When Disaster Strikes: Lessons from Logistics at Home Depot and Waffle House

Ozlem Ergun Pinar Keskinocak and Julie Swann *Center for Humanitarian Logistics*

Co-authors: Matt Drake, Jessica Heier, Paul Kerl

Humanitarian Crises

- Natural and manmade disasters
 - Hurricane, tsunami, etc.
- Ongoing problems about health, nutrition, etc.
 - AIDS pandemic, immunization for preventable diseases, etc.

Humanitarian Sector

- Economic losses from disasters are rapidly growing
- Relief is a "growth market", with governmental aid doubling from 1990 to 2000
- From 1985 1999, 14% of world weather disasters hit US, causing 58% of the insurance losses

Source: Munich Re-

Humanitarian Response

- Needs Assessment
 - What, where, how much
- Resource Mobilization
 - □ Financial, staff, equipment, supplies
- Procurement
 - Local, regional, international
- Distribution
 - Warehouses, DCs, other delivery points
- Transportation
 - International, in-country, last-mile

Private industry, Government, Military, Non-Governmental Organizations (NGOs) ... Challenging logistics/SCM problems Disaster Response at The Home Depot and Waffle House

- Focus on stresses that disasters place on:
 - Forecasting demand
 - Deciding how much of which products to hold in inventory
 - Allocating limited resources (workers, stores)
 - Transporting goods

Disaster Response at The Home Depot and Waffle House Timeline:

- Pre-storm season planning
- Impending storm preparation
- Post-storm recovery

Disaster Relief at The Home Depot

- The Home Depot founded in 1978 in Atlanta
 - Leader in the repair supply market
 - Southeast US is the home region
 - "Doing the right thing"
- Encourage other businesses to respond
- Support the local community
- Provide services to disaster recovery teams
 - Red Cross, National Guard, law enforcement, etc...

You can do it. We can help.™

Response Planning Schedule

Functional Areas

- Asset Protection
- Merchandising
- Logistics
- Regional Management

Asset Protection

- Pre-season preparation
 - Plan cohesiveness between functional areas
 - Obtain local permits for drivers and associates
 - Maintain merchant relationships
 - Track potential hurricane threats
- Impending storm preparation
 - Book hotel rooms
 - Ready repair teams for immediate roof repairs
 - Initiate Command Center for Cat 3 or greater storms
- Post-storm action
 - Bus in associates, facilitate communication
 - Send in repair teams and open stores

Merchandising

- Pre-season preparation
 - Predict inventory for a season
 - Previous years demand
 - Forecasted season strength
 - Lead times
 - Arrange consignment agreements with vendors
 - Prepare trucks prefilled with merchandise (canned loads)
- Impending storm preparation
 - Communicate with field to determine needs
 - Create purchase orders to fulfill needs
- Post-storm action
 - Constant continued needs assessment
 - Track orders

Logistics and Transportation

Pre-season preparation

- Contract with transportation companies
 - Pre-plan routes during a disaster/hurricane situation
- Establish hurricane distribution centers (Florida, Texas, Georgia)
- Work with merchandising to optimize space utilization
- Impending storm preparation
 - Track the storm
 - Preposition canned loads
- Post-storm action
 - Track trucks/orders

Regional Management

- Pre-season preparation
 - Train associates
 - Ensure store hardiness
- Impending storm preparation
 - Closes stores 6 hrs prior to tropical storm force winds
- Post-storm action
 - Ensure store readiness and associate availability to re-open stores
 - Communicate specific storm damage
 - Send merchandise needs to corporate

Key Response Decisions

- Plan seasonal hurricane inventory
- Prepare and pre-position canned loads
- Route trucks dynamically
 - Continuously changing storm trajectory and damage type
 - Road closures
 - Evacuation paths

Plan Inventory

Forecast pre- and post-storm demand

Demand "spikes"

Three week time frame, separated into daily sales of hurricane-related products

Prepare Canned Trailer Loads

- Quickly fulfill the high-demand for essentials
 - Pre-storm: water, gas cans, flashlights, batteries, tarp
 - Post-storm: water, chainsaws, garbage cans, towels, wheelbarrows
- OR Problem:
 - What products should be placed in the loads?
 - What is an appropriate objective function?

Model – Parameters

- E.g. water is more important than trash bags hence water should have a larger weight
- Other parameters

Product weights

- Stacking ability (double, triple and quadruple)
- Forecasted demand pre-storm and post-storm
- Size of each pallet

Model - Decision Variables

- Is an available trailer used?
- How many items are placed on level 1 of a given truck?
- How many additional items are placed on levels
 2, 3 and 4?

Model

- Maximize total worth of items placed in trailers
 - Subject to
 - Maximum number of available trucks (<=10)
 - Constraints on the number of first level pallets
 - Constraints on stacking pallets
 - □ Up to four levels of stacking ability
 - Each level up is constrained by the level below it
 - Demand constraints

Results - Pre-storm Loads

	Score	Differences	
Greedy pre-storm	850	Minor changes— more water, more gas cans, more tarps	
THD pre-storm	862		
Model pre-storm	952		
Model pre-storm (different loads)	1034		

Results -Post-storm Loads

	Score	Differences	
Greedy post-storm	620	Minor changes— fewer brooms and mops, more batteries and tarps	
THD post-storm	693		
Model post-storm	693		
Model post-storm (different loads)	789		

Hurricane Response at Waffle House

- Founded near Atlanta in 1955
- 1600 stores in 25 states
 - Dense presence in Southeast
- Pro-active approach to hurricane planning and response
 - Direct involvement of senior management
 - Documentation of lessons learned
 - Engagement with suppliers, employees, community, and government

Pre-season Preparation

- Review previous season
- Secure needed equipment
 - Generators, vehicles, and communication devices
- Review response preparation with vendors
- Train associates
- Develop printed material
 - Hurricane Menu—a shorter menu used to simplify inventory, ordering, and organization during a disaster
 - Signs, phone lists

Impending Storm Preparation

- Monitor storm
- Ensure equipment readiness
- Encourage associate evacuation, as needed
- Coordinate store closings
- Place suppliers on alert
 - Inventory pre-positioning
 - Anticipated demand for Hurricane Menu items
- Assemble response team

Post-storm Action

Corporate HQ Command Center

Key Response Decisions

- Hurricane Menu
- Purchase/lease agreements for recovery necessities
 - Generators
 - Portable toilets
- Food order quantities for transition period
 Stores prioritized for re-opening

Hurricane Menu

- Offer limited menu in days immediately following disaster
 - Enables quicker reopening with limited resources
 - Expedites service to customers
 - Simplifies purchasing, inventory
- OR Problem
 - What items should be included on the Hurricane Menu?
 - What is an appropriate objective function?

Hurricane Menu

Burners

Grill

Waffle Irons

Resources for Cooking

- Burners: eggs and omelets
- Waffle Irons: waffles
- Grill: meats, hashbrowns, and sandwiches

Hurricane Menu Example Data

Candidate Menu Items

Item	Customer Utility	Cooking Time (min)	Resource
Waffle	5	3	waffle iron
Egg	5	3	1/3 pan on burner
Sausage	3	2	1 grill unit
Ham	2	1.5	1 grill unit
Bacon	5	3	2 grill units
Omelet	4	7	1 burner
Hashbrowns	2	3	1 grill unit
Plain Grits	3		kept in steam table
Grits with Toppings	5		kept in steam table

Hurricane Menu Model

Maximize Total Utility: measures customers' preference for items

s.t. Resource Availability Constraints Cooking Duration Constraints Integrality Constraints

Hurricane Menu Example

Utility-maximizing Menu

	Item	Customer Utility	Cooking Time (min)	Resource
\langle	Waffle	5	3	waffle iron
	Egg	5	3	1/3 pan on burner
	Sausage	3	2	1 grill unit
	Ham	2	1.5	1 grill unit
	Bacon	5	3	2 grill units
	Omelet	4	7	1 burner
	Hashbrowns	2	3	1 grill unit
	Plain Grits	3		kept in steam table
	Grits with Toppings	> 5		kept in steam table

Hurricane Menu Example Data

Item-maximizing Menu

	Item	Customer Utility	Cooking Time (min)	Resource
	Waffle	1	3	waffle iron
	Egg	1	3	1/3 pan on burner
	Sausage	1	2	1 grill unit
	Ham	1	1.5	1 grill unit
	Bacon	1	3	2 grill units
	Omelet	1	7	1 burner
	Hashbrowns	1	3	1 grill unit
Q	Plain Grits	1		kept in steam table
	Grits with Toppings) 1		kept in steam table

2007 Hurricane Menu

Breakfast

- Waffle or Pecan Waffle
- Two Eggs, Toast, & Grits/Hashbrowns
- Ham & Egg Sandwich
- -Hashbrowns, Single or Double
- Sausage
- Ham
- Cereal with Milk
- Pastries

Lunch and Dinner

- 1/4 lb. Hamburger
- Double 1/4 lb. Hamburger
- Chicken Sandwich
- Ham & Cheese Sandwich
- Turkey & Cheese Sandwich
- Grilled Cheese Sandwich

Pie

All Items Available 24 Hours

Advance Purchase of Key Response Items

- Necessary to reopen following a disaster (e.g. generators)
 - Limited availability at that time
 - Purchase or lease in advance of hurricane season

OR Problem

- How many units should be secured in advance?
- What is the correct objective function for this problem?

Advance Purchase:

Minimum Cost Objective

- Objective: Minimize Expected Cost
 - c_o = overage cost; price of generator
 - c_u = underage cost; lost profit if generator shortage
 - $\Box \quad Q = quantity purchased$
 - $\Box D = actual demand, a random variable with cumulative distribution function F determined from past hurricane data$
- Standard Newsvendor Model
 - Choose optimal quantity Q* based on critical ratio

$$F(Q^*) = \frac{c_u}{c_u + c_o}$$

Advance Purchase Example – Minimum Cost Model

- Consider the following scenario
 - $\Box C_o = $1,000$
 - $\Box C_u = $15,000$
 - 3 days without electricity, with lost profits of \$5000/day
 - $\Box F(Q^*) = 0.938$
- Min Cost Q* = 4 generators

Distribution of Generator Demand ⁺		
D	Pr{d⋅D}	
16	1.00	
12	0.98	
8	0.96	
4	0.94	
0	0.52	

+Demand data based on number of U.S. landfalling hurricanes, 1956-2005; Source: NOAA.

Advance Purchase –

Minimum Maximum Regret Objective

- Objective: Minimize Maximum Regret
 - Given the purchase decision, what is the maximum difference over all possible demand realizations between actual cost and optimal cost?
 - Actual Cost = 1000*Q + 15,000*max{0, D-Q}
 - Optimal Cost = 1000*D
 - Regret = max{14,000*(D-Q), 1,000*(Q-D)}
- Previous Data: Min Max Regret Q* = 15

Advance Purchase of Key Response Items

Advance Purchase – Uncertainty in Costs

- Uncertainty in value of lost profits or days without electricity affects Q*
- Min Max Regret Q* has smaller range (14 to 16) than Min Cost Q* (4 to 12) over wide range of underage costs

Food Order Quantities

- Current Practice
 - Truck #1
 - Standard shipment including disposable tableware, sanitation supplies, and other immediate needs
 - Order-up-to-Level
 - Checklist for store managers to generate food orders
 - Based on past hurricane experience
 - Prefer to over-estimate
- OR Problem
 - Develop forecasting model for transition period demand

Reopening Prioritization

Construction & Equipment

Store condition and safety

- Time and equipment needed to rehabilitate
- Availability of water
- Availability of electricity

Road access

Operations

Availability of personnel

 Location with respect to airports, highways

 Relative location to other candidate restaurants

Priority List for Store Reopening

"Nothing good can come from a closed Waffle House after a hurricane." Bert Thornton, President & COO The Home Depot and Waffle House are top responders because:

- Nature of the business
- Corporate culture
- Investment in pre-planning and preparedness
- High level management involvement in response
- Some of their significant challenges can be solved with the help of operations research techniques.

Questions?

humlog@isye.gatech.edu

http://www.scl.gatech.edu/research/humanitarian/

- Co-Directors of Humanitarian Logistics in ISyE
 - Ozlem Ergun
 - Ozlem.Ergun@isye.gatech.edu
 - (404) 894-2369
 - Pinar Keskinocak
 - Pinar.Keskinocak@isye.gatech.edu
 - (404) 894-2325
 - Julie Swann
 - Julie.Swann@isye.gatech.edu
 - (404) 385-3054

