
ON THE FUNCTORIALITY OF THE SLICE FILTRATION

PABLO PELAEZ

Abstract. Let k be a field with resolution of singularities, and X a separated
k-scheme of finite type with structure map g. We show that the slice filtration
commutes with pullback along g. Restricting the field further to the case of
characteristic zero, we are able to compute in SHX the slices of homotopy
invariant K-theory extending the result of Levine [Lev08], and also the zero
slice of the sphere spectrum extending the result of Levine [Lev08] and Vo-
evodsky [Voe04]. We also show that the zero slice of the sphere spectrum is a

strict cofibrant ring spectrum HZ
sf
X

which is stable under pullback and that

all the slices have a canonical structure of strict modules over HZ
sf
X

. If we con-
sider rational coefficents and assume that X is geometrically unibranch then
relying on the work of Cisinski and Déglise [CD09], we get that the zero slice
of the sphere spectrum is given by Voevodsky’s rational motivic cohomology
spectrum HZX ⊗ Q and that the slices have transfers. This proves several
conjectures of Voevodsky [Voe02, conjectures 1, 7, 10, 11].
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1. Introduction

Let X be a Noetherian separated scheme of finite Krull dimension, and MX be
the category of pointed simplicial presheaves in the smooth Nisnevich site SmX

over X equipped with the motivic model structure introduced in [PPR07, theorem
A.17]. We define TX in MX as the pointed simplicial presheaf represented by
S1 ∧ Gm, where Gm is the multiplicative group A1

X − {0} pointed by 1, and S1

denotes the simplicial circle. Let Spt(MX) denote Jardine’s category of symmetric
TX-spectra on MX equipped with the motivic model structure defined in [PPR07,
theorem A.38] and SHX denote its homotopy category, which is triangulated.

For every integer q ∈ Z, we consider the following family of symmetric TX-spectra

C
q
eff (X) = {Fn(Sr ∧ Gs

m ∧ U+) | n, r, s ≥ 0; s− n ≥ q; U ∈ SmX}

where Fn is the left adjoint to the n-evaluation functor

evn : Spt(MX) → MX

Voevodsky [Voe02] defines the slice filtration as the following family of triangu-
lated subcategories of SHX

· · · ⊆ Σq+1
T SHeff

X ⊆ Σq
TSH

eff
X ⊆ Σq−1

T SHeff
X ⊆ · · ·

where Σq
TSH

eff
X is the smallest full triangulated subcategory of SHX which con-

tains C
q
eff (X) and is closed under arbitrary coproducts.

It follows from the work of Neeman [Nee96], [Nee01] that the inclusion

iq : Σq
TSH

eff
X → SHX

has a right adjoint rq : SHX → Σq
TSH

eff
X , and that the following functors

fq : SHX → SHX

sq : SHX → SHX

are exact, where fq is defined as the composition iq ◦ rq, and sq is characterized by
the fact that for every E ∈ SHX , we have the following distinguished triangle in
SHX

fq+1E
ρE

q
// fqE

πE
q

// sqE // Σ1,0
T fq+1E

We will refer to fqE as the (q−1)-connective cover of E, and to sqE as the q-slice of
E. It follows directly from the definition that the q-slice of E satisfies the following
property:

HomSHX
(K, sqE) = 0

for every symmetric TX -spectrum K in Σq+1
T SHeff

X .
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2. A general criterion

In this section g : X → Y will be a map of schemes, where X and Y are
Noetherian, separated and of finite Krull dimension. Our goal is to introduce a
general criterion which implies the compatibility between the slice filtration and
pullback along g:

Lg∗ : SHY → SHX

Lemma 2.1. For every integer q ∈ Z we have that Lg∗(Σq
TSH

eff
Y ) ⊆ Σq

TSH
eff
X ,

i.e. the functor Lg∗ : SHY → SHX respects connective objects.

Proof. This follows directly from the fact that g∗(TY ) = TX . �

It follows immediately from lemma 2.1 that for any integer q ∈ Z, we have a pair
of natural transformations αq : Lg∗ ◦ fq → fq ◦ Lg∗, βq : Lg∗ ◦ sq → sq ◦ Lg∗ such
that for every E ∈ SHY the following diagram

(2.1)

Lg∗(fq+1E)

αq+1(E)

��

Lg∗(ρE
q )

// Lg∗(fqE)

αq(E)

��

Lg∗(πE
q )

// Lg∗(sqE)

βq(E)

��

// Lg∗(Σ1,0
TY

fq+1E)

Σ1,0

TX
(αq+1(E))

��

fq+1(Lg∗E)
ρLg∗E

q

// fq(Lg∗E)
πLg∗E

q

// sq(Lg∗E) // Σ1,0
TX

fq+1(Lg∗E)

is commutative and its rows are distinguished triangles in SHX .

Definition 2.2. We say that the slice filtration is compatible with pullbacks along
g, if βq is a natural isomorphism for every q ∈ Z.

Definition 2.3. Let E ∈ SHX be a symmetric TX-spectrum and q ∈ Z. We say
that E is q-orthogonal with respect to the slice filtration in SHX , if one of the
following equivalent conditions holds:

(1) fqE = 0.

(2) HomSHX
(F, E) = 0 for every F ∈ Σq

TSH
eff
X .

Lemma 2.4. Let SH⊥
X(q) denote the full subcategory of SHX generated by the

symmetric TX-spectra which are q-orthogonal with respect to the slice filtration in
SHX . We have that SH⊥

X(q) is a triangulated subcategory of SHX .

Proof. It follows immediately from the fact that the functor HomSHX
(A,−) is

homological for every A ∈ SHX . �

Lemma 2.5. Let Rg∗ : SHX → SHY be the right adjoint of Lg∗ : SHY → SHX .
Then the functor Rg∗ is compatible with the q-orthogonal objects with respect to the
slice filtration, i.e.

Rg∗(SH
⊥
X(q)) ⊆ SH⊥

Y (q)

Proof. It suffices to show that for every symmetric TX -spectrum F in SHX which
is q-orthogonal with respect to the slice filtration, and for every symmetric TY -

spectrum H in SHY which is in Σq
TSH

eff
Y , we have

HomSHY
(H,Rg∗F ) = 0

However, by adjointness

HomSHY
(H,Rg∗F ) ∼= HomSHX

(Lg∗H, F )
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on the other hand, lemma 2.1 implies that Lg∗H ∈ Σq
TSH

eff
X . Hence

HomSHY
(H,Rg∗F ) ∼= HomSHX

(Lg∗H, F ) = 0

since F is in SH⊥
X(q). This finishes the proof. �

Lemma 2.6. Let E ∈ SHY be a symmetric TY -spectrum and q ∈ Z. If the following
condition holds:

(2.2) Lg∗(sqE) ∈ SH⊥
X(q + 1)

then the natural maps:

αq+1(fqE) : Lg∗(fq+1fqE) // fq+1(Lg∗(fqE))

αq(fqE) : Lg∗(fqfqE) // fq(Lg∗(fqE))

βq(fqE) : Lg∗(sqfqE) // sq(Lg∗(fqE))

are all isomorphisms in SHX .

Proof. Consider the commutative diagram (2.1) for fqE:

Lg∗(fq+1fqE)

αq+1(fqE)

��

Lg∗(ρ
fqE
q )

// Lg∗(fqfqE)

αq(fqE)

��

Lg∗(π
fqE
q )

// Lg∗(sqfqE)

βq(fqE)

��

// Lg∗(Σ1,0
TY

fq+1fqE)

��

fq+1(Lg∗fqE)
ρ
Lg∗fqE
q

// fq(Lg∗fqE)
π
Lg∗fqE
q

// sq(Lg∗fqE) // Σ1,0
TX

fq+1(Lg∗fqE)

It follows from lemma 2.1 that αq(fqE) is an isomorphism. Using the octahedral
axiom we get the following commutative diagram where all the rows and columns
are distinguished triangles in SHX :

Lg∗(fq+1fqE)

αq+1(fqE)

��

Lg∗(ρ
fqE
q )

// Lg∗(fqfqE)

αq(fqE)

��

Lg∗(π
fqE
q )

// Lg∗(sqfqE)

βq(fqE)

��

// Lg∗(Σ1,0
TY

fq+1fqE)

��

fq+1(Lg∗fqE)
ρ
Lg∗fqE
q

//

��

fq(Lg∗fqE)
π
Lg∗fqE
q

//

��

sq(Lg∗fqE) //

��

Σ1,0
TX

fq+1(Lg∗fqE)

��

A // 0 // Σ1,0
TX

A Σ1,0
TX

A

Thus, it suffices to show that Σ1,0
TX

A ∼= 0 in SHX . It follows from lemma 2.1

that Lg∗(fq+1fqE) is in Σq+1
T SHeff

X , and by construction fq+1(Lg∗fqE) is also in

Σq+1
T SHeff

X . Hence, A and Σ1,0
TX

A are both in Σq+1
T SHeff

X .

On the other hand, by hypothesis Lg∗(sqE) ∼= Lg∗(sqfqE) is in SH⊥
X(q + 1);

therefore, lemma 2.4 implies that Σ1,0
TX

A is in SH⊥
X(q + 1), since sq(Lg∗fqE) is in

SH⊥
X(q + 1) by construction.

We then have

HomSHX
(Σ1,0

TX
A, Σ1,0

TX
A) = 0

and from this it follows at once that Σ1,0
TX

A ∼= 0 in SHX , as we wanted. �
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Theorem 2.7. If the condition (2.2) in lemma 2.6 holds for every symmetric TY -
spectrum in SHY and for every integer ℓ ∈ Z, we have that the slice filtration is
compatible with pullbacks along g, i.e. we have a natural isomorphism βℓ : Lg∗◦sℓ →
sℓ ◦ Lg∗ for every ℓ ∈ Z.

Proof. Let E be a symmetric TY -spectrum in SHY and fix an integer q ∈ Z. Then
E ∼= hocolimp≤qfpE, and since Lg∗ and sq commute with homotopy colimits we
have that βq(E) : Lg∗(sqE) → sq(Lg∗E) is given by hocolimp≤qβq(fpE). Hence,
it suffices to show that βq(fpE) : Lg∗(sq(fpE)) → sqLg∗(fpE) is an isomorphism
in SHX for every integer p ≤ q.

Lemma 2.6 implies that βq(fqE) is an isomorphism. We now proceed by induc-
tion, and assume that βq(frE) is an isomorphism for some r ≤ q. It only remains
to show that in this situation, βq(fr−1E) is also an isomorphism. Consider the
following commutative diagram in SHX :

Lg∗(sq(frE))
βq(frE)

//

Lg∗sq(ρE
r−1)

��

sq(Lg∗(frE))

sqLg∗(ρE
r−1)

��

Lg∗(sq(fr−1E))
βq(fr−1E)

// sq(Lg∗(fr−1E))

Since r ≤ q, the left vertical map is an isomorphism and our induction hypoth-
esis says that βq(frE) is also an isomorphism. Thus, it is enough to check that
sqLg∗(ρE

r−1) is an isomorphism in SHX . However, we have the following commu-
tative diagram in SHX :

sq(Lg∗(frE))
∼=

//

sqLg∗(ρE
r−1)

��

sq(Lg∗(frfr−1E))

sq(αr(fr−1E))

��

sq(Lg∗(fr−1E))
∼=

// sq(fr(Lg∗(fr−1E)))

where the rows are both canonical isomorphisms and the right vertical map is also
an isomorphism by lemma 2.6. Thus, sqLg∗(ρE

r−1) is an isomorphism in SHX . This
finishes the proof. �

Remark 2.8. It is clear that theorem 2.7 holds for any exact functor

F : SHY → SHX

which satisfies the following axioms:

(1) For every q ∈ Z, F (Σq
TSH

eff
Y ) ⊆ Σq

TSH
eff
X .

(2) F commutes with homotopy colimits.

Interesting examples are the following:

(1) A ∧ − : SHX → SHX , where A is a cofibrant symmetric TX-spectrum in

SHeff
X .

(2) Lg♯ : SHX → SHY , where g : X → Y is a smooth map of finite type.

Lemma 2.9. Assume that g : X → Y is a smooth map. We have that for every
symmetric TY -spectrum in SHY and for every integer ℓ ∈ Z, the condition (2.2) in
lemma 2.6 holds; and as a consequence we get that the slice filtration is compatible
with pullbacks along g in the sense of definition 2.2.
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Proof. Consider a symmetric TY -spectrum E in SHY and fix an integer q ∈ Z. By
theorem 2.7 it suffices to show that Lg∗(sqE) is in SH⊥

X(q + 1).
Let K = Fn(Sr∧Gs

m∧U+), where n, r, s ≥ 0; s−n ≥ q+1 and U ∈ SmX . Since
g is smooth we have that Lg∗ : SHY → SHX has a left adjoint Lg♯ : SHX → SHY .
It is easy to see that Lg♯K = K where we look at U as a smooth scheme over Y

using the map g, and Gm as the multiplicative group over Y (see [MV99, proposition
1.23(2)]). Therefore

HomSHX
(K,Lg∗sqE) ∼= HomSHY

(Lg♯K, sqE) ∼= HomSHY
(K, sqE)

However, it is clear that K is in Σq+1
T SHeff

Y and by construction we have that sqE

is in SH⊥
Y (q + 1). Thus

HomSHX
(K,Lg∗sqE) ∼= HomSHY

(K, sqE) = 0

and this finishes the proof since the family

C
q+1
eff (X) = {Fn(Sr ∧ Gs

m ∧ U+) | n, r, s ≥ 0; s − n ≥ q + 1; U ∈ SmX}

is a set of compact generators for Σq+1
T SHeff

X . �
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3. The case of schemes defined over a field with resolution of

singularities

In this section k will denote a field with resolution of singularities and X will be
a separated k-scheme of finite type with structure map g : X → k. Our goal is to
show that the condition (2.2) of lemma 2.6 holds for every symmetric Tk-spectrum
in SHk and for every integer q ∈ Z. Thus, by theorem 2.7 we have that in this
situation there exists compatibility between the slice filtration and pullback along
g in the sense of definition 2.2.

Proposition 3.1. Let E be an arbitrary symmetric Tk-spectrum in SHk and q ∈ Z

an arbitrary integer. Then

Lg∗(sqE) ∈ SH⊥
X(q + 1)

Proof. We will proceed by Noetherian induction. Since our base field has resolution
of singularities, we have the following fibre product diagrams:

p−1Y
ı̃

//

p̃

��

W

p

��

p−1U
̃

//

h ∼=

��

W

p

��

Y
i

// X U = X\Y
j

// X

where Y is a nowhere dense closed subscheme of X , p is projective, dominant and
birational, W is smooth over k (with structure map g ◦p) and h is an isomorphism.

It follows from [Ayo07, scholium 1.4.2] that the following diagram is a distin-
guished triangle in SHW , where F denotes L(g ◦ p)∗(sqE)

̃! ◦ ̃!(F )
ǫF

// F
ηF

// Rı̃∗ ◦ Lı̃∗(F ) // Σ1,0
TW

̃! ◦ ̃!(F )

Now, lemma 2.9 implies that F ∼= L(g ◦ p)∗(sqE) is in SH⊥
W (q + 1), since g ◦ p :

W → k is a smooth map. By Noetherian induction, we have that Lı̃∗(F ) ∼=
L(g ◦ p ◦ ı̃)∗(sqE) is in SH⊥

p−1Y (q + 1), thus by lemma 2.5 we get that Rı̃∗ ◦Lı̃∗(F )

is in SH⊥
W (q + 1). Therefore, it follows from lemma 2.4 that ̃! ◦ ̃!(F ) is also in

SH⊥
W (q + 1).

On the other hand, lemma 2.5 implies that

Rp∗ ◦ ̃! ◦ ̃!(F ) ∼= Rp∗ ◦ ̃! ◦ ̃! ◦ Lp∗(Lg∗sqE)

is in SH⊥
X(q + 1). But since p is projective, we have the following natural isomor-

phisms (see [Ayo07, scholium 1.4.2])

(3.1)

p!
∼=

// Rp∗

Lj∗ ◦ Rp∗
∼=

// Rh∗ ◦ L̃∗

h! ◦ ̃!
∼=

// j! ◦ p!
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hence we get the following natural isomorphisms in SHX

Rp∗ ◦ ̃! ◦ ̃! ◦ Lp∗(Lg∗sqE) ∼= p! ◦ ̃! ◦ ̃! ◦ Lp∗(Lg∗sqE)(3.2)

∼= j! ◦ h! ◦ ̃! ◦ Lp∗(Lg∗sqE)(3.3)

∼= j! ◦ j! ◦ p! ◦ Lp∗(Lg∗sqE)(3.4)

∼= j! ◦ j! ◦ Rp∗ ◦ Lp∗(Lg∗sqE)(3.5)
∼= Lj♯ ◦ Lj∗ ◦Rp∗ ◦ Lp∗(Lg∗sqE)(3.6)
∼= Lj♯ ◦ Rh∗ ◦ L̃∗ ◦ Lp∗(Lg∗sqE)(3.7)
∼= Lj♯ ◦ Rh∗ ◦ Lh∗ ◦ Lj∗(Lg∗sqE)(3.8)
∼= Lj♯ ◦ Lj∗(Lg∗sqE)(3.9)

∼= j! ◦ j!(Lg∗sqE)(3.10)

where (3.2), (3.4), (3.5), (3.7) follow from the natural isomorphisms mentioned in
(3.1); (3.3), (3.8) follow from functoriality; (3.9) follows from the fact that h is an
isomorphism and (3.6), (3.10) follow from the fact that j is an open embedding (so
j! ◦ j! is naturally isomorphic to Lj♯ ◦Lj∗). Therefore, we have that j! ◦ j!(Lg∗sqE)

is in SH⊥
X(q +1). On the other hand, by Noetherian induction we can assume that

Li∗(Lg∗sqE) is in SH⊥
Y (q+1), and using lemma 2.5 we get that Ri∗ ◦Li∗(Lg∗sqE)

is in SH⊥
X(q + 1).

Finally, it follows from [Ayo07, scholium 1.4.2] that the following diagram is a
distinguished triangle in SHX ,

j! ◦ j!(Lg∗sqE) // Lg∗sqE // Ri∗ ◦ Li∗(Lg∗sqE) // Σ1,0
TX

j! ◦ j!(Lg∗sqE)

and lemma 2.4 implies that Lg∗(sqE) is in SH⊥
X(q + 1), as we wanted. �

Theorem 3.2. Let X be a separated k-scheme of finite type with structure map
g : X → k, where k has resolution of singularities. Then the slice filtration is
compatible with pullbacks along g in the sense of definition 2.2.

Proof. It follows directly from theorem 2.7 together with proposition 3.1. �
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4. Applications

In this section we assume that all our schemes are of finite type over a field k of
characteristic zero.

Definition 4.1. We will denote by 1X , KHX , HZX , HZ
sf
X ∈ Spt(MX) respec-

tively the sphere spectrum, the spectrum representing homotopy invariant K-theory,
the spectrum representing motivic cohomology and s0(1X).

The following theorem proves several conjectures of Voevodsky [Voe02, conjec-
tures 1, 7, 10, 11].

Theorem 4.2. Let X be a separated k-scheme of finite type with structure map
g : X → k.

(1) The zero slice of the sphere spectrum, HZ
sf
X is isomorphic to Lg∗(HZk) in

SHX .
(2) The zero slice of the sphere spectrum, HZ

sf
X is a commutative ring spectrum

in SHX and a cofibrant ring spectrum in Spt(MX).

(3) For every integer q, we have that sq(KHX) is isomorphic to Σq,q
TX

HZ
sf
X in

SHX .
(4) If we consider rational coefficients and X is geometrically unibranch then

HZ
sf
X ⊗Q, sq(KHX)⊗Q are respectively isomorphic in SHX to HZX ⊗Q,

Σq,q
TX

HZX ⊗ Q.

Proof. (1): It is clear that 1X
∼= Lg∗(1k) in SHX . Therefore, by theorem 3.2 we

have the following natural isomorphisms in SHX

s0(1X) ∼= s0(Lg∗1k) ∼= Lg∗(s01k)

Finally, the result follows from the work of Levine [Lev08, theorem 10.5.1] and
Voevodsky [Voe04, theorem 6.6], which implies that the unit map u : 1k → HZk

induces the following isomorphisms in SHk

s0(u) : s01k → s0HZk
∼= HZk

(2): We have that HZk is a commutative ring spectrum in Spt(MX) (see
[DRØ03, lemma 4.6]). Moreover, using [SS00, theorem 4.1(3)] together with [PPR07,
theorem A.38] and [Jar00, proposition 4.19], we get a weak equivalence

w : HZc
k → HZk

in Spt(Mk) such that HZc
k is a cofibrant ring spectrum in Spt(Mk). On the other

hand, proposition A.47 in [PPR07] implies that

g∗ : Spt(Mk) → Spt(MX)

is a strict symmetric monoidal left Quillen functor. Therefore, g∗(HZc
k) is a cofi-

brant ring spectrum in Spt(MX) which is isomorphic to Lg∗(HZk) in SHX . Thus,
the result follows from (1) above.

(3): It follows from [Voe98, section 6.2] that KHX = Lg∗(KHk). Now, using
theorem 3.2 we get the following natural isomorphisms in SHX

sqKHX
∼= sq(Lg∗KHk) ∼= Lg∗(sqKHk)

Finally, the work of Levine [Lev08, theorems 6.4.2 and 9.0.3] implies that sqKHk

is isomorphic in SHk to Σq,q
Tk

HZk. Thus

sqKHX
∼= Lg∗(sqKHk) ∼= Lg∗(Σq,q

Tk
HZk) ∼= Σq,q

TX
Lg∗(HZk) ∼= Σq,q

TX
HZ

sf
X
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as we wanted.
(4): The work of Cisinski and Déglise [CD09, corollary 15.1.6(2)] implies that

under these conditons Lg∗(HZk)⊗Q is isomorphic to HZX⊗Q in SHX . Therefore,
the result follows from (1) and (3) above. �

Remark 4.3. We may consider theorem 4.2 as an extension of the computation
of Levine [Lev08, theorems 6.4.2 and 9.0.3] from fields to schemes of finite type,
however notice that we need to assume that our base scheme is defined over a field
of characteristic zero whereas [Lev08] holds over perfect fields.

Similarly, we may consider theorem 4.2 as an extension of the computation of
Voevodsky [Voe04, theorem 6.6] and Levine [Lev08, theorem 10.5.1], but [Lev08]
also holds over perfect fields whereas we need to assume that our base scheme is
defined over a field of characteristic zero.

Theorem 4.4. Let E be an arbitrary symmetric TX-spectrum in Spt(MX) and
q ∈ Z an arbitrary integer.

(1) The q-slice of E, sq(E) has a natural structure of HZ
sf
X -module in Spt(MX).

(2) If we consider rational coefficients and X is geometrically unibranch then
sq(E) ⊗ Q has a natural structure of HZX ⊗ Q-module in Spt(MX), in
particular sq(E) ⊗ Q has transfers.

Proof. This follows directly from theorem 4.2 and [Pel09, theorem 2.1], [Pel08,
lemma 3.6.21(3) and theorem 3.6.20]. �

Definition 4.5. Let HZ
sf
X -mod be the category of left HZ

sf
X -modules in Spt(MX)

equipped with the model structure induced by the adjuntion

(HZ
sf
X ∧ −, U, ϕ) : Spt(MX) → HZ

sf
X -mod

i.e. a map f in HZ
sf
X -mod is a fibration or a weak equivalence if and only if Uf

is a fibration or a weak equivalence in Spt(MX). We will denote by DM
sf
X the

homotopy category of HZ
sf
X -mod, which is triangulated.

Theorem 4.6. The 2-functor X 7→ DM
sf
X has the structure of a motivic category

in the sense of Cisinski and Déglise [CD09], and the adjunction

(HZ
sf
X ∧L −,RU, ϕ) : SHX → DM

sf
X

is a morphism of motivic categories SH → DM in the category of separated k-
schemes of finite type.

In particular, X 7→ DM
sf
X is a homotopic stable 2-functor in the sense of Ayoub

and is equipped with the formalism of the six operations [Ayo07, scholium 1.4.2].

Proof. Theorem 4.2(1)-(2) implies that X 7→ HZ
sf
X is a family of cofibrant ring

spectra which is stable under pullback in the category of separated k-schemes of
finite type. Hence the result follows immediately from propositions 4.2.11, 4.2.16
and corollary 2.4.9 in [CD09]. �

Let HB,X ∈ Spt(MX) denote the Beilinson motivic cohomology spectrum intro-
duced by Cisinski and Déglise (cf. [CD09, definition 13.1.2]). It follows in particular
from Corollary 13.2.6 in [CD09] that HB,X is a commutative cofibrant ring spectrum
in Spt(MX) which is stable under pullback in the category of separated schemes
of finite type over k.
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Theorem 4.7. The Beilinson motivic cohomology spectrum HB,X is naturally

isomorphic to HZ
sf
X ⊗ Q in SHX , thus the homotopy category of HB,X-modules

Ho(HB,X) is equivalent to the homotopy category of left HZ
sf
X -modules with ratio-

nal coefficients.

Hence, we get that modulo torsion Ho(HB,X) and DM
sf
X are equivalent.

Proof. By theorem 4.2(1) we have that HZ
sf
X ⊗ Q is stable under pullback in the

category of separated schemes of finite type over k, on the other hand corollary
13.2.6 in [CD09] implies in particular that HB,X is also stable under pullback.

Therefore, it suffices to show that HB,k and HZ
sf
k ⊗ Q are isomorphic in SHk for

the base field k.
However, corollary 15.1.6(1) in [CD09] implies that HB,k and HZk ⊗Q are nat-

urally isomorphic in SHk, and finally it follows from theorem 4.2(1) that HZk ⊗Q

and HZ
sf
k ⊗ Q are also naturally isomorphic in SHk. This finishes the proof. �
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