
Disaggregation of nation-wide dynamic population exposure estimates

in The Netherlands: Applications of activity-based transport models

Carolien Beckx a,*, Luc Int Panis a,c, Inge Uljee a, Theo Arentze b, Davy Janssens c, Geert Wets c

a Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
bUrban Planning Group, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
c Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek, Belgium

a r t i c l e i n f o

Article history:

Received 28 March 2009

Accepted 17 July 2009

Keywords:

Exposure

Population

NO2

Activity

a b s t r a c t

Traditional exposure studies that link concentrationswith population data do not always take into account

the temporal and spatial variations in both concentrations and population density. In this paperwepresent

an integrated model chain for the determination of nation-wide exposure estimates that incorporates

temporally and spatially resolved information about people’s location and activities (obtained from an

activity-based transport model) and about ambient pollutant concentrations (obtained from a dispersion

model). To the best of our knowledge, it is the first time that such an integrated exercise was successfully

carried out in a fully operational modus for all models under consideration. The evaluation of population

level exposure in The Netherlands to NO2 at different time-periods, locations, for different subpopulations

(gender, socio-economic status) and during different activities (residential, work, transport, shopping) is

chosen as a case-study to point out the new features of this methodology. Results demonstrate that, by

neglecting people’s travel behaviour, total average exposure to NO2 will be underestimated by 4% and

hourly exposure results can be underestimated by more than 30%. A more detailed exposure analysis

reveals the intra-day variations in exposure estimates and the presence of large exposure differences

between different activities (traffic > work > shopping > home) and between subpopulations

(men > women, low socio-economic class > high socio-economic class). This kind of exposure analysis,

disaggregated by activities or by subpopulations, per time of day, provides useful insight and information

for scientific and policy purposes. It demonstrates that policy measures, aimed at reducing the overall

(average) exposure concentration of the populationmay impact in a differentwaydependingon the time of

day or the subgroup considered. From a scientific point of view, this new approach can be used to reduce

exposure misclassification.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction & background

Recent air-quality studies have highlighted that important

differences in pollutant concentrations can occur over the day and

between different locations (Wilson et al., 2005). At the same time,

the location of individuals also varies over space and time causing

a large geographical and temporal variation in the number of people

present at any location during the day. Traditional exposure studies

that link concentrations with population data however do not

always take into account the temporal and spatial variations in both

concentrations and population density, often because temporally

resolved data are simply not available (Hertel et al., 2001).

Concerning the pollutant concentration data, most epidemio-

logical research has focused on relating health endpoints in entire

populations to pollutant concentration data from a small number of

fixed site monitoring stations (e.g. Wang et al., 2008; Wu et al.,

2009). Unfortunately, the measurement data from these fixed

stations do not necessarily represent areas beyond their immediate

vicinity. For example, Alm et al. (1998) report that only a minor

fraction of the variations in personal NO2 exposure of children was

explained by concentration data obtained from stationary moni-

toring stations. In evaluating the exposure of the population to air

pollution, the use of atmospheric dispersion models or sensor

networks should therefore be preferred above the use of these fixed

stations (Stein et al., 2007). Validated atmospheric dispersion

models can provide more detailed information on the spatial

distribution of the pollutant concentrations, allowing for more

realistic exposure assessments.

Concerning the location of the people, traditional exposure

analyses often rely on official address data only, implicitly assuming

that people are always at home and, therefore, only exposed to

pollution at their place of residence (Hertel et al., 2001). A study by
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Beckx et al. (2008, 2009a) indicated that, to establish an improved

assessment of exposure, it is necessary to take into account that

people move during the day and are therefore exposed to pollutant

concentrations other than at their home address (i.e. a dynamic

exposure assessment).

Understanding exposure variations among activities and

subpopulations further advances the current state-of-the-art and

might be even more important for risk management. In addition to

this, a more detailed exposure analysis in terms of activities that are

performed during the day (working, shopping, leisure,.) or con-

cerning different subgroups (gender, socio-economic status,.)

would provide more useful insights into the total exposure.

Unfortunately, only few attempts (e.g. Kousa et al., 2002; Marshall

et al., 2006; De Ridder et al., 2008b) have been made to perform

such a detailed dynamic exposure assessment. Kousa et al. (2002)

compared exposure distributions for different activities based on

observed time-activity data for 435 adults in the Helsinki Metro-

politan Area. They concluded that the average exposure to NO2 at

home and in the workplace was substantially more important than

in ‘‘other’’ activities. Marshall et al. (2006) examined exposure

differences between population subgroups and reported differ-

ences in exposure concentration between whites and non-whites

in the California’s South Coast Air Basin by examining geocoded

activity-diaries. Part of these differences were explained by the

home location, but a significant fraction of the variation in exposure

concentration was due to differences in travel behaviour and

different exposures accumulated during daytime activities per-

formed at other locations. De Ridder et al. (2008b) studied impacts

on traffic emissions and exposure to air pollution of long-term

changes in population densities in the German-Ruhr area. However,

none of these studies can provide information on large areas or

entire population values because they only covered a restricted

(urban) area or only a small (non-representative) sample of the

population. Furthermore, these studies do not report exposure

values or exposure differences on an hourly basis, while this

information can be extremely useful for certain policy purposes.

In order to draw general conclusions on the exposure of the

whole population, a sufficiently large dataset needs to be gathered,

representing different subpopulations and time-periods in a real-

istic and unbiased way. Examples of exposure analyses that use

synthetic population data for exposure analysis are described in

Burke et al. (2001), Freijer et al. (1998) and Gulliver and Briggs

(2005). In general, these studies use observed activity-travel data

from different subgroups at different moments tomake predictions

about the travel behaviour for the entire population. Recently,

a similar population simulation approach evolved in the field of

transportation research. The resulting population models were

originally developed to provide more insights into the travel

behaviour of people and are better known as ‘activity-based

models’ or ‘activity-based transport models’. Partial and fully

operational activity-based micro simulation systems include Flor-

ida’s Activity Mobility Simulator (FAMOS) (Pendyala et al., 2005),

the Travel Activity Scheduler for Household agents (TASHA) (Miller

and Roorda, 2003) and ALBATROSS (A Learning-Based Trans-

portation Oriented Simulation System) (Arentze and Timmermans,

2004). Recent applications of these models (e.g. Roorda et al., 2008;

Timmermans and Zhang, 2009) mainly focus on their advantages

for travel behaviour research, however Beckx et al. (2008, 2009a)

already indicated that an activity-based model can also be used for

pollutant exposure analysis by taking advantage of their ability to

provide more accurate information on the location of the pop-

ulation. For a Dutch urban area it was demonstrated that a signifi-

cant fraction of the air pollution exposure can be attributed to

people moving in and out of the city center for different activities.

The activity-based approach was able to provide the necessary

information to account for this effect. Furthermore, trip informa-

tion from the activity-based model (in the form of enriched origin–

destination matrices) can be used to estimate pollutant emissions

generated by these trips (Beckx et al., in press). Emissions derived

from activity-based models can then be used to feed air-quality

models and thus improve the quality of computed concentrations

especially for transport related pollutants (Beckx et al., 2009b). In

summary, activity-based models provide additional information on

both receptors and pollutants that improves exposure assessments.

Although the advantages of such a procedure have often been

announced before (e.g. Shiftan, 2000), few real-world applications

have been published.

In addition to the above cited advantages, activity-based models

are not only a convenient way to derive time-location patterns of

people, but they can also provide detailed information aboutwho is

performing which activities, providing details that are usually not

available in exposure assessments (e.g. activities, socio-demo-

graphic details). In accordance to our previous work, the present

article aims to further contribute to this line of research by

exploring the use of the new attributes of an activity-based model

to create a complete national exposure analysis for The

Netherlands. To this end, emissions and air-quality results from an

activity-based analysis of traffic streams are used and combined

with dynamic population information over the entire country. The

evaluation of population level exposure to NO2 at different time-

periods, locations, for different subpopulations (gender, socio-

economic status) and during different activities (residential, work,

transport, shopping) in The Netherlands is chosen as a case-study

to point out the new features of this methodology.

The remainder of this paper is organized as follows. In the next

section, the development of an activity-based exposure modelling

framework in The Netherlands is described, using the activity-

based model ALBATROSS to assess people’s time-activity data and

the AURORA air-quality model to calculate the pollutant concen-

trations. In Section 3 total and disaggregated exposure analysis

results in The Netherlands are presented. The disaggregated

exposure analysis involves both a classification by activity type and

by population characteristics. Finally, we conclude this paper with

some thoughts on future research.

2. Materials and methods

In a previous study (Beckx et al., in press), we used the activity-

based model ALBATROSS to model activities and trips of the entire

Dutch population in The Netherlands. Trip data were combined

with statistical data on the Dutch fleet of passenger cars to estimate

emissions and model air quality. In the current study, hourly

concentration data resulting from the atmospheric dispersion

modelling approach (see also Beckx et al., 2009b) were combined

with hourly population density data derived from the activity-

based model to provide detailed dynamic exposure assessments. In

this section we briefly describe the emissions and concentration

values that were used and explain the methods to perform the

exposure analysis.

2.1. The study area

The study area for the components of the integrated modelling

approach presented here encompasses the whole territory of The

Netherlands (Western Europe). The country covers an area of

approximately 42,000 km2 with a population of around 16 million

people. Exposure to air pollution is considered a major problem in

The Netherlands and neighbouring regions. A European analysis

estimated that the average life expectancy in The Netherlands was

reduced by about one year in 2000 because of exposure to
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pollutants such as PM2.5 (Amann et al., 2005). Unfortunately,

current methodologies are unclear on which groups suffer the

highest exposure and loss of life expectancy but proximity of

residential areas to traffic has been identified as a risk factor

(Beelen et al., 2008; Williams et al., 2009). In this paper we study

the exposure to NO2, a pollutant which is typical for transport and

is associated with negative health effects. Concerning the time-

period for the exposure analysis in this study area, the year 2005

was selected due to the availability of the necessary data for both

population modelling and air-quality modelling.

2.2. Emissions

The emissions input consists of gridded two-dimensional

emissionsmaps on an hourly basis. Traffic-related emissions for the

year 2005 were obtained from a previous study (Beckx et al.,

in press) that evaluated the possibilities for the activity-based

model ALBATROSS to model vehicle emissions using macroscopic

emission functions. The use of a macroscopic emission approach is

more suitable for this national application than a microscopic

approach (e.g. Int Panis et al., 2006). The remainder of the transport

sector emissions for The Netherlands were taken from the national

Dutch pollutant emission inventory (PBL, 2008), which distin-

guishes between various types of road transport and emissions.

The Dutch emission inventory is available on a yearly basis, and has

a geographical resolution of 5 � 5 km2. Traffic emissions were

complemented with emissions from industry, shipping and

building heating that were obtained from the E-MAP GIS tool. E-

MAP performs a spatial segregation of CORINEAIR/EMEP emission

inventories by using spatial surrogate data (Maes et al., 2009). Bi-

linear interpolation techniques were employed to transfer the data

correctly to the grid of the dispersion model ‘AURORA’.

More details on the combination of the activity-based model

ALBATROSS with the emission model MIMOSA can be found in

Beckx et al. (in press).

2.3. Atmospheric dispersion modelling

AURORA, air-quality modelling in Urban Regions using an

Optimal Resolution Approach, is a prognostic three-dimensional

Eulerian model of the atmosphere (recent versions are described in

De Ridder et al., 2008a). The model assesses how, after being

emitted from a source, air pollutants are transported and mixed in

the air, undergo physical changes and chemical reactions, generate

secondary pollutants, etc. Both air pollutants in the gaseous and the

particulate phase are taken into account. The model’s outcome is

three-dimensional concentration fields, giving an overall assess-

ment of the air quality for the region of interest, and this from the

ground up to approximately 20 km altitude.

Air-quality calculations were performed with AURORA to

predict hourly NO2 concentrations for the month of April 2005 on

a 3-km resolution model domain. Validation studies on the hourly

concentration values already confirmed the accurateness of the

dispersion model for predicting outside NO2 concentrations (Beckx

et al., 2009b).

A full description of the air-quality modelling procedure used for

this paper can be found in Beckx et al. (2009b). More detailed infor-

mation on the model configuration, the chemical transformation of

air pollutants and other input data (land use parameters, vegetation

cover,.) can be found inDeRidderet al. (2008a). TheAURORAmodel

is also registered in the Model Documentation System of EIONET

(http://air-climate.eionet.europa.eu/databases/MDS/index_html)

and the ‘‘Model Inventory’databaseofCOST728 (http://www.mi.uni-

hamburg.de/List-classification-and-detail-view-of-modelentr.567.0.

html?&user_cost728_pi2[showUid]¼101).

2.4. Time-activity data

The activity-based model ALBATROSS, A Learning-Based Trans-

portation Oriented Simulation System, was developed in 2000 for

the Dutch Ministry of Transportation, Public Works and Water

Management as a transport demand model for policy impact

analysis. It is a computational process model that relies on a set of

decision rules, which are extracted from observed activity diary

data, and dynamic constraints on scheduling decisions, to predict

activity-travel patterns (Arentze and Timmermans, 2004). The

model is able to predict for all the individuals within a population

which activities are conducted, when, where, for how long, with

whom, and the transport mode involved. As a result of the sched-

uling process in ALBATROSS, activity-travel patterns are established

for all the adult individuals within the study area. The scheduling

process includes the generation of a synthetic population and the

assignment of activity-travel schedules to every individual within

this population. Consecutive hourly cross sections of the modelled

population will result in a representation of a dynamic population.

The ALBATROSS model used in the current study was estimated

on approximately 10,000 person-day activity-diaries collected in

a selection of regions and neighbourhoods in The Netherlands. The

generated synthetic population represents information for a frac-

tion of 30% of the households in The Netherlands and was created

using demographic and socio-economic geographical data from the

Dutch population and attribute data of a sample of households

originating from a national survey including approximately 67,000

households (Arentze et al., 2008). To obtain information about the

entire population, this population information was extrapolated

and activity-travel schedules were generated for all the individuals

within the Dutch population (approximately 11 million adult

inhabitants), taking into account the different population fractions.

The 4-digit postal code area (PCA) was chosen as the spatial unit for

the location assignment procedure (with an average area of 8 km2)

and time steps of 1 h were chosen as the appropriate time unit.

Information on the performed activity and the person involved was

expressed and recorded as ‘personhours’ performed at a certain

location (PCA). In Fig. 1 we present the distribution of personhours

spent on different non-residential activities during an average

weekday (Monday–Friday) over the entire study area. Considering

the low number of non-residential activities at night in Fig. 1, it is

clear that most people spend the night at home. However, during

the day (between 7 am and 20 pm), non-residential activities

account for a proportion of up to 60% of all activities. Performing

a paid job outside the house (work) is the most frequent activity.

Spending time in traffic between two activities (transport) is the

second most time consuming activity before social activities and

shopping activities. Considering the high number of personhours

spent on non-residential activities, exposure during the day is likely

to be significantly influenced by concentration differences between

home and workplace and while in-transport.

More information about the detailed working of this model and

the validation of its scheduling process can be found in Arentze and

Timmermans (2004) and Arentze et al. (2003).

2.5. Exposure modelling

Concentrations to which people are exposed were taken from

the gridcell corresponding to the location where the activity was

performed. For this reason the hourly population data were con-

verted to a grid map consistent with the ambient concentration

map. A GIS software tool (ArcGIS) was used to match population

data and concentration data on an hourly basis. This approach was

adopted for people performing the activities ‘‘home’’, ‘‘work’’ and

‘‘shopping’’. For the activity ‘‘in-transport’’ we adopted a different

Carolien Beckx et al. / Atmospheric Environment 43 (2009) 5454–54625456



approach since this activity cannot be mapped onto a set of grid-

cells. Other authors have circumvented this problem by either

ignoring the transport activity (Hertel et al., 2001) or by simply

assuming that the trajectory covered a straight line between origin

and destination (Marshall et al., 2006). We have allocated the

hourly average NO2 concentration measured in the Dutch traffic-

related monitoring stations to this activity (see Beckx et al., 2009b

for more details). In this way we can attribute specific outdoor

concentrations to each activity and exposure can be calculated in

a straightforward and transparent way.

For calculating exposure we did not use correction factors to

account for specific breathing rates nor did we take into account

whether an activity was performed inside or outside. Indoor/

outdoor ratios are notoriously inaccurate (Kousa et al., 2002) and

exposure in vehicles is even harder to quantify (e.g. Berghmans

et al., 2009). We have decided, for clarity and to avoid confounding

our main message, to look at ambient outdoor concentrations only

in this paper.

3. Results and discussion

3.1. Total exposure evaluation

In order to illustrate the hourly variations in concentrations and

population, Fig. 2a, b and d, e presents concentration and pop-

ulation data for a selected region in the study area (the Amsterdam

region) at two different time-periods. Similar geographic illustra-

tions can of course be presented for the entire study area (The

Netherlands). The Amsterdam region is an attractive city to live,

work, shop, or recreate which causes a large inflow of people

during the day. As an example the data values for a night period and

an afternoon period are presented for a day that was selected

randomly out of the entire dataset. A presentation of random

chosen values was preferred above showing average concentration

and population values to emphasize that the study takes into

account these distinct hourly values for the exposure calculation.

The resulting computed exposure values for the selected time-

periods are presented in Fig. 2c and f. The population exposure was

calculated by multiplying the concentration value (mg m�3) from

the dispersion model and the corresponding population value

(personhours).

The mean exposure concentrations estimated by this new

‘dynamic’ approach for the entire Dutch study area in the month of

April 2005 were first compared to results of a traditional ‘static’

approach (departing from residential data only and thus implicitly

assuming that people are always at home). The exposure results

were examined by time of day (hourly basis) to gain more insight

into ‘when’ the largest differences between both approaches occur.

Fig. 3 clearly shows that there is no significant difference between

the traditional static approach and our new dynamic assessment

between 8 pm and 6 am. Since, at night, the dynamic population

approximates the residential population this conclusion is quite

straightforward. During the day (6 am–3 pm) the dynamic expo-

sure assessment yields a much higher estimate for the exposure

compared to the static mean exposure concentration with aberra-

tions of up to 35% (p < 0.05; paired two-sided t-test). At that time,

a large part of the dynamic population will be performing out-of-

home-activities (see Fig. 1) and, apparently, these non-residential

activities occur at locations with higher NO2 concentrations. In the

early evening (5 pm–7 pm) however the static mean exposure

concentration presents slightly higher exposure values than the

dynamic approach, indicating that the NO2 concentrations near the

residential locations are higher than in other areas at that time. In

the late evening the differences between both approaches

disappear again.

Comparing theweighteddailyexposureof thedynamicapproach

concentration relative to the static exposure concentration results in

an overall difference of approximately 4%. Although relative differ-

ences during some hours are much larger, these large differences

tend to occurwhen concentrations are relatively lowand vice-versa.

Our result implies that, by neglecting people’s activity-travel

behaviour the exposure will be underestimated by approximately

4% on average. This is consistent with the results of Marshall (2006)

who also concluded that taking into account travel patterns

increases estimates of exposure for traffic-related pollutants (þ5%

for benzene and þ8% for diesel PM2.5). The fact that a dynamic

exposure analysis yields a higher estimate of exposure is linked to

the fact thatworkplaces, traffic activities and shopping areas tend to

be located in (urban) areas that have on average higher concentra-

tions. While the differences may look small at first, we should

consider thatmany nationalmeasures andplans to reduce transport

related air pollution will only change exposure by a fraction of this

amount. Present European policies (EU Directive 2008/50/EC),

Fig. 1. The distribution of non-residential activities performed by the adult population over an average weekday in The Netherlands as simulated by the ALBATROSS model.
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designed to reduce exposure to air pollution aim for a 5–20%

reduction depending on the area. Our assessment indicates that

traditional exposure assessmentmethods are probably not accurate

enough to develop efficient policies to meet this requirement.

3.2. Disaggregated exposure analysis

In addition to conclusions that have been drawn in the section

above, the true power of activity-based dynamic exposure model-

ling lies in identifying subgroups in the population and in activities

that are associated with higher pollutant concentrations. No other

transportation model than the activity-based paradigm is capable

of doing this. To this end, we present a disaggregation of the

exposure concentration by different subcategories in the next

section.

3.2.1. Exposure by activity

Using activity-based modelling as the basis of exposure

assessments enables us to disaggregate exposure for different

activities. Because different activities are performed in different

areas (postal areas in this case-study) each with its own concen-

tration profile (on an hourly basis), different activities can be

associated with different average concentrations. This is illustrated

in Fig. 4 for NO2 concentrations on an average weekday in April

2005. General modelled concentrations vary between 20 and

80 NO2 mg m�3 for most locations with a distinct peak in the

Fig. 2. (a)–(f) The predicted density of population (a,d), ambient pollutant concentrations of NO2 (b,e) and the exposure of the population to NO2 (c,f), evaluated for two randomly

selected moments, both on Tuesday the 19th of April 2005. The maps on the left side (a–c) present values at 2 am while the maps on the right side (d–f) correspond to the values

predicted for the 2 pm time-period. The size of the depicted area is 2000 km2.

Carolien Beckx et al. / Atmospheric Environment 43 (2009) 5454–54625458



morning and a protracted peak in the evening. Concentrations

associated with work activities are consistently higher than

concentrations associated with home-activities. Exposure while

shopping only occurs during opening hours and shopping areas are

characterized by intermediary NO2 concentrations when compared

to residential areas or workplaces. Average outdoor concentrations

of NO2 encounteredwhile being in-transport are oftenmuch higher

than elsewhere, except in the late afternoon.

In Fig. 5 the estimated exposure concentrations for different

activities are presented relative to the dynamic exposure concen-

trations. The dynamic exposure concentration (expressed relative

to the static exposure in Fig. 3) can be considered as the weighted

average of all the activity-specific exposure concentrations (taking

into account the number of personhours spent on each activity).

Differences for people working at night are not statistically signif-

icant because of low numbers and are therefore not shown.

Shopping activities only occur between 8 am and 20 pm. Fig. 5

clearly shows that between 6 am and 2 pm the mean exposure

concentration at home, at the workplace or in a shopping area is

lower than the mean exposure concentration over the entire pop-

ulation. On the other hand, the exposure concentration of people

in-transport is, on average, much higher than the mean population

exposure. In the early evening the analysis yields an opposite

observation.

3.2.2. Exposure by subpopulation

Another interesting feature of activity-based models is their

ability to retain demographic and socio-economic data of the

people making trips and performing activities. In this way the

exposure analysis can be disaggregated by different population

subgroups. In this paper we show two examples to illustrate this

point: an analysis by gender and by socio-economic classification.

In Fig. 6 we have plotted the exposure differences (relative to the

total dynamic exposure concentration) by hour of day. The expo-

sure patterns of the male and the female population display

opposite values. Since the exposure values for men and women

contribute almost equally to the total dynamic exposure values

(there are only slightly more women in the Dutch population than

men), this observation is rational. In the earlymorningmen seem to

be exposed to higher NO2 concentrations compared to the mean

population exposure values, conversely women are less exposed at

that moment. Exposure differences up to 12% were recorded in the

morning, indicating that, at that time, men perform activities at

locationswithmuch higher concentrations thanwomen. Sincemen

appear to travel earlier in the morning than women (travel results

not shown here) and morning traffic concentrations appear to be

quite high (see Fig. 4) the difference in the morning can be

explained by a different travel behaviour. Exposure differences

between 9 and 11 am are reversed because at that time more

women than men travel exposing themselves to higher concen-

trations than those experienced by men (many of whom are then

subjected to workplace concentration levels). In the afternoon men

experience once again a slightly higher exposure which can be

explained by the fact that more men than women have a paid job

outside the house especially in the afternoon (more women work

part-time jobs) and the workplace exposure concentrations are

always slightly higher than at home. The overall (24 h) difference in

exposure between men and women is 1.16% (i.e. exposure of men

relative to women), consistent with the findings from Marshall

(2008) who also reported that these differences in pollutant intake

rate will be even more explicit when taking into account gender-

specific breathing rates (men: 14.9 m3 d�1; women: 10.5 m3 d�1).

In the second exposure analysis by subpopulation we used

a similar disaggregated exposure analysis to distinguish the expo-

sures of people of different socio-economic groups. Within the

ALBATROSS model people (households) are categorised into four

socio-economic classes (SEC) according to their income. By means

of example we compared the exposure concentrations between

Fig. 3. Dynamic exposure estimates relative to exposure concentrations from a static

approach. Relative differences for NO2 per time of day for an average weekday in April

2005. The asterisks mark the hours with significant differences between both

approaches (p < 0.05; paired 2-sided t-test).

Fig. 4. NO2 exposure concentrations per time of day for different activities on an average weekday in April 2005.
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people from the lowest SEC (income less than average) and people

belonging to the highest SEC (incomemore than double of average).

As can be seen in the bottom graphs from Fig. 6 people belonging to

the lowest socio-economic group appear to be exposed to slightly

higher concentrations of NO2 throughout the day, but there is

a large variation within the day. Differences of up to 3% in the early

morning/night are statistically significant. This effect is caused by

concentration differences in the residential areas of both groups,

a phenomenon which was also described by Marshall (2008). It is

interesting to see the opposite during the morning rush hour.

People belonging to the highest SEC then have a higher exposure,

an effect that is caused by the fact that they are more likely to be

driving to work, exposing themselves to the higher traffic

concentrations. This offsets most of the original difference between

both classes and hence the overall (24 h) difference between both

subgroups is small (0.84%) and not statistically significant.

It is likely that the true difference in exposure between different

socio-economic groups is even larger than the value that was

Fig. 5. Estimated mean exposure concentration for each subgroup (activity) relative to the overall mean (dynamic) population exposure concentration. Values are presented per

hour for the exposure to NO2 on an average weekday in April 2005. The horizontal axis presents the time of day per hour. Note that a different ordinate scale was used for the

transport activity. The asterisks mark the hours with significant differences between both approaches (p < 0.05; paired 2-sided t-test).

Fig. 6. Estimated mean exposure concentration for each subgroup (population) relative to the overall mean (dynamic) population exposure concentration. Values are presented per

hour for the exposure to NO2 on an average weekday in April 2005. The horizontal axis presents the time of day per hour. The asterisks mark the hours with significant differences

between both approaches (p < 0.05; paired 2-sided t-test).
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presented here. It is well known that lower income groups tend to

live in cheaper houses, including those that lose value because of

higher noise levels. Differences in noise levels and important

differences in NO2 concentrations are known to occur over much

smaller distances than the resolution of our present model version

(3 � 3 km). It is therefore likely that we have underestimated this

difference. On the other hand is it remarkable that we can observe

this phenomenon even at the national level.

4. Conclusion

In this paper we have presented an integrated model chain to

estimate the population exposure to NO2 based on activities and

associated trips. For the first time to our knowledge an activity-

based transport model was integrated with concentration data

from an air-quality model, to perform such a nation-wide dynamic

exposure assessment to air pollution. The dynamic exposure

analysis from the activity-based approach yielded higher total

exposure estimates than the conventional static assessment that

assumes people are always at home. Depending on the perspective

taken, differences can either said to be small (approximately 4%

over the entire population) or rather important (from an air-quality

policy perspective).

A disaggregated analysis of the population exposure to NO2

revealed that exposure may vary between activities and between

subpopulations. Concerning the classification by activity, highest

exposure concentrations were estimated in-transport, followed by

workplaces, shopping areas and home-activities. When neglecting

the exposure during non-residential activities total exposure values

will be underestimated during the day. We also performed an

analysis on two population classifications: one by gender and

another by socio-economic status. The overall (24 h) relative

exposure difference between men and women was small but large

intra-day differences appeared due to a different activity-travel

behaviour (e.g. more men participate in the morning traffic peak).

An analysis by SEC revealed that people from the lowest SEC are

exposed to slightly higher NO2 concentrations during the day

compared to the mean population exposure except in the early

morning. Both the home location (living in more polluted areas)

and the travel behaviour (not participating in the morning traffic

peak) explain these differences.

This kind of multidisciplinary approach presented in this paper,

using a transport model for air-quality purposes, is not only inno-

vative from a scientific and methodological perspective, but it also

offers advantages for policy makers. It enables them to take into

account that trips both cause transport related emissions and at the

same time change the distribution and attributes of the population

which will result in different exposure estimates. The availability of

activity-based models for exposure analysis therefore opens up

a myriad of possibilities for innovative policies and measures.

Policy makers will be able to design measures aimed at reducing

the exposure at the most important sites, at the most critical times

and for selected population groups. These efforts may partly coin-

cide with currently implemented measures to meet general air-

quality standards. However, in addition to this, we expect that new

policies can especially be made more effective in reducing health

impacts. In any case, policies in other domains which nowadays risk

to offset environmental policies can be screened on their environ-

mental effects before being implemented.

Future researchwill continue to pave this way for policymaking,

by adopting the new approach presented in this paper as a policy

instrument to study the impact of different societal trends or

specific policy measures that have an indirect impact on traffic

flows. Examples that are current being studied include the aging of

European populations (which impacts on their travel and activity

patterns and hence on their exposure) and the impact of institu-

tional constraints like widening of shop opening hours (which tend

to shift traffic to the early morning and late evening and hence

changes the temporal concentration profile of transport related

pollutants). Further, the disaggregated population exposure infor-

mation will be used to refine the health effects resulting from this

exposure. By taking into account the estimated breathing rate

(depending on age, gender, activity level,.) the inhaled dose (and

the resulting health effects) during each activity can be assessed

more accurately.
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W., Wagner, F., 2005. CAFE Scenario Analysis Report No. 6. A final set of
scenarios for the clean air for Europe programme, Final report. Available on-line
http://ec.europa.eu/environment/archives/air/cafe/activities/pdf/cafe_scenario_
report_6.pdf (accessed March 2009).

Arentze, T. , Hofman, F. , Timmermans, H. , 2003. Reinduction of ALBATROSS deci-
sion rules with pooled activity-travel diary data and an extended set of land use
and cost-related condition states. Transportation Research Record 1831, 230–
239.

Arentze, T. , Timmermans, H. , 2004. ALBATROSS: a learning-based transportation
oriented simulation system. Transportation Research Part B: Methodological 38,
613–633.

Arentze, T. , Timmermans, H. , Hofman, F. , 2008. Creating synthetic household
populations: problems and approach. Transportation Research Record 2014,
85–91.

Beckx, C. , Torfs, R. , Arentze, T. , Int Panis, L. , Janssens, D. , Wets, G. , 2008.
Establishing a dynamic exposure assessment with an activity-based modeling
approach: methodology and results for the Dutch case study. Epidemiology 19,
S378–S379.

Beckx, C., Arentze, T., Int Panis, L., Janssens, D., Vankerkom, J., Wets, G. An integrated
activity-based modelling framework to assess vehicle emissions: approach and
application. Environment and Planning B: Planning and Design, in press.

Beckx, C. , Int Panis, L. , Arentze, T. , Janssens, D. , Torfs, R. , Broekx, S. , Wets, G. ,
2009a. A dynamic activity-based population modelling approach to evaluate
exposure to air pollution: methods and application to a Dutch urban area.
Environmental Impact Assessment Review 23, 179–185.

Beckx, C., Int Panis, L., Van De Vel, K., Arentze, T., Janssens, D., Wets, G, 2009b. The
contribution of activity-based transport models to air quality modelling:
a validation of the ALBATROSS – AURORA model chain. Science of the Total
Environment, 407, 3814–3822.

Beelen, R. , Hoek, G. , Van Den Brandt, P. , Goldbohm, R. , Fischer, P. , Schouten, L.J. ,
Armstrong, B. , Brunekreef, B. , 2008. Long-term exposure to traffic-related air
pollution and lung cancer risk. Epidemiology 19, 702–710.

Berghmans, P. , Bleux, N. , Int Panis, L. , Mishra, V.K. , Torfs, R. , Van Poppel, M. , 2009.
Exposure assessment of a cyclist to PM10 and ultrafine particles. Science of the
Total Environment 407, 1286–1298.

Burke, J.M. , Zufall, M.J. , Ozkaynak, H. , 2001. A population exposure model for
particulate matter: case study results for PM2.5 in Philadelphia, PA. Journal of
Exposure Analysis and Environmental Epidemiology 11, 470–489.

De Ridder, K. , Lefebre, F. , Adriaensen, S. , Arnold, U. , Beckroege, W. , Bronner, C. ,
Damsgaard, O. , Dostal, I. , Dufek, J. , Hirsch, J. , Int Panis, L. , Kotek, Z. ,
Ramadier, T. , Thierry, A. , Vermoote, S. , Wania, A. , Weber, C. , 2008a. Simulating
the impact of urban sprawl on air quality and population exposure in the
German Ruhr area. Part I: reproducing the base state. Atmospheric Environ-
ment 42, 7059–7069.

De Ridder, K. , Lefebre, F. , Adriaensen, S. , Arnold, U. , Beckroege, W. , Bronner, C. ,
Damsgaard, O. , Dostal, I. , Dufek, J. , Hirsch, J. , Int Panis, L. , Kotek, Z. ,
Ramadier, T. , Thierry, A. , Vermoote, S. , Wania, A. , Weber, C. , 2008b. Simu-
lating the impact of urban sprawl on air quality and population exposure in the
German Ruhr area. Part II: development and evaluation of an urban growth
scenario. Atmospheric Environment 42, 7070–7077.

Freijer, J.I. , Bloemen, H.J.Th. , de Loos, S. , Marra, M. , Rombout, P.J.A. , Steentjes, G.M.
, van Veen, M.P. , 1998. Modelling exposure of the Dutch population to air
pollution. Journal of Hazardous Materials 61, 107–114.

Gulliver, J. , Briggs, D.J. , 2005. Time-space modeling of journey-time exposure to
traffic-related air pollution using GIS. Environmental Research 97, 10–25.

Hertel, O. , De Leeuw, A.A.F. , Nielsen, O. , Jensen, S.S. , Gee, D. , Herbarth, O. , Pryor, S.
, Palmgren, F. , Olsen, E. , 2001. Human exposure to outdoor air pollution (IUPAC
Technical Report). Pure and Applied Chemistry 73, 933–958.

Int Panis, L. , Broekx, S. , Liu, R. , 2006. Modelling instantaneous traffic emission
and the influence of traffic speed limits. Science of the Total Environment 371,
270–285.

Kousa, A. , Kukkonen, J. , Karppinen, A. , Aarnio, P. , Koskentalo, T. , 2002. A model for
evaluating the population exposure to ambient air pollution in an urban area.
Atmospheric Environment 36, 2109–2119.

Carolien Beckx et al. / Atmospheric Environment 43 (2009) 5454–5462 5461



Maes, J. , Vliegen, J. , Van de Vel, K. , Janssen, S. , Deutsch, F. , De Ridder, K. ,
Mensink, C. , 2009. Spatial surrogates for the disaggregation of CORINAIR
emission inventories. Atmospheric Environment 43, 1246–1254.

Marshall, J.D. , Granvold, P.W. , Hoats, A.S. , Mckone, T.E. , Deakin, E. , Nazaroff, W.W.
, 2006. Inhalation intake of ambient air pollution in California’s South Coast Air
Basin. Atmospheric Environment 40, 4381–4392.

Marshall, J.D. , 2008. Environmental inequality: air pollution exposures in
California’s South Coast Air Basin. Atmospheric Environment 42, 5499–5503.

Miller, E. , Roorda, M.J. , 2003. A Prototype model of 24-hour household activity
scheduling for the Toronto area. Transportation Research Record 1831, 114–121.

PBL, 2008. Pollutant Release and Transfer Register. www.emissieregistratie.nl (Last
visited in November 2008).

Pendyala, R.M. , Kitamura, R. , Kikuchi, A. , Yamamoto, T. , Fujii, S. , 2005. Florida
activity mobility simulator. Overview and preliminary validation results.
Transportation Research Record 1921, 123–130.

Roorda, M.J. , Miller, E.J. , Habib, K.M.N. , 2008. Validation of TASHA: a 24-h activity
scheduling microsimulation model. Transportation Research Part A: Policy and
Practice 42, 360–375.

Shiftan, Y. , 2000. The advantage of activity-based modelling for air-quality
purposes: theory vs practice and future needs. Innovation 13, 95–110.

Stein, A.F. , Isakov, V. , Godowitch, J. , Draxler, R.R. , 2007. A hybrid modeling
approach to resolve pollutant concentrations in an urban area. Atmospheric
Environment 41, 9410–9426.

Timmermans, H.J.P. , Zhang, J. , 2009. Modeling household activity travel behavior:
examples of state of the art modeling approaches and research agenda.
Transportation Research Part B: Methodological 43, 187–190.

Wang, S.X. , Zhao, Y. , Chen, G.C. , Wang, F. , Aunan, K. , Hao, J.M. , 2008. Assessment
of population exposure to particulate matter pollution in Chongqing, China.
Environmental Pollution 153, 247–256.

Williams, L.A. , Ulrich, C.M. , Larson, T. , Wener, M.H. , Wood, B. , Campbell, P.T. ,
Potter, J.D. , Mctiernan, A. , De Roos, A.J. , 2009. Proximity to traffic, inflam-
mation and immune function among women in the Seattle Washington Area.
Environmental Health Perspectives 117, 373–378.

Wilson, J.G. , Kingham, S. , Pearce, J. , Sturman, A.P. , 2005. A review of intraurban
variations in particulate air pollution: implications for epidemiological
research. Atmospheric Environment 39, 6444–6462.

Wu, J. , Houston, E. , Lurmann, F. , Ong, P. , Winer, A. , 2009. Exposure of PM2.5
and EC from diesel and gasoline vehicles in communities near the Ports of
Los Angeles and long Beach, California. Atmospheric Environment 43,
1962–1971.

Carolien Beckx et al. / Atmospheric Environment 43 (2009) 5454–54625462


