SHIGA-TOXIN PRODUCING ESCHERICHIA COLI STEC Update

Roshan Reporter, MD, MPH
Rita Bagby, PS-PHN
Leticia Martinez, PS-PHN

Objectives

At the conclusion of this presentation the participant should be able to:

- Know the clinical signs and symptoms of the disease caused by Shiga toxin-producing *Escherichia* coli (STEC)
- Know the epidemiology of STEC infection in Los Angeles County.
- Know the case management of patients with STEC infection.
- Identify laboratory tests used to diagnose Shiga toxinproducing Escherichia coli infections

WHAT IS ESCHERICHIA COLI?

- Gram Negative Bacteria
- Sources can be: Urine, Resp, Blood, and Stool
- Considered normal flora in intestines of many mammals including humans
- **Some** E. coli causes GI disease
 - These are pathogenic E.coli; they posses ability to produce toxin
 - STEC is the type of E.coli are the topic today.

What are Shiga Toxin-producing E.coli?

- Certain bacteria produce a toxin called shiga toxin: some E.coli can do this
- These E. coli are called "Shiga toxin-producing" E. coli, or STEC.
- You may hear them called verocytotoxic E.coli (VTEC) or enterohemorrahagic E.coli (EHEC)

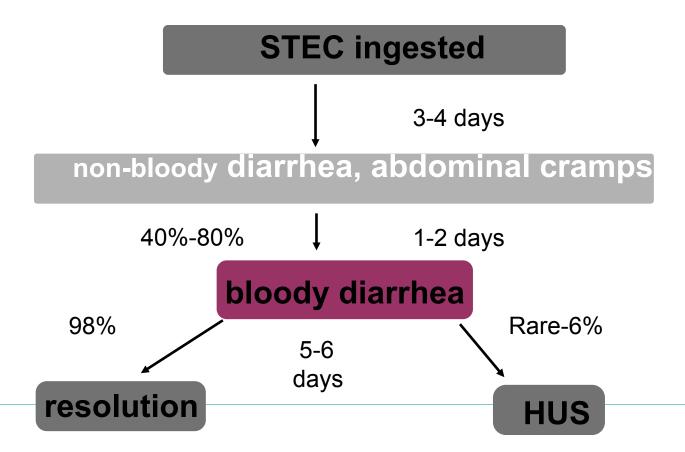
INCUBATION

The incubation period is usually 3-4 days after the exposure, but may be as short as 1 day or as long as 10 days

Signs and Symptoms

- Diarrhea (blood is common)
- Abdominal cramps (usually severe)
- Little or no Fever (less then 101F)

Pathophysiology

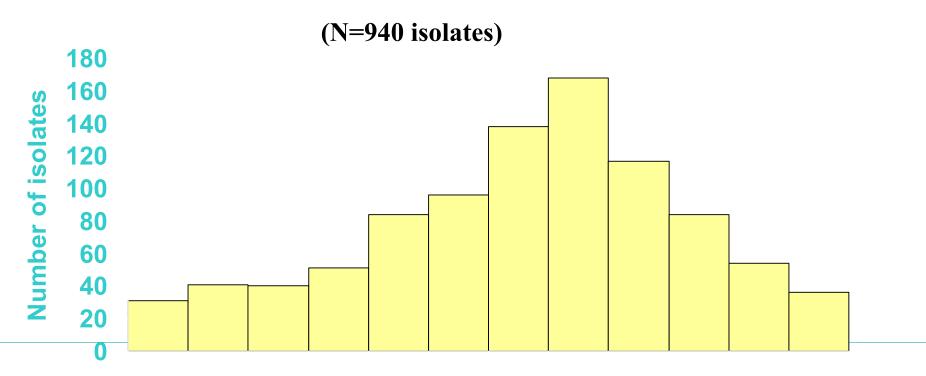

- Infection
 - Body's response
 - Organism is replicating and producing toxin
- Effects of toxin(s)
 - Adheres to cell
 - Epithelial intestinal
 - Endothelial Blood vessels
 - Renal Endothelial cells
 - Red blood cells

Sequence of events in STEC infection

Major modes of Transmission

- Food
 - cattle products, e.g., beef, raw milk
 - food contaminated with cattle or human feces e.g., lettuce, spinach, and cookie dough.
- Water
 - Drinking water
 - Recreational water
- Animal contact
 - contact with farm animals, e.g. petting zoos
 - contact with farm animals' environment
- Human contact.
 - With the feces of infected persons

Transmission


Modes of transmission in non-O157 STEC outbreaks, U.S.,1990-2007 (N = 23)

Mode	No. outbreaks
Food	11
Person-to-person	6
Lake water	3
Animal contact	2
Undetermined	1

Seasonality of human non-O157 STEC isolates submitted to CDC, 1983-2002

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Brooks, JID 2005

Public Health Implications

- As infectious as Shigella
 - Low infectious dose (10-100)
 - SOS assessment critical
 - If congregate setting, assess for other ills
- Increased morbidity/mortality
 - Hemolytic Uremic Syndrome (HUS)
 - Thrombotic thrombocytopenic purpura (TTP)
- Outbreaks
 - Local
 - National

VS

STEAK

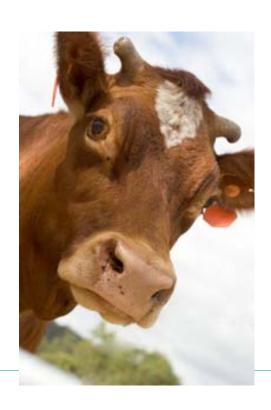
Ground Beef

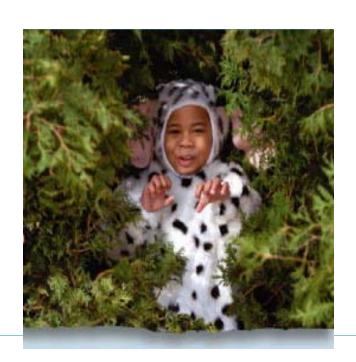
Special considerations

- Hamburger vs steak
- Pre washed vs washed
- Aged cheese vs fresh/soft cheese
- Pasteurized vs unpasteurized

PHN Observations/Considerations

- Food preferences
- Food at home
- Kitchen technique
- Animal exposure
- SOS
- Patient Education/comprehension
- Remember the focus should be on the case and identifying any potential source.



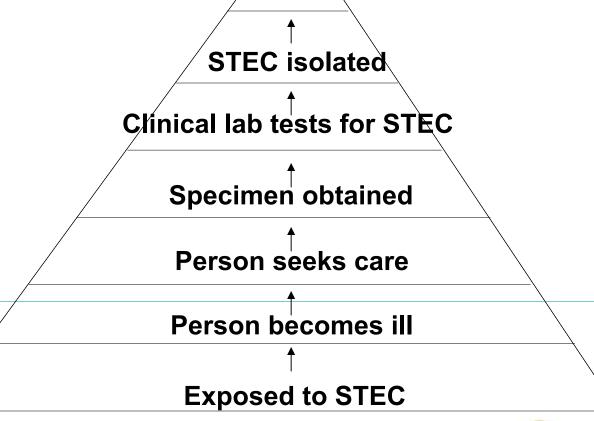


Two Possible Means of Transmission

Prevention

- Wash your hands
- Cook meats thoroughly.
- Avoid unpasteurized milk/milk products
- Avoid swallowing un-chlorinated water
- Be cautious around animals
- Wash produce
- Avoid cross-contamination

FBI or No FBI?


- Focus on the incubation period
- Ground Beef: Well cooked vs uncooked
- Vegetarian
- Kitchen technique
- Food Preferences
- FBI should be based on your best assessment of the situation

Pyramid of Surveillance

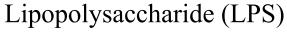
Reported to health department & CDC

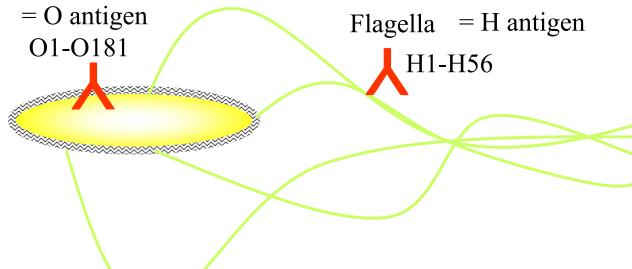
Milestones in STEC Follow-up

1994 E. coli O157 infection made reportable
 1995 Commercial Shiga toxin enzyme immunoassay (EIA) introduced
 2000 Non-O157 STEC infections made nationally reportable
 2009 CDC recommending that all diarrheal stool should be cultured for STEC and tested for the detection of Shiga toxins.

Testing for STEC using the Shiga toxin EIA

- Clinical lab processes stool specimen in broth
 - Tests broth for Shiga toxin using EIA
 - Positive test is reportable
- Clinical lab should send Shiga toxin-positive broth to Public Health lab
 - PH lab isolates STEC
 - PHL serotypes
 - If unable to serotype, will refer (State or CDC)


Challenges related to use of the Shiga toxin EIA


- After adopting the EIA, some clinical labs stopped testing for *E. coli* O157 using selective media
 - E. coli O157 outbreaks could be missed
- Some clinical labs discard Shiga toxin-positive specimens without obtaining an isolate, so
 - simply report "Shiga toxin positive" to doctor
 - serogroup not determined
 - E. coli O157 strains not identified and sub-typed for outbreak detection
 - Non-O157 outbreaks less likely identified

E. coli serotyping

Slide from USDA presentaion

In House PHL Testing

- O157
- O111
- O103
- O121
- O26

Top Non-O157 Serotypes (CDC)

O26
 22% of non-O157 STEC

O111 16% of non-O157 STEC

- O103 12% of non-O157 STEC

- O121 9% of non-O157 STEC

- O45 7% of non-O157 STEC

- O145 5% of non-O157 STEC

Case History Form

- Why was it changed?
- Why is it better then the old form?
- What is new?
- What stayed the same?

