as SU(5) or E6, for which R-parity conservation is not

automatic.
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