# ENCE 603 <br> Management Science Applications in Project Management <br> Lectures 5-7 <br> Project Management LP Models in Scheduling, Integer Programming 

Spring 2009
Instructor: Dr. Steven A. Gabriel www.eng.umd.edu/~sgabriel

## Outline

- Project Scheduling
- Critical Path Method (CPM)
- AON and AOA methods
- Project Crashing
- Precedence Diagramming Method (PDM)
- Gantt Charts


## Project Networks

- Project activities described by a network
- Can use the activity-on-node (AON) model
- Nodes are activities, arrows (arcs) indicate the precedence relationships
- Could also consider the activity-on-arc (AOA) model which has arcs for activities with nodes being the starting and ending points
- AON used frequently in practical, non-optimization situations, AOA is used in optimization settings
- First AON, then AOA
- Main idea for both is to determine the critical path (e.g., tasks whose delay will cause a delay for the whole project)


## Project Networks

- Sample project network (AON) (read left to right)
- Dashed lines indicate dummy activities
- Key: Activity, Duration (days)


## Network Analysis

- Network Scheduling:
- Main purpose of CPM is to determine the "critical path"
- Critical path determines the minimum completion time for a project
- Use forward pass and backward pass routines to analyze the project network
- Network Control:
- Monitor progress of a project on the basis of the network schedule
- Take correction action when required
- "Crashing" the project
- Penalty/reward approach


# Activity on Node (AON) Representation of Project Networks 

## Project Networks

A: Activity identification (node)
ES: Earliest starting time
EC: Earliest completion time
LS: Latest starting time
LC: Latest completion time
t : Activity duration
$\mathrm{P}(\mathrm{A})$ : set of predecessor nodes to node A
S(A): set of successor nodes to node A

## Project Networks

| - In tabular form |  |  |
| :--- | :--- | :---: |
| Activity | Predecessor | Duration |
| A | n/a | 2 |
| B | na | 6 |
| C | n/a | 4 |
| D | A | 3 |
| E | C | 5 |
| F | A | 4 |
| G | B,D,E | 2 |

Sample Computations
$E S(A)=\operatorname{Max}\{E C(j), j$ in $P(A)\}=E C($ start $)=0$
$\mathrm{EC}(\mathrm{A})=\mathrm{ES}(\mathrm{A})+\mathrm{t}_{\mathrm{A}}=0+2=2$
$\mathrm{ES}(\mathrm{B})=\mathrm{EC}($ start $)=0$
$E C(B)=E S(B)+t_{B}=0+6=6$
$E S(F)=E C(A)=2$
$E C(F)=E S(F)+4=6$, etc.


C, 4


Copyright 2008, Dr. Steven A. Gabriel

## Project Networks

- Notation: Above node ES(i), EC(i), below node LS(i),LC(i)
- Zero project slack convention in force



## Project Networks

- During the forward pass, it is assumed that each activity will begin at its earliest starting time
- An activity can begin as soon as the last of its predecessors has finished

C must wait for both A and B to finish before it can start


Completion of the forward pass determines the earliest completion time of the project

- During the backward pass, it is assumed that each activity begins at its latest completion time
- Each activity ends at the latest starting time of the first activity in the project network


## Project Networks

- Note:
$1=$ first node (activity), $\mathrm{n}=$ last node, $\mathrm{i}, \mathrm{j}=$ arbitrary nodes, $P(i)=$ immediate predecessors of node $i, S(j)=$ immediate successors of node $\mathrm{j}, \mathrm{T}_{\mathrm{p}}=$ project deadline time

- $\mathrm{P}(3)=\{1,2\}$
- $\mathrm{S}(3)=\{4,5\}$

Rule 1: $\mathrm{ES}(1)=0$ (unless otherwise stated)
Rule 2: $\mathrm{ES}(\mathrm{i})=\mathrm{Max} \mathrm{j}$ in $\mathrm{P}(\mathrm{i})\{\mathrm{EC}(\mathrm{j})\}$

- Why do we use "max" of the predecessor EC's in rule 2?



## Project Networks

Rule 3: $\mathrm{EC}(\mathrm{i})=\mathrm{ES}(\mathrm{i})+\mathrm{t}_{\mathrm{i}}$
Rule 4: EC (Project) $=\mathrm{EC}(\mathrm{n})$
Rule 5: LC(Project)=EC(Project) "zero project slack convention" (unless otherwise stated for example, see Rule 6)
Rule 6: $\mathrm{LC}($ Project $)=T p$
Rule 7: LC( j ) $=$ Min i in $\mathrm{S}(\mathrm{j}) \mathrm{LS}(\mathrm{i})$
Rule 8: $\mathrm{LS}(\mathrm{j})=\mathrm{LC}(\mathrm{j})-\mathrm{tj}$

- Why do we use "min" in the successor LS's in rule 7 ?



## Project Networks

- Total Slack: Amount of time an activity may be delayed from its earliest starting time without delaying the latest completion time of the project
$T S(\mathrm{j})=\mathrm{LC}(\mathrm{j})-\mathrm{EC}(\mathrm{j})$ or $\mathrm{TS}(\mathrm{j})=\mathrm{LS}(\mathrm{j})-\mathrm{ES}(\mathrm{j})$
- Those activities with the minimum total slack are called the critical activities (e.g., "kitchen cabinets")
- Examples of activities that might have slack
- Free Slack: Amount of time an activity may be delayed from its earliest starting time without delaying the starting time of any of its immediate successors.
$F S(j)=\operatorname{Min}_{i \text { in } S(j)}\{E S(i)-E C(j)$
- Let's consider the sample network relative to critical activities and slack times


## CPM-Determining the Critical Path AON

Step 1: Complete the forward pass
Step 2: Identify the last node in the network as a critical activity
Step 3: If activity i in $\mathrm{P}(\mathrm{j})$ and activity j is critical, check if $E C(i)=E S(j)$. If yes $\rightarrow$ activity i is critical. When all i in $\mathrm{P}(\mathrm{j})$ done, mark j as completed

Step 4: Continue backtracking from each unmarked node until the start node is reached
CPM-Forward Pass Example AON

| Activity | Predecessor | Duration |
| :--- | :--- | :--- |
| A | - | 2 |
| B | - | 6 |
| C | - | 4 |
| D | A | 3 |
| E | C | 5 |
| F | A | 4 |
| G | B,D,E | 2 |

Sample Computations
$\mathrm{ES}(\mathrm{A})=\operatorname{Max}\{\mathrm{EC}(\mathrm{j}), \mathrm{j}$ in $\mathrm{P}(\mathrm{A})\}=\mathrm{EC}($ start $)=0$
$\mathrm{EC}(\mathrm{A})=\mathrm{ES}(\mathrm{A})+\mathrm{t}_{\mathrm{A}}=0+2=2$
$E S(B)=E C($ start $)=0$
$E C(B)=E S(B)+t_{B}=0+6=6$
$\mathrm{ES}(\mathrm{F})=\mathrm{EC}(\mathrm{A})=2$
$E C(F)=E S(F)+4=6$, etc.
15

## CPM-Backward Pass Example AON

Notation: Above node ES(i), EC(i), below node LS(i),LC(i)

- Zero project slack convention in force

etc.


## CPM-Slacks and the Critical Path AON

- Total Slack: Amount of time an activity may be delayed from its earliest starting time without delaying the latest completion time of the project
$T S(\mathrm{j})=\mathrm{LC}(\mathrm{j})-E C(\mathrm{j})$ or $\mathrm{TS}(\mathrm{j})=\mathrm{LS}(\mathrm{j})-E S(\mathrm{j})$
- Those activities with the minimum total slack are called the critical activities.
- Examples of activities that might have slack
- Free Slack: Amount of time an activity may be delayed from its earliest starting time without delaying the starting time of any of its immediate successors.
$F S(j)=\operatorname{Min}_{\mathrm{i} \text { in } \mathrm{S}(\mathrm{j})}\{E S(\mathrm{i})-E C(\mathrm{j})\}$
- Other notions of slack time, see Badiru-Pulat
- Let's consider the sample network relative to critical activities and slack times


## CPM Analysis for Sample Network AON

| Activity | Duration <br> (Days) | ES | EC | LS | LC | TS | FS | Critical <br> Activity? |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | 2 | 0 | 2 | 4 | 6 | $6-2=4$ | $\operatorname{Min}\{2,2\}-2=0$ | No |
| B | 6 | 0 | 6 | 3 | 9 | $9-6=3$ | $\operatorname{Min}\{9\}-6=3$ | No |
| C | 4 | 0 | 4 | 0 | 4 | $4-4=0$ | $\operatorname{Min}\{4\}-4=0$ | YES |
| D | 3 | 2 | 5 | 6 | 9 | $9-5=4$ | $\operatorname{Min}\{9\}-5=4$ | No |
| E | 5 | 4 | 9 | 4 | 9 | $9-9=0$ | $\operatorname{Min}\{9\}-9=0$ | YES |
| F | 4 | 2 | 6 | 7 | 11 | $11-6=5$ | $\operatorname{Min}\{11\}-6=5$ | No |
| G | 2 | 9 | 11 | 9 | 11 | $11-11=0$ | $\operatorname{Min}\{11\}-11=0$ | YES |



## Project Networks

- When results of a CPM analysis are matched up with a calendar, then we obtain a project schedule
- Gantt chart is a popular way to present this schedule
- Using the ES times from the sample AON project network, we have the following Gantt chart
(could also use latest completion times as well, extreme case when all slack times are fully used)


## Project Networks



- Note, Gantt chart shows for example:
- $\quad$ Starting time of F can be delayed until day $7(\mathrm{TS}=5)$ w/o delaying overall project
- Also, A, D, or both may be delayed by a combined total of four days (TS=4) w/o delaying the overall project
- B may be delayed up to 3 days without affecting the overall project completion time
- Can ignore precedence arrows (better $2_{2}$ for large networks)


# Activity on Arc (AOA) Representation of Project Networks 

# Project Networks: Activity on Arc (AOA) Representation 



- Nodes represent the realizations of some milestones (events) of the project
- Arcs represent the activities
- Node i, the immediate predecessor node of $\operatorname{arc}(\mathrm{i}, \mathrm{j})$ is the start node for the activity
- Node j , the immediate successor node of $\operatorname{arc}(\mathrm{i}, \mathrm{j})$ is the end node for the activity
- Want to determine the critical path of activities, i.e., those with the least slack


## Activity on Arc (AOA) Representation

- The early event time for node i, ET(i), is the earliest time at which the event corresponding to node i can occur
- The late event time for node i, LT(i), is the latest time at which the event corresponding to node i can occur w/o delaying the completion of the project
- Let $\mathbf{t}_{\mathrm{ij}}$ be the duration of activity (i,j)
- The total float (slack) TF(i,j) of activity ( $\mathrm{i}, \mathrm{j}$ ) is the amount by which the starting time of $(\mathrm{i}, \mathrm{j})$ could be delayed beyond its earliest possible starting time w/o delaying the completion of the project (assuming no other activities are delayed)
- $\quad \mathrm{TF}(\mathrm{i}, \mathrm{j})=\mathrm{LT}(\mathrm{j})-\mathrm{ET}(\mathrm{i})-\mathrm{t}_{\mathrm{ij}}$
- The free float of (i,j), $\mathbf{F F}(\mathbf{i}, \mathbf{j})$ is the amount by which the starting time of activity ( $\mathrm{i}, \mathrm{j}$ ) can be delayed w/o delaying the start of any later activity beyond its earliest possible starting time
- $\quad \mathrm{FF}(\mathrm{i}, \mathrm{j})=\mathrm{ET}(\mathrm{j})-\mathrm{ET}(\mathrm{i})-\mathrm{t}_{\mathrm{ij}}$


## AOA Network Structure

- The network is acyclic (o/w an activity would precede itself)

- Each node should have at least one arc directed into the node and one arc directed out of the node (with the exception of the start and end nodes), why?
- Start node has does not have any arc into it and the end node has no arc out of it
- All of the nodes and arcs of the network have to be visited (that is realized) in order to complete the project, why?


## AOA Network Structure

- If a cycle exists (due perhaps to an error in the network construction), this will lead to cycling in the procedures
- More specifically, critical path calculations will not terminate
- Need a procedure to detect cycles in the project network (e.g., Depth-First Search method)


## Rules in AOA Networks

1. Node 1 represents the start of the project. An arc should lead from node 1 to represent each activity that has no predecessors.
2. A node (called the finish or end node) representing completion of the project should be included in the network.
3. Number the nodes in the network so that the node representing the completion of an activity always has a larger number than the node for the start of an activity (more than 1 way to do this).
4. An activity should not be represented by more than one arc in the network.
5. Two nodes can be connected by at most one arc.

## Small Sample Project

| Activity | Predecessor | Duration |
| :--- | :--- | :--- |
| A | - | 2 |
| B | - | 6 |
| C | - | 4 |
| D | A | 3 |
| E | C | 5 |
| F | A | 4 |
| G | $\mathrm{B}, \mathrm{D}, \mathrm{E}$ | 2 |

## Small Sample Project AOA



## Using Linear Programming to Find a Critical Path

- Let $\mathrm{x}_{\mathrm{j}}=$ the time that the event corresponding to node j occurs
- Let $\mathrm{t}_{\mathrm{ij}}=$ the time to complete activity $(\mathrm{i}, \mathrm{j})$
- For each activity (i,j), we know that before node j occurs, node i must occur and activity ( $\mathrm{i}, \mathrm{j}$ ) must be completed

$$
\Rightarrow x_{j} \geq x_{i}+t_{i j}, \forall(i, j)
$$

- Let 1 be the index of the start node
- Let F be the index of the finish node (i.e., when the project is completed)
- LP objective function is to minimize $\mathrm{x}_{\mathrm{F}}-\mathrm{x}_{1}$, i.e., the total project time


## Using Linear Programming to Find a Critical Path



## Using Linear Programming to Find a Critical Path

Min x5 - x1
s.t.
A) $\mathrm{x} 2-\mathrm{x} 1>=2$
B) $\mathrm{x} 4-\mathrm{x} 1>=6$
C) $x 3-x 1>=4$
D) $x 4-x 2>=3$
E) $x 4-x 3>=5$
F) $x 5-x 2>=4$
G) $x 5-x 4>=2$
end
free xl
free $x 2$
free x3
free $x 4$
free x5

OBJECTIVE FUNCTION VALUE
11.00000

| X5 | 11.000000 |
| ---: | ---: |
| X1 | 0.000000 |
| X2 | 6.000000 |
| X4 | 9.000000 |
| X3 | 4.000000 |

31

## Using Linear Programming to Find a Critical Path

Min x 5 - x 1
s.t.
A) x 2 - $\mathrm{x} 1>=2$
B) $\times 4-x 1>=6$
C) $\mathrm{x} 3-\mathrm{x} 1>=4$
D) $x 4-x 2>=3$
E) $x 4-x 3>=5$
F) $x 5-x 2>=4$
G) $x 5-x 4>=2$
end
free x 1
free $x 2$
free $x 3$
free $x 4$
free $x 5$


## Using Linear Programming to Find a Critical Path

- For each variable with zero value and zero reduced cost there is an alternative optimal solution.
- For each constraint with zero slack and zero dual variable there is an alternative optimal solution.
- For each constraint with a dual price of -1 , increasing the duration of the activity corresponding to that constraint by one day will increase the duration of the project by one day. Those constraints identify the critical activities.



## Dummy Arcs in AOA Networks

- Since activities:
i (Dad loads dishwasher), j (Mom checks son's homework), and k (son practices musical instrument) all have the same predecessor activity $h$ (family eats dinner) and the same immediate successor, activity 1 (go to basketball game), this would mean 3 parallel arcs between nodes 7 and 10
- An activity network allows only one arc between any two nodes so nodes 8 and 9 are drawn and connected to node 10 via dummy arcs


## Finding the Critical Path in an AOA Project Network for Introducing a New Product

| Activity | Description | Immediate <br> Predecessors | Duration <br> (Days) |
| :--- | :--- | :--- | :--- |
| a | Train workers | - | 6 |
| b | Purchase raw materials | - | 9 |
| c | Produce product 1 | a,b | 8 |
| d | Produce product 2 | a,b | 7 |
| e | Test product 2 | d | 10 |
| f | Assemble products 1 and 2 <br> into new product 3 | c,e | 12 |



```
    Finding the Critical Path in an AOA
Project Network for Introducing a New
                                    Product
```

$\min x 6-x 1$

s.t.
$x 3-x 1>=6 \quad!\operatorname{arc}(1,3)$
$x 2-x 1>=9!\operatorname{arc}(1,2)$
$x 5-x 3>=8 \quad!\operatorname{arc}(3,5)$
$x 4-x 3>=7 \quad!\operatorname{arc}(3,4)$
$x 5-x 4>=10!\operatorname{arc}(4,5)$
$x 6-x 5>=12!\operatorname{arc}(5,6)$
$x 3-x 2>=0 \quad!\operatorname{arc}(2,3)$
end

Why variables free (i.e., not necessarily nonnegative)?
When ok, when not?
! could have variables free or not
!free $\mathrm{x} 1 \times 2 \times 3 \times 4 \times 5 \times 6$

# Finding the Critical Path in an AOA Project Network for Introducing a New Product 

OBJECTIVE FUNCTION VALUE

1) $38.00000<$ Project completed in 38 days

| VARIABLE |  | VALUE | REDUCED COST |  |
| :---: | :---: | :---: | :--- | :---: |
| X6 | 38.000000 | 0.000000 |  |  |
| X1 | 0.000000 | 0.000000 | 〔 LP will have many alternate optima all with 38 |  |
| X3 | 9.000000 | 0.000000 |  |  |
| X2 | 9.000000 | 0.000000 | days. In general, the value of $\mathrm{X}_{\mathrm{i}}$ in an optimal |  |
| X5 | 26.000000 | 0.000000 | solution may assume any value between ET(i) and |  |
| X4 | 16.000000 | 0.000000 | LT(i). |  |


| ROW | SLACK OR SURPLUS | DUAL PRICES |  |
| :--- | :--- | ---: | :--- |
| 2) | 3.000000 | 0.000000 |  |
| 3) | 0.000000 | -1.000000 | _ Critical path goes from start to finish node in |
| 4) | 9.000000 | 0.000000 | which each arc corresponds to a constraint with "dual |
| 5) | 0.000000 | -1.000000 | price" $=-1$, i.e., $1-2-3-4-5-6$ is a CP (more on dual |
| 6) | 0.000000 | -1.000000 | prices later...) |
| 7) | 0.000000 | -1.000000 |  |
| 8) | 0.000000 | -1.000000 | pren |

## Finding the Critical Path in an AOA Project Network for Introducing a New Product

- For each constraint with a "dual price" of -1 , increasing the duration of the activity corresponding to that constraint by delta days will increase the duration of the project by delta days
- This assumes that the current vertex remains optimal
- Now we consider a time-cost tradeoff approach to scheduling


# Project Crashing in Activity on Arc (AOA) <br> Project Networks 

## Project Crashing and Time-Cost Analysis, Sample Data

| Project <br> Duration | Crashing <br> Strategy | Description of Crashing | Total <br> Cost |
| :--- | :--- | :--- | :--- |
| $\mathrm{T}=11$ | S1 | Activities at normal duration | $\$ 2,775$ |
| $\mathrm{~T}=10$ | S 2 | Crash F by 1 unit | $\$ 2,800$ |
| $\mathrm{~T}=10$ | S 3 | Crash C by 1 unit | $\$ 3,025$ |
| $\mathrm{~T}=10$ | S 4 | Crash E by 1 unit | $\$ 2,875$ |
| $\mathrm{~T}=9$ | S 5 | Crash F and C by 1 unit | $\$ 3,050$ |
| $\mathrm{~T}=9$ | S 6 | Crash F and E by 1 unit | $\$ 2,900$ |
| $\mathrm{~T}=9$ | S 7 | Crash C and E by 1 unit | $\$ 3,125$ |
| $\mathrm{~T}=9$ | S 8 | Crash E by 2 units | $\$ 2,975$ |
| $\mathrm{~T}=8$ | S 9 | Crash F, C, and E by 1 unit | $\$ 3,150$ |
| $\mathrm{~T}=8$ | S 10 | Crash F by 1 unit, E by 2 units | $\$ 3,000$ |
| $\mathrm{~T}=8$ | S 11 | Crash C by 1 unit, E by 2 units | $\$ 3,225$ |
| $\mathrm{~T}=7$ | S 12 | Crash F and C by 1 unit, and E by <br> 2 | $\$ 3,500$ |

If c "crashable" activities, there are $2^{c}$ possible crash strategies, why?

Suppose we can crash 6 of the 7 activities $2^{6}=64$ possible crash strategies

There are 12 of the 64 strategies shown here

## Project Crashing and TimeCost Analysis



## Project Crashing and Time-Cost Analysis - A Specific Example

- Define the variables:
$A=\#$ of days by which activity $a$ is reduced (unit cost $=\$ 10$ )
$B=\#$ of days by which activity $b$ is reduced (unit cost $=\$ 20$ )
$\mathrm{C}=$ \# of days by which activity c is reduced (unit cost $=\$ 3$ )
$\mathrm{D}=\#$ of days by which activity d is reduced (unit cost $=\$ 30$ )
$\mathrm{E}=\#$ of days by which activity e is reduced (unit cost $=\$ 40$ )
$\mathrm{F}=\#$ of days by which activity f is reduced (unit cost $=\$ 50$ )
- We have the following LP


## Project Crashing and Time-Cost Analysis -An Example

```
min}10\textrm{A}+20\textrm{B}+3\textrm{C}+30\textrm{D}+40\textrm{E}+50\textrm{F
s.t.
A<=5
B}<=
C}<=
D<=5
                                    Excel version of this LP?
    E}<=
    F}<=
    x3-x 1+A>=6 ! arc (1,3)
    x2-x1+B>=9 ! arc (1,2)
    x5-x3+C>=8 ! arc (3,5)
    x4-x3+D>=7 ! arc (3,4)
    x5-x4+E>=10! arc (4,5)
    x6-x5+F>=12!arc (5,6)
    x3-x2>=0 ! arc (2,3)
    x6-x1<=25 ! at most 25 days
    end
    ! could have variables free or not
    !free x1 x2 x3 x4 x5 x6


\section*{Precedence Diagramming Method in Activity on Arc (AOA) Project Networks}

\section*{Precedence Diagramming Method (PDM)}
- Normal CPM assumptions are that a task B cannot start until its predecessor task A is completely finished
- PDM allows activities that are mutually dependent to be performed partially in parallel instead of serially
- The usual finish-to-start dependencies are "relaxed" so that the performance of the activities can be overlapped
- The result is that the project schedule can be compressed (like project crashing in that sense)

47
Copyright 2008, Dr. Steven A. Gabriel

\section*{Precedence Diagramming Method (PDM)}
- The time between the finishing or starting time of the \(1^{\text {st }}\) activity and the finishing or starting time of the \(2^{\text {nd }}\) activity is called the lead-lag requirement between the two activities
- Four basic lead-lag relationships to consider:
1. Start-to-Start Lead \(\left(\mathrm{SS}_{\mathrm{AB}}\right)\) This specifies that activity \(B\) cannot start until activity A has been in progress for at least SS time units


48
Copyright 2008, Dr. Steven A. Gabriel

\section*{Precedence Diagramming Method (PDM)}
2. Finish-to-Finish Lead \(\left(\mathrm{FF}_{\mathrm{AB}}\right)\) This specifies that activity B cannot finish until at least FF time units after the completion of activity A
Example?


49

\section*{Precedence Diagramming Method (PDM)}
3. Finish-to-Start Lead \(\left(\mathrm{FS}_{\mathrm{AB}}\right)\) This specifies that activity B cannot start until at least FS time units after the completion of activity A (CPM takes \(\mathrm{FS}_{\mathrm{AB}}=0\) )
Example?


FS

\section*{Precedence Diagramming Method (PDM)}
4. Start-to-Finish Lead \(\left(\mathrm{SF}_{\mathrm{AB}}\right)\) This specifies that there must be at least SF time units between the start of activity A and the completion of activity B Example?

- Can also express the leads or lags in percentages (instead of time units)
- Can also use "at most" relationships as well as the "at least" ones shown above

\section*{Precedence Diagramming Method (PDM)}
- An example: 3 activities done in series
\(\rightarrow\) project duration of 30 days using conventional CPM method



\section*{Precedence Diagramming Method (PDM)}
- The same 3 activities done in series but with lead-lag constraints
\(\rightarrow\) project duration of 14 days, a 16 day speedup over the conventional CPM method


Copyright 2008, Dr. Steven A. Gabriel

\section*{Precedence Diagramming Method (PDM)}
- Must be careful about possible anomalies in PDM
- Example:

- Now crash B and reduce the duration of task B from 10 days to 5 days
- You would think that the total projection duration would decrease from 30 to something lower
- However, the \(\mathrm{SS}(\mathrm{BC})\) constraint forces the starting time of C to be shifted forward by 5 days \(\rightarrow\) project duration actually increases even though B's duration has decreased!


Copyright 2008, Dr. Steven A. Gabriel

\section*{Precedence Diagramming Method Example}

You are a planner at the National Aeronautics and Space Administration (NASA) planning the next major rocket development, production, and launching to the planet Neptune. Due to the particular positioning of the planet Neptune relative to Earth and the other planets in between, the rocket must be within 100,000 kilometers of the planet Saturn somewhere between \(\underline{120}\) and 125 months from today in order to make it to Neptune in a reasonable amount of time.

If this time window is not satisfied, the cost of reaching Neptune skyrockets dramatically (no pun intended). For example, if the time is greater than 125 months, it is estimated that \(\$ 100\) million more are needed to reach Neptune due to additional engineering considerations. Consider the following set of activities related to this project shown in the following table.


Copyright 2008, Dr. Steven A. Gabriel

\section*{PDM-Example}
-Compute the critical paths and project duration by formulating and solving an appropriate LP model to capture the precedence relationships between the activities. Let xi be the time for node i. The associated LP model is thus:


Copyright 2008, Dr. Steven A. Gabriel

\section*{PDM-Example}


Copyright 2008, Dr. Steven A. Gabriel

\section*{PDM-Example}

Question:
Due to various reasons, it is believed that activities A, B, C, and D can be sped up as follows. Activity B can start as soon as 1 month after A starts. Activity C can start as soon as 1 month after activity B starts. Activity D can start as soon as one month after activity C starts. The total cost for this acceleration is \(\$ 5,000,000\). Modify the project network from part a (i.e., the uncrashed one) to allow for these possibilities. What is the total project time allowing for these changes?

Note: Could also try project crashing to speed things up, not considered here.

\section*{PDM Combined with LP}
- Create one start and one end node for each activity that has a PDM rule.
- Insert arrows to enforce the new relationships
- Solve as previous cases

\section*{PDM-Example}

\section*{Answer:}

We can modify the AOA network to include two nodes for A, namely A1 and A2 when activity A starts and when it finishes, respectively. The same modification can be applied to activities B, C, and D. We need to make sure that the earliest that B 1 can start is 1 month after A 1 , the earliest that C 1 can start is 1 month after B 1 , and the earliest that D 1 can start is 1 month after C 1 . The resulting new project network is as follows. Note: there is some arbitrariness in connecting A2, B2, and D2, other slight variations are possible.


Copyright 2008, Dr. Steven A. Gabriel

\section*{PDM-Example}

New model is thus:
min x12-xal

A) \(x a 2-x a 1>=5\) ! A
B) \(\mathrm{xb} 2-\mathrm{xb} 1>=12\) ! B
C) \(\mathrm{xc} 2-\mathrm{xc} 1>=12\) ! C
D) \(\mathrm{xd} 2-\mathrm{xd} 1>=6\) ! D

SS1) \(x b 1-x a 1>=1 \quad!\operatorname{SS}(A, B)=1\) SS2) \(\mathrm{xc} 1-\mathrm{xb} 1>=1\) ! SS (B,C) \(=\)
SS3) xd1-xc1>=1! SS(C,D)=1
A2) \(x b 2-x a 2>=0\) ! A2 before B2
B2) \(x c 2-x b 2>=0\) ! B2 before C2
C2) \(x 4-x c 2>=0\) ! C2 before 4
D2) \(x 5-x d 2>=0\) ! D2 before 5
E) \(x 5-x 4>=12 \quad\) E
\(\begin{array}{ll}x 5-x 4 & >=12 \\ x 6-x 5 & >=12\end{array} \quad E\)
\(\begin{array}{ll}! & E \\ ! & F \\ ! & G\end{array}\)
H) \(x 8-x 6>=24\) ! H

DU1) \(x 9-x 8>=0\) ! dummy arc
DU2) \(x 9-x 7>=0\) ! dummy arc
I) \(\mathrm{x} 10-\mathrm{x} 9>=12\) ! I
J) \(\mathrm{x} 11-\mathrm{x} 10>=36\) ! J
K) \(\times 12-\times 11>=1\) ! K

63
Copyright 2008, Dr. Steven A. Gabriel

\section*{PDM-Example}

OBJECTIVE FUNCTION VALUE
\begin{tabular}{rrr} 
1) & \multicolumn{1}{l}{135.0000} & \\
VARIABLE & \multicolumn{1}{c}{ VALUE } & REDUCED COST \\
X12 & 135.000000 & 0.000000 \\
\hline XA1 & 0.000000 & 0.000000 \\
\hline XA2 & 14.000000 & 0.000000 \\
XB2 & 14.000000 & 0.000000 \\
XB1 & 1.000000 & 0.000000 \\
XC2 & 14.000000 & 0.000000 \\
XC1 & 2.000000 & 0.000000 \\
XD2 & 26.000000 & 0.000000 \\
XD1 & 3.000000 & 0.000000 \\
X4 & 14.000000 & 0.000000 \\
X5 & 26.000000 & 0.000000 \\
X6 & 38.000000 & 0.000000 \\
X7 & 86.000000 & 0.000000 \\
X8 & 86.000000 & 0.000000 \\
X9 & 86.000000 & 0.000000 \\
X10 & 98.000000 & 0.000000 \\
X11 & 134.000000 & 0.000000
\end{tabular}
\begin{tabular}{rrr} 
ROW & SLACK OR SURPLUS & DUAL PRICES \\
A) & 9.000000 & 0.000000 \\
B) & 1.000000 & 0.000000 \\
C) & 0.000000 & -1.000000 \\
D) & 17.000000 & 0.000000 \\
SS1) & 0.000000 & -1.000000 \\
SS2) & 0.000000 & -1.000000 \\
\hline SS3) & 0.000000 & 0.000000 \\
\hline \hline A2) & 0.000000 & 0.000000 \\
\hline \hline B2) & 0.000000 & 0.000000 \\
\hline C2) & 0.000000 & -1.000000 \\
\hline D2) & 0.000000 & 0.000000 \\
\hline E) & 0.000000 & -1.000000 \\
F) & 0.000000 & -1.000000 \\
G) & 0.000000 & -1.000000 \\
H) & 24.000000 & 0.000000 \\
\hline DU1) & 0.000000 & 0.000000 \\
\hline DU2) & 0.000000 & -1.000000 \\
I) & 0.000000 & -1.000000 \\
J) & 0.000000 & -1.000000 \\
K) & 0.000000 & -1.000000
\end{tabular}

Total project time is 135 months, still too big, will need to consider crashing the project.

\section*{PDM Example}


65
Copyright 2008, Dr. Steven A. Gabriel

\section*{Integer Programming}
- All linear programming problems so far assumed that fractional answers were acceptable
- In practice not always ok, why?
- Certain classes of LPs we studied will have integer solutions, which ones and why?
- Want to explore modeling aspects when we specify certain variables must be integer-valued
- Why this is a MUCH harder problem to solve in general
- Interesting applications of binary variables for encoding logic in mathematical programs

\title{
The Toy Problem Revisited
}

\section*{The Toy Problem Revisited}

Recall the toy production problem from before
- Complete LP

Max \(3 \times 1+2 \times 2\) (Objective function)
s.t.
\(2 \times 1+\times 2<=100 \quad\) (Finishing constraint)
\(\mathrm{x} 1+\mathrm{x} 2<=80 \quad\) (Carpentry constraint)
\(\mathrm{x} 1 \quad<=40 \quad\) (Limited demand constraint on soldiers)
\(\mathrm{x} 1 \quad>=0 \quad\) (Nonnegativity constraint on soldiers)
\(\mathrm{x} 2 \quad>=0 \quad\) (Nonnegativity constraint on cars)

Optimal solution: \(x 1=20, x 2=60\), with an optimal objective function value of \(z=\$ 180\)

\section*{The Toy Problem Revisited}

- According to LP theory, a solution (if it exists) must be at one of the vertices (also called extreme points)

- In this case, all vertices are integer-valued (i.e., whole numbers)
- This is fortunate since we want to produce a whole number of toys and soldiers
- What if this were not the case? That is, what if the the solution were not integer-valued?

\section*{The Toy Problem Revisited}
- Modified Complete LP
\begin{tabular}{ll}
\begin{tabular}{ll} 
Max \(3 \times 1+2 \times 2\) & \\
s.t. & (Objective function) \\
\(2 \times 1+\mathrm{x} 2<=99.7\) & (Finishing constraint) \\
\(\mathrm{x} 1+\mathrm{x} 2<=83.5\) & (Carpentry constraint) \\
x 1 & \(<=40\) \\
x 1 & \(>=0\)
\end{tabular} & (Limited demand constraint on soldiers) \\
x 2 & \(>=0\)
\end{tabular}

New optimal solution: \(\mathrm{x} 1=16.199997, \mathrm{x} 2=67.300003\), with an optimal objective function value of \(\mathrm{z}=\$ 183.2\)
- How has the feasible region changed?
- But this fractional answer really doesn't really make sense, we don't want to produce a fractional number of toy soldiers or cars (no one would buy them).

\section*{The Toy Problem Revisited}
- We add integer constraints
- Complete Integer Program (IP)

Max \(3 \times 1+2 \times 2 \quad\) (Objective function)
s.t.
\(2 \times 1+\times 2<=99.7 \quad\) (Finishing constraint)
\(\mathrm{x} 1+\mathrm{x} 2<=83.5 \quad\) (Carpentry constraint)
\(\mathrm{x} 1 \quad<=40 \quad\) (Limited demand constraint on soldiers)
\(\mathrm{x} 1 \quad>=0 \quad\) (Nonnegativity constraint on soldiers)
\(\mathrm{x} 2 \quad>=0 \quad\) (Nonnegativity constraint on cars)
\(\mathrm{x} 1, \mathrm{x} 2\) integer-valued
New optimal solution: \(\mathrm{x} 1=16, \mathrm{x} 2=67\), with an optimal objective function value of \(\mathrm{z}=\$ 182\)
- Note: Just rounding to the nearest integer worked in this case but in general, it won't even produce a feasible solution. Not a good way to solve a MIP
- What does the feasible region look like in this case?

Copyright 2008, Dr. Steven A. Gabriel


\title{
The Geometry of the Toy Problem
} with Integer Constraints (MATLAB output)


\section*{The Toy Problem Revisited}

\section*{LINDO Formulation}

Max \(3 \times 1+2 \times 2\)
(Objective function)
s.t.
\(2 \mathrm{x} 1+\mathrm{x} 2<=99.7 \quad\) (Finishing constraint)
\(\mathrm{x} 1+\mathrm{x} 2<=83.5 \quad\) (Carpentry constraint)
\(\mathrm{x} 1 \quad<=40 \quad\) (Limited demand constraint on soldiers)
\(\mathrm{x} 1 \quad>=0 \quad\) (Nonnegativity constraint on soldiers)
\(\mathrm{x} 2 \quad>=0 \quad\) (Nonnegativity constraint on cars)
end
gin x 1 ("gin" stands for general integer variable)
\(\operatorname{gin} \mathrm{x} 2\)

Special case of binary variables \((=0\) or 1\()\) to be used later, the command to make the variable x a binary variable is
inte \(x\) or
inte x

\section*{The Toy Problem Revisited}
```

LP OPTIMUM FOUND AT STEP 3

```
OBJECTIVE VALUE \(=183.199997\)

NEW INTEGER SOLUTION OF 182.000000 AT BRANCH 0 PIVOT 5
BOUND ON OPTIMUM: 182.0000
ENUMERATION COMPLETE. BRANCHES= 0 PIVOTS= 5
LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...

> овङесTVE function value - Why is the objective function worse?
1) \(\quad 182.0000\)

VARIABLE VALUE REDUCED COST
\(\begin{array}{lll}\mathrm{X} 1 & 16.000000 & -3.000000\end{array}\)
\(\begin{array}{lll}\mathrm{X} 2 & 67.000000 & -2.000000\end{array}\)
ROW SLACK OR SURPLUS DUAL PRICES
2) \(0.699997 \quad 0.000000\)
3) \(0.500000 \quad 0.000000\)
4) \(24.000000 \quad 0.000000\)
5) \(16.000000 \quad 0.000000\)
6) \(67.000000 \quad 0.000000\)

\title{
The Knapsack Problem
}

\section*{The Knapsack Problem}
- Suppose there are n items to be considered for inclusion in a "knapsack"
- Each item has a certain per unit value to the traveler who is packing the knapsack
- Each item has a per unit weight that contributes to the overall weight of the knapsack
- There is a limitation on the total weight that can be carried
- Objective: Maximize the total value of what is packed into the knapsack subject to the total weight limitation
- We can use IP to solve this problem
- Why a "trivial solution" is not apparent
- Generalizations of this problem beyond a knapsack

\section*{The Knapsack Problem}
- Definitions: For \(\mathrm{j}=1,2, \ldots, \mathrm{n}\) let
- \(\quad v_{j}>0\) be the value per unit for item \(j\)
- \(\quad w_{j}>0\) be the weight per unit of item \(j\)
- \(\quad W\) be the total weight limitation
- \(\mathrm{x}_{\mathrm{j}}\) is the number of units of item j included in the knapsack
\(\max \sum_{j=1}^{n} v_{j} x_{j}\)
s.t.
\(\sum_{j=1}^{n} w_{j} x_{j} \leq W, x_{j} \geq 0\), integer, \(j=1, \ldots, n\)

\section*{The Knapsack Problem: Project Selection Example}
- Definitions: For \(\mathrm{j}=1,2, \ldots, \mathrm{n}\) let
- \(\quad v_{j}>0\) be the value if project \(j\) is selected
- \(\quad \mathrm{c}_{\mathrm{j}}>0\) be the cost of selecting project j
- \(\quad \mathrm{B}\) be the total budget available limitation
- \(\mathrm{x}_{\mathrm{j}}=1\) if project is selected, 0 otherwise
\[
\begin{aligned}
& \max \sum_{j} v_{j} x_{j} \\
& \text { s.t. } \\
& \sum_{j} c_{j} x_{j} \leq B \\
& x_{j} \in\{0,1\}, j=1,2, \ldots, n
\end{aligned}
\]

\title{
The Knapsack Problem: Project Selection Example
}
\begin{tabular}{|r|r|r|}
\hline Project & Value & Cost \\
\hline \(\mathbf{1}\) & 25.99 & 13.69 \\
\hline \(\mathbf{2}\) & 17.56 & 12.31 \\
\hline \(\mathbf{3}\) & 21.33 & 15 \\
\hline \(\mathbf{4}\) & 14.34 & 12.73 \\
\hline \(\mathbf{5}\) & 24.37 & 13.69 \\
\hline \(\mathbf{6}\) & 24.37 & 12.31 \\
\hline \(\mathbf{7}\) & 21.33 & 15 \\
\hline \(\mathbf{8}\) & 11.65 & 12.73 \\
\hline \(\mathbf{9}\) & 25.27 & 13.69 \\
\hline \(\mathbf{1 0}\) & 21.33 & 12.31 \\
\hline \(\mathbf{1 1}\) & 18.46 & 15 \\
\hline \(\mathbf{1 2}\) & 11.65 & 12.73 \\
\hline \(\mathbf{1 3}\) & 25.27 & 13.69 \\
\hline \(\mathbf{1 4}\) & 17.56 & 12.31 \\
\hline \(\mathbf{1 5}\) & 21.33 & 15 \\
\hline
\end{tabular}
- 15 projects, total budget of 100
- Why not just fund all 15 ?
- Total cost is 202.2, therefore, need the right subset
- Don't just pick the least costly ones, want high value ones too
- "Cherry-picking" solution is not always the best
- Use Excel to solve this integer program (IP)

\title{
Scheduling Under Limited Resources Using Integer Programming
}

\section*{The Knapsack Problem}
- Suppose there are n items to be considered for inclusion in a knapsack
- Each item has a certain per unit value to the traveler who is packing the knapsack
- Each item has a per unit weight that contributes to the overall weight of the knapsack
- There is a limitation on the total weight that can be carried
- Objective: Maximize the total value of what is packed into the knapsack subject to the total weight limitation
- We can use IP to solve this problem

\section*{Scheduling Under Limited Resources Using Integer Programming The Knapsack Problem}
- Definitions: For \(\mathrm{j}=1,2, \ldots, \mathrm{n}\) let
- \(\quad c_{j}>0\) be the value per unit for item \(j\)
- \(w_{j}>0\) be the weight per unit of item \(j\)
- \(\quad W\) be the total weight limitation
- \(\quad \mathrm{x}_{\mathrm{j}}\) is the number of units of item j included in the knapsack
\[
\begin{aligned}
& \max \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { s.t. } \\
& \sum_{j=1}^{n} w_{j} x_{j} \leq W, x_{j} \geq 0, \text { integer }, j=1, \ldots, n
\end{aligned}
\]

Copyright 2008, Dr. Steven A. Gabriel

\section*{Scheduling Under Limited Resources Using Integer Programming}

The Knapsack Problem for scheduling
- Each activity to be scheduled at a specific instant is modeled as an item to be included in the knapsack
- The composition of the activities in a scheduling window (certain amount of time) is viewed as the knapsack
- Note: for activity scheduling, only one unit of each activity (item) can be included in the schedule at any given scheduling time; in general, can't schedule the activity twice at the same time!
- The knapsack problem for activity scheduling is done at each and every scheduling time t
- The objective is to schedule as many activities of high priority as possible while satisfying precedence relationships w/o exceeding the resources

\section*{Scheduling Under Limited Resources Using Integer Programming The Knapsack Problem for scheduling}
- Definitions:
- \(\mathrm{z}_{\mathrm{t}}=\) overall performance of the schedule generated at time t
- \(\quad p_{j}=\) the priority value for activity \(j\)
- \(\quad t=\) current time of scheduling
- \(x_{j \mathrm{t}}=\) binary variable, \(=1\) if activity \(j\) is scheduled at time \(t,=0 \mathrm{o} / \mathrm{w}\)
- \(\mathrm{S}_{\mathrm{t}}=\) set of activities eligible for scheduling at time t
- \(\mathrm{k}=\) number of different resource types
- \(\quad r_{i j}=\) units of resource type \(i\) required by activity \(j\)
- \(\quad \mathrm{R}_{\mathrm{it}}=\) units of resource type i available at time t
\(\max z_{t}=\sum_{j \in S_{t}} p_{j} x_{j t}\)
s.t. \(\sum_{j \in S_{t}}^{n} r_{i j} x_{j t} \leq R_{i t}, i=1, \ldots, k, x_{j t} \in\{0,1\}, j \in S_{t}\) for all \(t\)

Copyright 2008, Dr. Steven A. Gabriel

\section*{Scheduling Under Limited Resources Using Integer Programming}

The Knapsack Problem for scheduling
- Note that the next scheduling time, t , for the knapsack problem is given as the minimum of \{the finishing times of the scheduled and unfinished activities\}
- Now let's consider a specific example (see page 303)
- Note that the priority values do not change from time one time period to the next (fixed prioritization scheme)
- Can also consider knapsack problem with changing priority values (variable prioritization scheme)
- Can use specialized methods to solve this problem

\section*{Scheduling Under Limited Resources Using Integer Programming}


\section*{Example from Badiru-Pulat}


87
Copyright 2008, Dr. Steven A. Gabriel





\section*{Some Other Uses of Integer (Binary) Programming}
- Fixed charge problems
- Either-or constraints
- If-then constraints

\section*{Fixed Charge Problems: An Example}
- Manufacturing project involving 3 products \((1,2,3)\)
- Each product requires that an appropriate type of machinery be available
- Rental rates for machines:
- Product 1 machine: \$200/week
- Product 2 machine: \(\$ 150 /\) week
- Product 3 machine: \(\$ 100 /\) week
- Also raw materials and labor required for each product
\begin{tabular}{|l|l|l|}
\hline & Labor (hours) & \begin{tabular}{l} 
Raw Materials \\
(lbs)
\end{tabular} \\
\hline Product 1 & 3 & 4 \\
\hline Product 2 & 2 & 3 \\
\hline Product 3 & 6 & 4 \\
\hline \multicolumn{3}{|c|}{95} \\
\hline
\end{tabular}

Copyright 2008, Dr. Steven A. Gabriel

\section*{Fixed Charge Problems}
- Each week 150 hours of labor and 160 lbs of raw materials are available
- Also need to consider the variable unit cost and selling price for each product
- Want an IP whose solution will maximize the weekly net profits
- Variables?
\begin{tabular}{|l|l|l|}
\hline & Sales price & Variable Cost \\
\hline Product 1 & \(\$ 12\) & \(\$ 6\) \\
\hline Product 2 & \(\$ 8\) & \(\$ 4\) \\
\hline Product 3 & \(\$ 15\) & \(\$ 8\) \\
\hline
\end{tabular}

96
Copyright 2008, Dr. Steven A. Gabriel

\section*{Fixed Charge Problems}
- Variables
- Let \(x_{i}=\) number of units of product i manufactured in a given week ( \(\mathrm{i}=1,2,3\) )
Let \(y_{i}=1\) if any product \(i\) is manufactured, \(=0 \mathrm{o} / \mathrm{w}\) ( \(\mathrm{i}=1,2,3\) )
(note: if \(x_{i}>0 \rightarrow y_{i}=1\) and if \(x_{i}=0 \rightarrow y_{i}=0\) )
- Constraints?
- Objective function?

\section*{Fixed Charge Problems}
- Let \(\mathrm{x}_{\mathrm{i}}=\) number of units of product i manufactured in a given week \((\mathrm{i}=1,2,3)\)
- Let \(y_{i}=1\) if any product i is manufactured, \(=0 \mathrm{o} / \mathrm{w}(\mathrm{i}=1,2,3)\)
(note: if \(x_{i}>0 \rightarrow y_{i}=1\) and if \(x_{i}=0 \rightarrow y_{i}=0\) )
- Let \(\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}\) be 3 large positive numbers
\(\max 6 x_{1}+4 x_{2}+7 x_{3}-200 y_{1}-150 y_{2}-100 y_{3} \leftarrow\) Net Revenues - rental costs s.t.
\(\left.\begin{array}{l}3 x_{1}+2 x_{2}+6 x_{3} \leq 150 \\
4 x_{1}+3 x_{2}+4 x_{3} \leq 160 \\
x_{1} \leq M_{1} y_{1} \\
x_{2} \leq M_{2} y_{2} \\
x_{3} \leq M_{3} y_{3}\end{array}\right\} \leftarrow\) Labor constraint
\begin{tabular}{l}
\(x_{1}, x_{2}, x_{3} \geq 0\), integer \\
\(y_{1}, y_{2}, y_{3} \in\{0,1\}\)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Constraints that ensure if \(\mathrm{x}_{\mathrm{i}}>0 \rightarrow \mathrm{y}_{\mathrm{i}}=1\) \\
note that if \(\mathrm{x}_{\mathrm{i}}=0 \rightarrow \mathrm{y}_{\mathrm{i}}=0\) or \(=1\) but we get \(\mathrm{y}_{\mathrm{i}}=0\) at an \\
optimal solution (for cost reasons) \\
\(\operatorname{max~} \mathrm{x}\) values give M values: \(40,53,25\)
\end{tabular}

\section*{Fixed Charge Problems}


\section*{Either-Or Formulation}
- Let's modify the manufacturing problem from before
- If any of product 1 produced, then it must be at least 25 units, i.e., if \(\mathrm{x}_{1}>0 \rightarrow \mathrm{x}_{1}>=25\) or equivalently either \(\mathrm{x}_{1}<=0\) or \(\mathrm{x}_{1}>=25\)
- If any of product 2 produced, then it must be at least 26 units i.e., if \(x_{2}>0 \rightarrow x_{2}>=26\) or equivalently either \(x_{2}<=0\) or \(x_{2}>=26\)
- If any of product 3 produced, then it must be at least 27 units i.e., if \(x_{3}>0 \rightarrow x_{3}>=27\) or equivalently either \(x_{3}<=0\) or \(x_{3}>=27\)
- More general setting, we have two constraints of the form:
- \(\quad \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<=0\) and \(\mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<=0\)
- We want to ensure that at least one of these constraints is satisfied
- For N a large enough positive number and z a binary variable, this is ensured with the following two constraints
\[
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq N z \\
& g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq N(1-z)
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(3 x_{1}+2 x_{2}+6 x_{3} \leq 150 \leftarrow\) Labor constraint}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(4 x_{1}+3 x_{2}+4 x_{3} \leq 160 \leftarrow\) Raw materials constraint} \\
\hline \multicolumn{2}{|l|}{\(x_{1} \leq M_{1} y_{1}\)} \\
\hline \[
x_{2} \leq M_{2} y_{2}
\] & \(\leftarrow\) Constraints that ensure if \(\mathrm{x}_{\mathrm{i}}>0 \rightarrow y_{i}=1\) \\
\hline \(x_{3} \leq M_{3} y_{3}\) & note that if \(x_{i}=0 \rightarrow y_{i}=0\) or \(=1\) but we get \(y_{i}=0\) at an optimal solution (for cost reasons) \\
\hline \(x_{1} \leq N_{1} z_{1}\) & max x values give M values: 40, 53, 25 \\
\hline \(25-x_{1} \leq N_{1}\left(1-z_{1}\right)\) & \\
\hline \(x_{2} \leq N_{2} z_{2}\) & \\
\hline \(26-x_{2} \leq N_{2}\left(1-z_{2}\right)\) & - Either-or constraints, N values need to be chosen \\
\hline \(x_{3} \leq N_{3} z_{3}\) & suitably large, for example take all N's to be equal to
\[
100
\] \\
\hline \multicolumn{2}{|l|}{\[
27-x_{3} \leq N_{3}\left(1-z_{3}\right)
\]} \\
\hline \multicolumn{2}{|l|}{\(x_{1}, x_{2}, x_{3} \geq 0\), integer} \\
\hline \multicolumn{2}{|l|}{\(y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3} \in\{0,1\}\)} \\
\hline
\end{tabular}

\section*{LINDO Formulation and Solution to Either-Or Problem}
```

max 6x1+4x2+7x3-200y1-
150y2-100y3
s.t.
3\times1+2\times2+6\times3<=150
4x1+3\times2+4\times3<=160
x1-40yl<=0
x2-53y2<=0
x3-25y3<=0
x1-100z1<=0
-x 1+100z1<=75
x2-100z2<=0
-x2+100z2<=74
x3-100z3<=0
-x3+100z3<=73
end
gin x1
gin x2
gin x3
int y1
int y2
int y3
int zl
int z2
int z3

```
Solution:
Optimal profit of \$62
\(\mathrm{x} 2=53\)
\(y 2=1\)
\(\mathrm{z} 2=1\)
all other variables \(=0\)

Copyright 2008, Dr. Steven A. Gabriel

\section*{If-Then Formulation}
- Let's modify the original manufacturing problem one more time (taking away the modifications from before)
- We want the restriction: if the sum of products 2 and 3 exceed 24 units (true for both cases considered so far), then at least 30 of product 1 must be manufactured (union rules?)
More generally, we will be considering
if \(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)>0\) then \(g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0\)
if \(f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 0\) then \(g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0\) or \(<0\)

\section*{If-Then Formulation}
- We can use the following constraints where N is a suitably large positive value and z is a binary variable
\[
\begin{aligned}
& -g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq N z \\
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq N(1-z)
\end{aligned}
\]
- In our example we can take
\[
\begin{aligned}
& x_{1}-30=g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& x_{2}+x_{3}-24=f\left(x_{1}, x_{2,}, \ldots, x_{n}\right)
\end{aligned}
\]

LINDO Formulation and Solution to If-Then Problem
```

max 6x1+4x2+7x3-200y1-150y2-
100y3
s.t.
3\times1+2\times2+6\times3<=150
4x1+3\times2+4\times3<=160
x1-40y1<=0
x2-53y2<=0
x3-25y3<=0
-x 1-100z<=-30
x2+x3+100z<=124
end
gin x1
gin x2
gin x3
int yl
int y2
int y3
int z

```

\section*{Multiperiod Production-Inventory Problem}
- A Production -Inventory Problem (Periodic Review Model):
- Time is broken up into periods:
present period ---- period 1
next period ---- period 2
last period ---- period T
- At start of each period, firm must determine how much should be produced (production capacity at each period is limited)
- Each period's demand must be met on time from inventory or current production

\section*{Multiperiod Production-Inventory Problem}
- During any period in which production occurs, a fixed cost as well as a variable per unit cost is incurred
- There is limited storage capacity
- Limit on end-of-period inventory
- A per unit holding cost is incurred on each period's ending inventory
- The firm's goal is to minimize the total cost of meeting on time, the demands for periods \(1,2, \ldots, \mathrm{~T}\)

\title{
Multiperiod Production-Inventory Problem
}


\section*{Multiperiod Production-Inventory Problem}

\section*{Month}
- Demand schedule 1

\author{
Number of \\ units (tons)
}

1
3

4

2 current month (questions for

At start of each month, how much to produce during the company)
- Production (if production occurs): Max of 5 units/period to be produced Set up cost \$3
Variable cost \$1/unit produced.
- Inventory : Holding Costs (at the end of the month): \$0.50/unit Capacity limitations: max of 4 units, initial inventory \(=0\)

Want: Production schedule that will meet all demands on time and will minimize the sum of production and holding costs for the 4 months. (Assume inventory at start of month 1 is 0 units )

Variables, constraints, objective funltion?

\section*{Multiperiod Production-Inventory Problem}

Production schedule (try without LP/IP first)


Can relate to a shortest path problem in a network as follows.

\section*{Multiperiod Production-Inventory Problem}

\section*{Production schedule IP}

Min \(1 \times 1+1 \times 2+1 \times 3+1 \times 4 \quad\) ! Production variable costs
\(+3 y 1+3 y 2+3 y 3+3 y 4 \quad\) ! Production fixed costs
\(+0.5 \mathrm{i} 1+0.5 \mathrm{i} 2+0.5 \mathrm{i} 3+0.5 \mathrm{i} 4\) ! Inventory costs
s.t.
\(\mathrm{d} 1=1 \quad\) ! Demand for period 1
d2=3 ! Demand for period 2
d3=2 ! Demand for period 3
d4=4 ! Demand for period 4
i1 \(=0 \quad\) ! Initial inventory
\(\mathrm{i} 2<=4 \mathrm{i} 3<=4 \mathrm{i} 4<=4 \quad\) ! Inventory capacity
\(\mathrm{x} 1<=5 \times 2<=5 \times 3<=5 \times 4<=5\) ! Production capacity
\(\mathrm{i} 1+\mathrm{x} 1-\mathrm{d} 1-\mathrm{i} 2=0 \quad\) ! Period 1 material balance
\(\mathrm{i} 2+\mathrm{x} 2-\mathrm{d} 2-\mathrm{i} 3=0 \quad\) ! Period 1 material balance
i3 3 x \(3-\mathrm{d} 3-\mathrm{i} 4=0 \quad\) ! Period 1 material balance
\(\mathrm{i} 4+\mathrm{x} 4-\mathrm{d} 4=0 \quad\) ! Period 1 material balance
! Consistency between production and set-up cost varibles x2-100000y2 < = 0
! Consistency between production and set-up cost varibles x3-100000y3 < = 0
! Consistency between production and set-up cost varibles \(x 4-100000 y 4<=0\)
! Consistency between production and set-up cost varibles end ! Nonnegativity implied by LINDO inte yl inte y 2 inte y 3 inte y4

\section*{Multiperiod Production-Inventory Problem}
\(\Rightarrow 20\) is the minimum cost for the 4 months optimal schedule.


Can relate to a shortest path problem in a network as follows.

\section*{Multiperiod Production-Inventory Problem}
- Representation of Inventory Example


Copyright 2008, Dr. Steven A. Gabriel

\section*{Assignment Problems (You are now a Project Manager)}
- Want to optimally assign "workers" to "tasks"
- Suppose we have n tasks to be performed by n workers
- The cost of worker i performing task j is given as \(\mathrm{c}_{\mathrm{ij}}\)
- Remarks:
1. If the number of tasks to be done is greater than the number of workers, we add dummy workers to balance the problem
2. If the number of workers is greater than the number of tasks, we add dummy tasks to balance the problem
3. If no problem of overlapping a worker's time, the time can be split between projects and each segment can be modeled as a separate resource (can consider partial allocation of resource units to multiple tasks)

\section*{The Assignment Problem}
- CPM can be used to control the project duration
- Such methods do not however, assign resources to project tasks
- Now we consider the assignment problem, a formulation to optimally assign workers to tasks
- Suppose we have n tasks to be performed by n workers
- The cost of worker i performing task j is given as \(\mathrm{c}_{\mathrm{ij}}\)
- Remarks:
1. If the number of tasks to be done is greater than the number of works, we add dummy workers to balance the problem
2. If the number of workers is greater than the number of tasks, we add dummy tasks to balance the problem
3. If no problem of overlapping a worker's time, the time can be split between projects and each segment can be modeled as a separate resource (can consider partial allocation of resource units to multiple tasks)

\section*{The Assignment Problem}
\(\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} \quad \leftarrow\) minimize total costs
s.t.
\(\sum_{j=1}^{n} x_{i j}=1, i=1,2, \ldots, n \begin{aligned} & \text { <ith worker must get assigned to } \\ & \text { exactly } 1 \text { task }\end{aligned}\)
\(\sum_{i=1}^{n} x_{i j}=1, j=1,2, \ldots, n \underset{\substack{\text {-jth task must get exactly } 1 \\ \text { worker }}}{\substack{\text { ¢ }}}\)
\(x_{i j} \geq 0, i, j=1,2, \ldots, n<\) nonnegative variables, binary restriction satisfied indirectly

\section*{The Assignment Problem}
- Consider the following cost matrix for an assignment problem with \(\mathrm{n}=5\)
- Select the cheapest workers by task first, will this work?
\begin{tabular}{|l|l|l|l|l|l|}
\hline & Task 1 & Task 2 & Task 3 & Task 4 & Task5 \\
\hline Worker 1 & \(\$ 200\) & \(\$ 400\) & \(\$ 500\) & \(\$ 100\) & \(\$ 400\) \\
\hline Worker 2 & \(\$ 400\) & \(\$ 700\) & \(\$ 800\) & \(\$ 1,100\) & \(\$ 500\) \\
\hline Worker 3 & \(\$ 300\) & \(\$ 900\) & \(\$ 800\) & \(\$ 1,000\) & \(\$ 500\) \\
\hline Worker 4 & \(\$ 100\) & \(\$ 300\) & \(\$ 500\) & \(\$ 100\) & \(\$ 400\) \\
\hline Worker 5 & \(\$ 700\) & \(\$ 100\) & \(\$ 200\) & \(\$ 100\) & \(\$ 200\) \\
\hline
\end{tabular}

Copyright 2008, Dr. Steven A. Gabriel

\section*{The Assignment Problem}
```

min 200\times11+400\times12+500\times13+100\times14+400\times15+400\times21+700\times22+800\times23+
1100x24+500x25+300x31 + 900x32 + 800x33 + 1000x34 + 500x35+ 100x41 + 300x42 +
500x43+100\times44+400\times45+700\times51+100\times52+200\times53+100\times54 +200\times55
s.t.
x}11+\textrm{x}12+\textrm{x}13+\textrm{x}14+\textrm{x}15=1!\mathrm{ worker 1
x}21+\textrm{x}22+\textrm{x}23+\textrm{x}24+\textrm{x}25=1!\mathrm{ !worker 2
x31+x32+x33+x34+x35=1 !worker 3
x41+x42+x43+x44+x45=1 ! worker 4
x 51+x52+x53+x54+x55=1 ! worker 5
x11+x21+x 31+x41+x51=1! task 1
x12+x22+x 32+x42+x52=1! task 2
x13+x23+x 33+x43+x53=1! task 3
x14+x24+x }34+x44+x54=1!\mathrm{ task 4
x15+x25+x35+x45+x55=1! task 5
! and all variables nonnegative

## The Assignment Problem

- Optimal solution at a cost of $\$ 1,400$ is as follows

|  | Task 1 | Task 2 | Task 3 | Task 4 | Task5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Worker 1 |  |  |  |  |  |
| Worker 2 |  |  |  |  |  |
| Worker 3 |  |  |  |  |  |
| Worker 4 |  |  |  |  |  |
| Worker 5 |  |  |  |  |  |

## Solving Integer Programs

- Certain classes of LPs we studied will have integer solutions so don't need to enforce integrality restrictions
- Otherwise, how can we solve integer-constrained problems?
- Many approaches, will give just two mentioned here
- Enumeration
- Branch-and-Bound (pure IP example)


## Solving Integer Programs Using Enumeration

- For small enough problems, can just enumerate all feasible solutions
- Then pick the one(s) with the best objective function value
- When this method will work, when it won't

Solving Integer Programs Using Branch-and-Bound for Pure IPs

- Basic Idea: Solve a sequence of linear programming relaxations (in the form of a "tree structure") to solve original IP
- Elementary observation: if you solve the LP relaxation of a pure IP and get a solution which has just integer answers, then LP optimal is also IP optimal
- Example (from Winston)

$$
\max \mathrm{z}=3 \mathrm{x} 1+2 \mathrm{x} 2
$$

s.t. $3 \times 1+\mathrm{x} 2<=6$
$\mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1, \mathrm{x} 2$ integer

- Feasible region? LP and IP solutions?

Copyright 2008, Dr. Steven A. Gabriel

## Solving Integer Programs Using Branch-and-Bound for Pure IPs

- Sample Problem:
- Production of tables and chairs
- 1 table needs 1 hour of labor $\& 9$ square board feet of wood, $\$ 8$ in profit
- 1 chair needs 1 hour of labor \& 5 square board feet of wood, $\$ 5$ in profit
- Currently: 6 hours of labor, 45 square board feet available
- IP to maximize profit?



## Solving Integer Programs Using Branch-andBound for Pure IPs

- Let's see how to get this solution with the Branch-and-Bound Technique
- 7 LP subproblems to solve


- Conclusion: optimal z-value for $\mathrm{IP}<=$ optimal $z$-value for LP relaxation
- Upper bound for IP is 41.25
- Next step, arbitrarily choose a fractional variable (say x1) and try 2 LPs with the rounded values
- Subproblem 2: x1>=4, subproblem 3, x1<=3 (branch on $x 1$ )
- Why can't a feasible solution to the IP have $3<x 1<4$ ? The point $\mathrm{x} 1=3.75$ will be avoided this way (can't return to this solution), why?


## Solving Integer Programs Using Branch-andBound for Pure IPs



- Original problem
$\max 8 \mathrm{x} 1+5 \mathrm{x} 2$
s.t.
$\mathrm{x} 1+\mathrm{x} 2<=6$
$9 \mathrm{x} 1+5 \mathrm{x} 2<=45$
$\mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1, \mathrm{x} 2$
integer
- Subproblem 2
- add new constraint $x 1>=4$
$\max 8 \mathrm{x} 1+5 \mathrm{x} 2$
s.t.
$x 1+x 2<=6$
$9 \mathrm{x} 1+5 \times 2<=45$
$\mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1>=4$
$\mathrm{x} 1=4, \mathrm{x} 2=1.8, \mathrm{z}=41$
- Conclusion: integer solution not obtained
- Next step: arbitrarily choose a fractional variable (branch on x2) and try 2 LPs with rounded values
- Subproblem \#4: x2>=2, subproblem \#5: x2<=1


## Solving Integer Programs Using Branch-andBound for Pure IPs



| - Original problem | - | Subproblem 4 |
| :--- | :--- | :--- |
| $\max 8 \times 1+5 \times 2$ |  | add new constraint $\mathrm{x} 2>=2$ |
| s.t. | max $8 \times 1+5 \times 2$ |  |
| $\mathrm{x} 1+\mathrm{x} 2<=6$ | s.t. |  |
| $9 \mathrm{x} 1+5 \times 2<=45$ | $\mathrm{x} 1+\mathrm{x} 2<=6$ |  |
| $\mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1, \mathrm{x} 2$ | $9 \times 1+5 \times 2<=45$ |  |
| $\quad$ integer | $\mathrm{x} 1>=4, \mathrm{x} 2>=\mathbf{2}$ |  |
|  | $\mathrm{x} 1, \mathrm{x} 2>=0$ |  |

- Conclusion: Subproblem 4 is infeasible, fathom this node
- Next step: try subproblem 5


## Solving Integer Programs Using Branch-andBound for Pure IPs



- Original problem
$\max 8 \mathrm{x} 1+5 \mathrm{x} 2$
s.t.
$\mathrm{x} 1+\mathrm{x} 2<=6$
$9 \mathrm{x} 1+5 \times 2<=45$
$\mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1, \mathrm{x} 2$
integer
- Subproblem 5
- add new constraint $\mathrm{x} 2<=1$
$\max 8 \mathrm{x} 1+5 \mathrm{x} 2$
s.t.
$x 1+x 2<=6$
$9 \times 1+5 \times 2<=45$
$\mathrm{x} 1, \mathrm{x} 2>=0, \mathbf{x} 1>=\mathbf{4}, \mathrm{x} 2<=\mathbf{1}$
$\mathrm{x} 1=4.44, \mathrm{x} 2=1, \mathrm{z}=40.556$
- Conclusion: feasible solution, still fractional though so need to branch again
- Next step: branch on x 1 , Subproblem 6: add $\mathrm{x} 1>=5$, subproblem 7: add $\times 1<=4$
- Could also try subproblem 3 but we are using a LIFO rule (LIFO=last in first out)


$$
\begin{aligned}
& \text { - Original problem } \\
& \max 8 \mathrm{x} 1+5 \mathrm{x} 2 \\
& \text { s.t. } \\
& \mathrm{x} 1+\mathrm{x} 2<=6 \\
& 9 \mathrm{x} 1+5 \mathrm{x} 2<=45 \\
& \mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1, \mathrm{x} 2 \\
& \text { integer } \\
& \text { - Subproblem } 6 \\
& \text { - add new constraint } x 1>=5 \\
& \max 8 \mathrm{x} 1+5 \mathrm{x} 2 \\
& \text { s.t. } \\
& x 1+x 2<=6 \\
& 9 \times 1+5 \times 2<=45 \\
& \mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1>=\mathbf{4}, \mathbf{x} 2<=1 \text {, } \\
& x 1>=5 \\
& \mathrm{x} 1=5, \mathrm{x} 2=0, \mathrm{z}=40 \\
& \text { IP lower bound, } \mathrm{z}=40
\end{aligned}
$$

- Conclusion: candidate solution
- IP lower bound is now 40
- Next step: try remaining node relating to subproblem 7


> - Original problem
> $\max 8 \mathrm{x} 1+5 \mathrm{x} 2$
> s.t.
> $x 1+x 2<=6$
> $9 \mathrm{x} 1+5 \mathrm{x} 2<=45$
> $\mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1, \mathrm{x} 2$
> integer
> - Subproblem 7
> - add new constraint $\mathrm{x} 1<=4$
> $\max 8 \mathrm{x} 1+5 \mathrm{x} 2$
> s.t.
> $x 1+x 2<=6$
> $9 \times 1+5 \times 2<=45$
> $\mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1>=4, \mathrm{x} 2<=1$, $x 1<=4$
> $\mathrm{x} 1=4, \mathrm{x} 2=1, \mathrm{z}=37$
> IP lower bound, $\mathrm{z}=\mathbf{3 7}$

- Conclusion: further branching on subproblem7 cannot yield a feasible integer solution $>37$, why?
- Next step: fathom this node and try subproblem 3

- Original problem
$\max 8 \mathrm{x} 1+5 \mathrm{x} 2$
s.t.
$\mathrm{x} 1+\mathrm{x} 2<=6$
$9 \mathrm{x} 1+5 \mathrm{x} 2<=45$
$\mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1, \mathrm{x} 2$
integer
- Subproblem 3
- add new constraint $\mathrm{x} 1<=3$
$\max 8 \mathrm{x} 1+5 \mathrm{x} 2$
s.t.
$x 1+x 2<=6$
$9 \mathrm{x} 1+5 \times 2<=45$
$\mathrm{x} 1, \mathrm{x} 2>=0, \mathrm{x} 1<=\mathbf{3}$
$\mathrm{x} 1=3, \mathrm{x} 2=3, \mathrm{z}=39$
- Conclusion: Not better than the current lower bound of 40 from subproblem 6
- Fathom this node
- No nodes left to try- done!


