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Abstract: In this paper, we reinvestigate the solution for  chaotic time series prediction 
problem using neural network approach. The nature of this  problem is such that the data 
sequences are never repeated, but they are rather in chaotic region. However, these data 
sequences are correlated between past,  present, and future data in high order. We  use 
Cascade Error Projection (CEP) learning algorithm to capture the high order 
correlation between past and present  data  to  predict  a  future data using limited weight 

quantization constraints. This will help to  predict a future information that will provide 
us better estimation in time for intelligent control system. In our earlier work, it has been 
shown that CEP can suflciently learn 5-8 bit parity  problem with 4- or more bits, and 
color segmentation problem with 7- or more bits of weight quantization. In  this  paper, 
we demonstrate that chaotic time series can be learned and generulized well with as low 
as 4-bit weight quantization using round-offand truncation techniques. The results show 
that generalization feature will suffer less  as more bit weight quantization is available 
and error surfaces with the round-off technique are more symmetric around zero than 

error surfaces with the truncation technique. This study suggests that  CEP is an 
implementable learning technique for hardware consideration. 

I-Introduction 

There  are  many  ill-defined  problems in pattern  recognition, classification, 
vision,  and  speech  recognition  that  need to be  solved in real  time [ 1-31. The solution  by 
linear  technique  may  not  be  suitable  because its hyperplane  solution may not  be 

sufficient for  very  complex  problems or it  cannot  provide  a  generalization  feature  for  a 

new  and  unlearned data. Therefore,  neural  network is a  good  candidate to solve such 

problems.  In  addition,  the  neural  network  architecture,  unlike  sequential  architecture, 
provides  a  massively  parallel  processing  feature  that  offers  tremendous  speed  only 
when  implemented in hardware.  From  these  evidences,  neural  network  hardware is 
defined  as  our  motivation  in this paper. 

In  our earlier publications [4-61,  it  was  shown  that CEP is  an efficient hardware 
learning  algorithm. It  only  required 4-bit weight  quantization  to  solve  4-8  bit  parity 

problems  and  7-bit  weight  quantization  to  reproduce  the  same  accuracy results as 64-bit 

weight  quantization  with  two  more  hidden  units  added  for  color  segmentation 
problem[7]. We now  broaden  the  application  of CEP to  solve  the  chaotic  Mackey- 

Glass  time  series  prediction  problem. 

The  nature of this problem  is  such  that  data  never  repeats  itself,  but is rather chaotic. To 
capture  this  prediction,  the  transformation  for  the  future  data  must  contain  high  order 



correlation of the past  and  present  data. This study will,  once  again, help us to confirm 
the  potential of CEP to such high  order correlation for  prediction  which may be useful  for 
intelligent control or robust data validation. 

11. ARCHITECTURE OF CEP: 

The CEP architecture is shown in Figure 1 where X is the input  and 0 is the output set. 
Hidden  units are added  one  at  a time as needed. 

Figure 1: Assume  that there are (n+l) hidden units in the network  and  the 
blank squares and circles are the weight components which determine the 
weight values by learning or calculating. 

E: = t,P - o,P(n) denotes the error between output element o and training pattern p with 

target t and actual output o(n) where  n  indicates that the  output  has  n  hidden  units in the 
network; 

f : (n)  denotes the output transfer  function derivative with  respect  to the input  with the 

index of the output o (o={ 1,m)) and the training pattern  p; 

fh”(n + 1) denotes the function of hidden  unit n+l and training pattern p; 

X p  denotes the input  pattern  p;  and 1x1 denotes the Euclidean  length of vector X 

it  has  been shown [5-61 that: 
P r n  

p=l  o=l 



Our goal is to maximize a difference energy  function AE with  respect  to Wih through 
training.  Then,  we can calculate W h o  which  can  be  determined by equation below: 

p=l 

The details of CEP  procedure  can be  found  in [4]. 

Differences  between CEP and CC: 

The common goal of CEP and  Cascade  Correlation  (CC) [SI is to  maximize AEthrough 
weight set Wih. However, the following differences can  be  noted: 

1.  The technique to achieve the maximization of AE with CEP is based on perceptron 

learning; versus covariance/correlation learning  for  CC.  From the hardware view 

point,  perceptron  learning  using  stochastic  technique is easier to implement in 
hardware as compared to covariance/correlation,  .using a batch  technique. 

2. CEP uses  one hidden unit at a time with  zero initial weight while CC uses a pool of 

candidate  hidden units with different random  initial  weights for new hidden  unit  and 
picks the best candidate out of this pool. 

Who(j) with j=l :t+l and Wio are both  relearned, when a new hidden  unit is added. 

mathematical analysis whereas  equation (1) is empirically  introduced  in CC. 

3. who(t+l) is the only component  needed  to  be  calculated in CEP whereas in CC, 

4. Most important is that  equations (1) and (2) are obtained in CEP through a 

From  above, the weight sets (Who(n+l) and  Wih(n+l)) which relate  to a new  hidden  unit 
n+l are the only sets to be learned in CEP.  From this strategy, the algorithm is able to 
manipulate the dynamical stepsize of weight  discretization to be  proportional  to the 
previous  energy  to achieve the efficient limited  weight quantization. The  results of this 
technique  were  analyzed  and  were  published  elsewhere [4,9]. 

111. SIMULATION: 

Problem: 

The chaotic time series can  be  defined as follows [lo]: 

i ( t )  = -bx(t) + 
ax(t - z) 

1 + x’O(t - z) 

With a=0.2, b=O.I, and P I  7 

For  chaotic time series prediction  problem, the input  to the network is xij xi+],  Xi+2,  and 

xi+3 and the corresponding  target is xi+4. The  number of training set values is  351  and  the 
number of test data  values  is 651. We trained  this data set  with  different  bit  weight 



quantization varying  from  4- to 6-bit  and  floating point machine  weight (64-bit for 

double precision) with two techniques:  round-off  and truncation, to quantize AW. 

Simulation Results: 

Training performance: 

For the training phase, the results are  summarized  in  Table 1. In this table, we  only 
present 3 hidden units to be added  for this study. For this first block,  we  used floating 
point (64-bit) to  train the 35 1 data. The learning  performs  well  with  one  hidden  unit  and 

it continues to improve when more  hidden  units are added as shown by the root mean 
square (RMS) and  standard deviation (STD) values. 
With  6-  and  4-bit  weight quantization, the  learning  performance  with the two  methods of 

weight quantization are very close; however, the analysis [4]  suggested  that the round-off 

would  perform  better  in  learning. In 5-8 bit  parity  problems,  the simulation results 

agreed  with the theoretical analysis [4]. 

i N# of hidden unit 

64-bitfloating point 

I" Quantization 

4-bit  Weight 
Quantization 

1 2 3 

Table 1 : The training performance of CEP for the chaotic Mackey- 
Glass time series prediction problem  using the round-off  and truncation 
techniques for  weight quantization. 



Generalization performance: 

After completion of the training phase,  our  network  was  set  up  to test a set of  unlearned 

data  that  contained  65 1 test  values.  The  test  results of the  network  performance  with  the 
round-off  and the truncation  methods  for  weight quantization are given in  Figures 2 and 3 
respectively. 

In  Figure 2a and 3a plots, the  prediction  values  with  64-bit  floating point (double 
precision) as well as with 4- and 6-bit weight  precision, are plotted along with  calculated 

results.  For clarity, the comparative  errors are plotted  in  Figure  2b  and 3b. As expected, 

the  least errors (-1y0) are with  the  64-bit  precision.  However,  with 4- and 6-bit weight 

precision, the errors are of the order of 2.5%,  concentrated  mainly at the sharp peaks  and 
valleys. 
Further, a comparison of results  of  Figures 2 and 3 show that  the  round-off  method for 
weight quantization seems to  work  slightly  better  than the truncation  method as by shown 
by the dotted curves in the two figures. Specially, it may be  noted that the errors with the 

truncation  method are more  skewed  below  zero. 

Test Results (4-, 6-. and 64-bit  Weiaht Round-Off) 
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Figure 2: CEP prediction results  with 4-, 6-, and  64-bit  round-off  weight quantization. 
The top trace (2a): prediction  values;  and  the  bottom trace (2b): the errors between 

prediction values  and  the target output which  was  generated from the chaotic equation 
above. 



Test  Results (4-, 6-, and 64-bit Weight  Truncation) 
1 .!j I 1 I I I I 

output 
Samples 

0. 

I 
u 

0 100 200 300 400 500 600 700 

Error of Test Results (4-, 6-, and 64-bit Weight  Truncation) 
0.oq I I I 1 I I 

-0.0s I I I I 
I I I 

0 100 200 300 400 500 600 700 
Number of Samples 

Figure 3: CEP prediction results  with 4-, 6-, and 64-bit truncation for weight 
quantization. The top trace (3a): prediction values; and the bottom trace (3b): the errors 

between prediction values  and  the  target output which  was generated from  the chaotic 
equation above. 

Discussions: 

CC[ 1 11 was reported under limited weight quantization for the 6-bit parity problem.  The 
applied technique is very complicated, not suitable for hardware consideration, and 
required 8-bit weight resolution. In comparison, the CEP architecture with its learning 

algorithm could learn 6-bit parity problem  with  more than 3-bit weight resolution with 

-100% accuracy [5]. For the chaotic time series prediction problem, we are not aware of 
any other results using limited weight quantization, specially down to only 4-bit. 
These results clearly demonstrate the power  of CEP technique, specially as applied to the 
hardware implementation for taking advantage of the parallel processing and hence 
potential of very  high  speed of learning. This would lead to solution for complex control 
problems in real time when on-chip learning will  be embedded in the silicon chip. 

IV. CONCLUSIONS: 

The advantages of the CEP learning algorithm can be summarized as follows: 

Simple perceptron learning procedure is applied. 

Learning scheme is tolerant of  lower  weight resolutions. 



0 A reliable model 
benchmark problems. 

in learning neural networks as shown by the solutions of the 

Hence, CEP is a hardware implementable learning technique. 
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