
http:/ /www.smartaccessnewsletter.com 9Smart Access May 2002

Smart Access

Microsoft Access Forms—
All Class
Garry Robinson

20002000 20022002

If object-oriented development seems foreign to you, it

shouldn’t . All forms are defined in class modules, and all

execut ing forms are objects. Garry Robinson shows how to

take advantage of this to create classy forms.

W
HEN Access 97 came out, one of its hidden

features was that form objects were now

actually class modules. I was under-impressed.

Five years later, and guess what—it finally dawned on me

that I was using Access forms more and more as class

modules. This has gradually come about as my clients

started requiring more intuitive interfaces. This article

outlines ways that you can take advantage of class

module features that I’ve used over the past few years.

You’ll note as you read the article that I haven’t gone

really overboard on technicalities but instead have

concentrated on showing you ways to get even more

mileage out your most valuable forms.

My most-used trick

Whenever I add a control to a form that will open another

form in Access, I avoid using the Button Wizard as all the

error code that it generates irritates me. Instead, I make a

blank button by canceling the wizard. Then, as usual, I

find that I don’t quite remember the name of the form that

I want to open. So I’ll type the following code and hit the

space bar to show a list of forms (see Figure 1):

Docmd.openForm form_

This list is actually all the forms in that database that

have code behind the form. These are all stored in your

database as class modules. And guess what—you can use

these modules as objects.

Back to my trick. From the list of forms, I can select

the form that I want. I then delete the “form_” before the

form name, and I now have my form name. If the form

that you want isn’t in this list, you must ensure that the

HasModule property of the form is set to True. This can

make for slower loading of the form if it has no code

behind it, so beware about getting carried away with

setting this property to True.

The form as a class module

When you open a form with the DoCmd.openForm

method, there’s a limited number of things that you can

do to the form:

• Show the form in datasheet or normal mode.

• Filter records behind the form.

• Display the form in Dialog mode.

If you’re really tricky, you can use the OpenArg

argument to pass all sorts of clever text strings to the

form. These clever text strings can then be manipulated in

the Form_Open event to manage the form.

There’s a simpler alternative to these limited choices

and complicated code: Use the form as an object. You can

then manipulate the form with code like this:

DoCmd.OpenForm "Orders"

With Form_Orders

 .AllowEdits = True

 .RecordSelectors = True

 .NavigationButtons = False

 .Caption = "Smart Access Demonstration"

 .CustomerID.StatusBarText = "My Message"

End With

As you can see, many of the things that you might set

at design time (for example, turning the record selectors

and navigation controls on and off) can be handled easily

in code. This is very useful because it allows you to

modify the way the form looks while it’s being opened

rather than at design time. For instance, navigation

buttons are useful for managing many records and a

helpful addition to the user interface. But if all you want

the form to do is allow the user to add one new record,

then you can turn the navigation buttons off as you openFigure 1. Retrieve all the form class objects in your database.

10 http:/ /www.smartaccessnewsletter.comSmart Access May 2002

the form and reduce the clutter in your user interface.

There’s nothing more to the manipulation of the

properties for your form than adding a code block after

your OpenForm as I’ve done for the Orders form in my

previous example:

With Form_Orders

End With

Now you can type a period inside the With block,

and the following programmable items for the form

will appear:

• All the form’s methods (Undo, SetFocus, Requery,

Refresh, and Repaint)

• An abundance of properties, including Dirty, Hwnd,

Cycle, and DatasheetFontName

• All the text boxes, combo boxes, and other controls

that exist in the form

If you select a control for the form, you can

manipulate the properties of that control. Available

control properties include its default value, font

characteristics, and control tip—plus all the other

properties that you’re used to setting at design time.

Data entry modes

The primary reason I’ve been manipulating the

properties of forms in code is to set up different styles of

interfaces for my end users without generating multiple

copies of what’s basically the same form. The following

example demonstrates how the user interface can be

switched to either Add or Edit mode according to a field

on another form (shown in Figure 2). If the user leaves

the order number field blank, the next form is opened

in DataEntry mode. If the order number isn’t blank,

DoCmd.OpenForm "Orders", , , , , acHidden

With Form_Orders

 If IsNull(Me!orderReq) Then

 .AllowAdditions = True

 .DataEntry = True

 .NavigationButtons = False

 .Visible = True

 Else

 .Visible = True

 .DataEntry = False

 .NavigationButtons = True

 .OrderID.SetFocus

 DoCmd.FindRecord Me!orderReq, acEntire, _

 , acSearchAll

 End If

End With

Your own filters

The DoCmd object’s OpenForm method allows you to

add your own Where clause or query to filter your data.

However, it’s often cleaner and more flexible to program

filters using the filter properties of the form. This code

shows how easy it is to modify the Filter property of

another form to have it show only the records for a

particular customer:

DoCmd.OpenForm "Orders", , , , acFormAdd, acHidden

With Form_Orders

 .Filter = "CustomerId = '" & Me!CustomerReq & "'"

 .FilterOn = True

 .NavigationButtons = True

 .Visible = True

End With

A word of caution, if performance is a big issue:

When you use DoCmd.openForm and don’t apply

either a filter query or a Where clause, the form will open

with a recordset that retrieves all the data in the

recordsource. Applying the filter in the OpenForm

method ensures that the recordset behind the form is

filtered before it’s displayed. If you’re using the FilterOn

and Filter properties of the form as I do here, it’s wise to

open the form using the acFormAdd constant in the

Figure 2. The demonstrat ion form.

then the form receives the focus in

code, and the FindRecord method of

the DoCmd object is used to find the

specified order.

The code for this is shown in

the next snippet. While there’s not

much difference between the two

versions of the form, the differences

reflect things that make the user

interface less confusing than it could

be and tailor the second form for its

purpose. For example, the record

navigation control is on when an

order exists and off when you’re

adding a new order. Further on, I’ll

show you how the form’s recordset

can be used to determine whether an

order actually exists.

Dim UserResponse As Variant

http:/ /www.smartaccessnewsletter.com 11Smart Access May 2002

OpenForm’s dataMode argument

(as I’ve done in my example). This

opens the form with no data being

displayed. This is fast, and your

data will be displayed when you turn

the filter on. I also like to hide the

form from the user while the form is

being manipulated by using the

OpenForm’s acHidden property. The

form is made visible by setting the

form class’s Visible property

at the end of my manipulation.

Look, Mum—no hands

If ever I had a golden rule for

computing, it would be that you

never want to code the same thing

twice, especially if you’re being paid

for it. I ran into this issue with a

Now that I’ve established that I have some records, I

loop through the records for that customer. You may want

to do this with the form hidden once you move the

application to production. As I’m about to add the order

totals to a blank table, I need to clear the table first and

turn off all the Access insert warnings:

DoCmd.SetWarnings False

DoCmd.RunSQL "Delete from MyOrders"

Form_Orders.Visible = True

Now it’s a matter of looping through the form’s

recordset, which has the effect of showing each record on

the form (a good reason to make the form invisible unless

you think that your users will enjoy the show). It seems to

be necessary to use the form’s recalculation method for

each record to ensure that calculated fields are populated.

In this example, I’ve used a SQL Insert statement to

add the data to my temporary table. All of this code

occurs in the form that opened and is controlling the

Orders form and not in the Orders form itself. As you can

see in the next code block, I’ve referred to the Orders

form’s subtotal field by treating it as a property of the

Orders form. The full property that I reference is

Form_Orders.Subtotal.Value. To move to the next record

for this customer, I simply use the MoveNext method of

the recordset. The form then shows the next record:

 Form_Orders..Recalc

 sqlStr = "INSERT INTO MyOrders " & _

 "(OrderID, SubTotal, Freight, Total) values " & _

 "(" & Form_Orders.OrderID & "," & _

 Form_Orders.Subtotal & "," & _

 Form_Orders.Freight & "," & _

 Form_Orders.Total & ")"

 DoCmd.RunSQL sqlStr

 Form_Orders.Recordset.MoveNext

Wend

DoCmd.OpenTable "MyOrders"

Figure 3. The slight ly modified Northwind orders form.

programming buddy where we realized (after spending

hours trying to calculate a total on a form using sub forms

and other bits of code) that we then had to rewrite all that

code to use those results in a report. In this case, I realized

that the form actually contained all the business logic for

the calculations.

This brings me to the next example where I show you

how to transfer calculations from the good old Northwind

Orders form to a temporary table (see Figure 3). The fields

that I’ll transfer are the OrderId, subtotal, freight, and the

total calculated on the form.

I start by opening the Orders form and filtering the

customer records. In the sample code, I call the code

that’s behind the Find Customers button. Never forget

that code under a button can be reused elsewhere since it

is, after all, just a subroutine. After the filter, I have an

open form with only the orders for the one customer I

was filtering for.

I then manipulate those records by using the form’s

Recordset property. This is really exciting, because you

can walk through records using all the familiar MoveNext

and MoveFirst methods of a recordset. You can also test to

see whether the recordset has no records and stop any

action. In the following code, I also test the RecordCount

property when opening the form to see whether any

data exists:

With Form_Orders

 .Recordset.MoveFirst

 DoCmd.SetWarnings False

 If .Recordset.RecordCount = 0 Then

 MsgBox "No orders were found for " & _

 Me!CustomerReq, vbOKCancel, "Try Again"

 DoCmd.Close acForm, "Orders"

 GoTo exit_cmdTotals_Click

 Else

Unfortunately, this doesn’t work in Access 97 because

the form class module doesn’t have a Recordset property.

12 http:/ /www.smartaccessnewsletter.comSmart Access May 2002

Open the same form twice

On the Orders form (see Figure 4), I’ve put a button to

show the form again. You can actually display a copy of

the current form without copying it to a new name in

the database container. You can do this because the form

is a class and can be instantiated as a new object. The

following code shows how I can make a copy of the form,

filter it for the current order, and modify a few properties

so that the form looks different from the current version.

I find this technique is useful for comparing two complex

records using a standard form view:

Static lastTop As Long, lastLeft As Long

Set frmOrders = New Form_Orders

With frmOrders

 .Visible = True

 .Filter = "orderId = " & orderReq

 .FilterOn = True

 .Caption = "Filter: " & .Filter

 .Detail.BackColor = vbWhite

 lastTop = lastTop + 100

 lastLeft = lastLeft + 100

 DoCmd.MoveSize lastTop, lastLeft

 .cmdCopyOrder.Visible = False

End With

Of course, there are a few tricky things to realize

about this new form object. You’ll have to explicitly set

the Visible property of the new copy of the form to True to

get it to display. Even more perplexing is that, in your first

attempt, you’ll probably write the code so the variable

used to refer to the form immediately drops out of scope

once the form has been displayed. Once the variable is out

of scope, the copy of the form is destroyed. This is what

happens if you use a local object variable to refer to the

form like this:

Sub CopyOrder

Dim frmOrders As Form_Orders

 Set frmOrders = New Form_Orders

 With frmOrders

 .visible = true

 End With

End sub

The solution is to declare the variable that refers to

the form object so that it remains in scope even when

the subroutine has completed running. You can achieve

this by declaring the variable as at the module level of

the form:

Dim frmOrders As Form_Orders

Sub CopyOrder

 Set frmOrders = New Form_Orders

 With frmOrders

 .visible = true

 End With

End sub

Another solution is to declare the variable as static:

Static frmOrders As Form_Orders

Declaring the variable as static has an interesting

effect: If you then run the same code again, the form

seems to save the record that you’re editing and then

refresh the same object with the new properties that

you’ve set for the form. This means that if you want

to maintain multiple versions of the class objects,

you’ll need to keep an array of form objects. An even

more sophisticated approach is to make your own

collection of form objects and manage the forms in that

special collection:

Figure 4. Create a

new instance of

the Orders form

and display the

current order.

http:/ /www.smartaccessnewsletter.com 13Smart Access May 2002

Dim colOrders As Collection

Sub CopyOrder

Dim frmOrders As Form_Orders

 Set frmOrders = New Form_Orders

 With frmOrders

 .visible = true

 End With

 colOrders.Add Form_Orders

End sub

So when does this second form actually close down

or go out of scope? The form will close down if the user

closes it down manually, and it will close down if the

form that holds the static or module-level variable is

closed down. To have the form stay alive for the life of

your application, declare the variable that refers to the

form as Public in a module:

Public frmOrders As Form_Orders

Your own methods

Everything has been pretty exciting thus far, but there’s

more. You can make your forms really clever by exposing

your private subroutines and functions as Public. For

example, when I made a new instance of the Orders form,

I decided that it would be cool to not only open the

Orders form but to use a special method of that form to

display that order in yet another form as well.

I managed this by making the CopyOrder routine a

public subroutine. I also added an optional argument to

this subroutine so that I could pass an order number of

my choosing into the subroutine:

Public Sub CopyOrder(Optional ShowOrderID As Variant)

Static lastTop As Long, lastLeft As Long

Static frmOrders As Form_Orders

Dim orderReq As Variant

If IsMissing(ShowOrderID) Then

 orderReq = Me!OrderID

Else

 orderReq = ShowOrderID

End If

End sub

As you can see in Figure 5, this public function now

appears as a new method of the Form_Orders form. I now

can call this new method using an order number like this:

With Form_Orders

 .CopyOrder Me!orderReq

End With

It’s that easy to turn a subroutine into a method. Any

public function also acts as a method, except that they can

return values after they’ve completed.

You can also add public properties to your form. The

easiest way is to choose Insert | Procedures from the

menu while working in a code module behind a form.

You can also write the code yourself. To create a property

that can be both read and written to, you must write a

Property Let (which will be run when someone tries to set

your property) and a Property Get (which will be run

when someone tries to read your property). These

property routines allow the user to change the OrderNum

variable inside the form through a property called

OrderNumber:

Dim OrderNum As String

Public Property Let OrderNumber(Order_Numb As String)

OrderNum = Order_Number

End Property

Public Property Get OrderNumber() As String

 OrderNumber = Order_Num

End Property

As you can see, a Property Let looks very much like a

subroutine that accepts a single parameter; a Property Get

looks like a function that returns a value.

Code that uses the property might look like this:

Dim frmOrders As Form_Orders

Sub CopyOrder

 Set frmOrders = New Form_Orders

 frmOrders.OrderNumber = Me!OrderID

Finally, you can have your form fire events back

to the code that created it. This code, placed inside

the Form_Orders form, defines an event called

OrderNotFound:

Event OrderNotFound()

To signal that the order isn’t found, the Form_Orders

form would use the RaiseEvent command with the name

of the event:

RaiseEvent OrderNotFound

In the code that creates the Form_Orders form, you

have to declare the variable that refers to the form with

the WithEvents keyword in order to catch the events.Figure 5. Once you set up a form class method, it immediately

becomes visible in IntelliSense. Continues on page 23

http:/ /www.smartaccessnewsletter.com 23Smart Access May 2002

Once you do that, you can respond to the events by

writing an event procedure whose name consists of the

variable name and the event name:

Dim WithEvent frmOrders As Form_Orders

Sub CopyOrder

 Set frmOrders = New Form_Orders

 frmOrders.OrderNumber = Me!OrderID

End Sub

Sub frmOrder_OrderNotFound()

..code to handle order number not found

End Sub

The download database

The Download file for this article (available at

www.smartaccessnewlsetter.com) consists of a database in

Access 2000 format. I originally started doing all the

samples in Access 97 but stopped because Access 97

wouldn’t support recordsets behind the form. The Access

97 version of this code is actually the Access 2000 version

saved back to Access 97. Most of the sample code works,

but the last two options on the demo form (which depend

on the Recordset property of the form) will fail under

Access 97.

Your Access forms are pretty smart objects and are

Microsoft Access Forms...
Continued from page 13

one of the reasons why Microsoft Access is such a

configurable tool. Now that you’ve seen how the form can

be manipulated as an object, you can make smart forms to

suit your clients’ user interface requirements. The “form

as class object” also includes all the form properties and

events that you’re used to manipulating. Now you can

manage these properties in code before you expose the

form to your user. In some cases (for instance, recordset

manipulation), you can even leverage the considerable

work that you’ve put into your forms to transfer

information to tables. You can then use those forms in

reporting and other activities. Forms are a class act, so

why not start using them as the class objects that they

truly are? ▲

FORMCLSS.ZIP at www.smartaccessnewsletter.com

Garry Robinson works for GR-FX Pty Limited, a company based in Sydney,

Australia. If you want to keep up-to-date with the his latest post ings on

Access issues, visit his company’s Web site at www.gr-fx.com or sign up

for his Access e-mail newslet ter by sending a blank e-mail to t ips@gr-

fx.com. He’s recent ly made available a library of code and forms that he

reuses in all his projects. Read about it at www.vb123.com/ toolbox.

garry@gr-fx.com.

Useful Further Reading

and Resources

• Search your Access Help for “Program with Class

Modules.” Choose the topic “Create a class module that ’s

not associated with a form or report.” The links for this

page take you to informat ion about programming form

class objects.

• The Access 2000 Developers Handbook (Desktop Edit ion)

covers this topic in great detail. Read my review at

www.vb123.com/books.

Sign up now for Pinnacle’s FREE eNewsletters!

Get t ips, tutorials, and news from gurus in the field

delivered straight to your Inbox.

http:/ / www.FREEeNewsletters.com

XML • Web Development • SQL Server • Visual Basic • MS Access • Oracle • .NET • Delphi •

FoxPro • XML • Web Development • SQL Server • Visual Basic • MS Access • Oracle • .NET

XML • Web Development • SQL Server • Visual Basic • MS Access • Oracle • .NET • Delphi •

FoxPro • XML • Web Development • SQL Server • Visual Basic • MS Access • Oracle • .NET

XML Web Reports...
Continued from page 8

Although I didn’t run any time trials, it’s reasonable

to conclude that it’s faster to create a single XML file

from a query than to create both XML and XSL files from

a report.

I have to admit that, though I was excited to hear

that Access 2002 would include support for XML, I

was at first hard pressed to find a real-life application

for it. Once I began to create XML reports for Web apps,

it became clear to me that Access 2002 could greatly

simplify the process. Now, even if I use a different

method to refresh the XML files used in the transform,

I’ll continue to use the ExportXML method to generate

the complex XSL files required to produce rich

Web reports. ▲

XMLREPORT.ZIP at www.smartaccessnewsletter.com

Danny J. Lesandrini, a Microsoft Cert ified Professional in Access, Visual

Basic, and SQL Server, has been programming with Microsoft Access

since 1995. He maintains a Web site containing Access-related code

solut ions at ht tp:/ /datafast .cjb.net and replies to all quest ions and

comments sent to him via email. datafast@attbi.com.

