

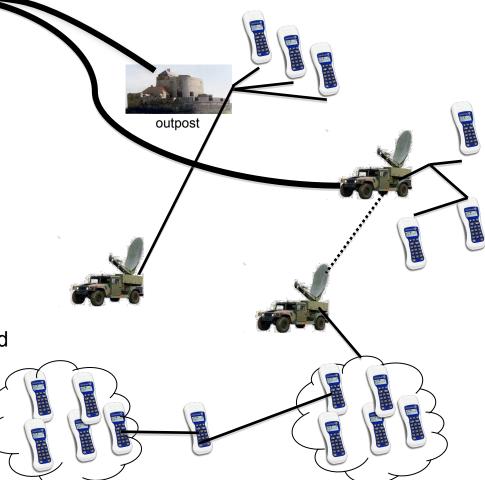
### **Vetting Applications**

#### Jeff Voas & Angelos Stavrou NIST George Mason University





### High-Level Project Overview

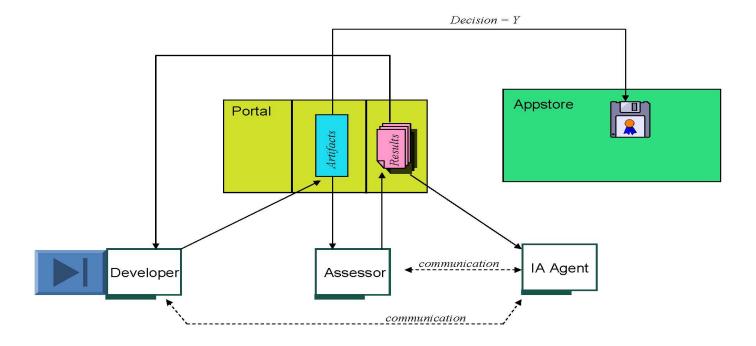

App Developers

> App Store

Vetted apps ultimately go into an app store.

Banks

- Backflows of user feedback and in-field test data.
- If feedback is good, an app becomes app store accepted, and money is deposited; otherwise, a new version from the developers needed.

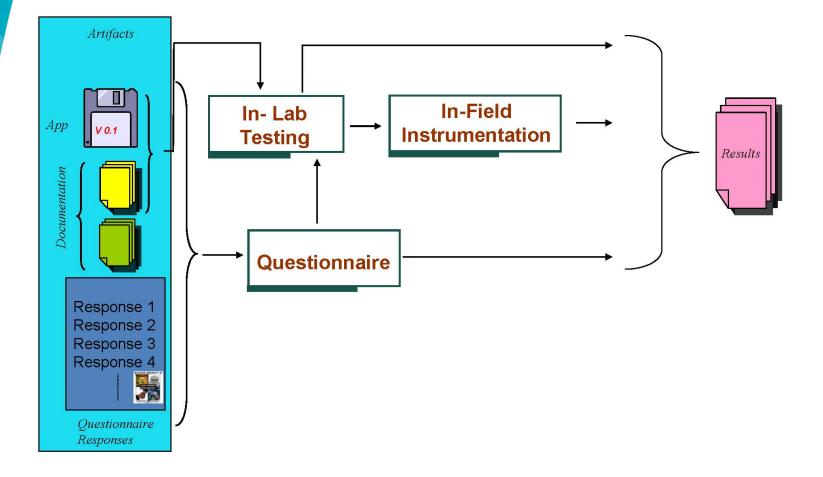






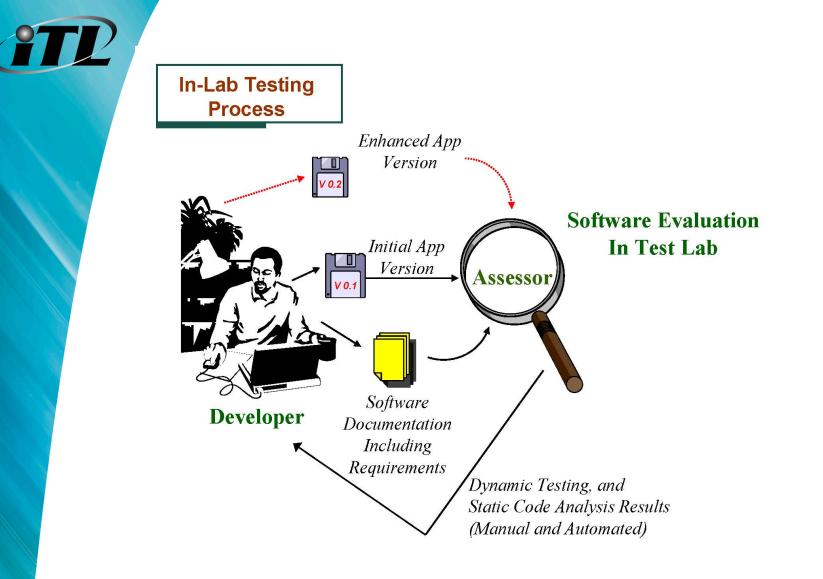



#### Application Vetting: Big Picture








### **Progression of Testing**













### What about existing Analysis Tools?

- Commercial application testing tools cover regular, non-Android specific Bugs:
  - No Security Analysis of the Code Functionality
  - No Power Analysis of the Application components and code
  - No Profiling of the resource consumption of individual applications
  - Cannot Regulate/Deny the access and use of phone subsystems (Camera, Microphone, GPS..)
- Existing tools do not cover Program
   Functionality
  - We reveal the application capabilities and access





### ite A

## **Application Testing Framework**

#### Application Static Analysis does not cover Program Functionality

Fortify, Coverity, and other application testing tools cover regular, non-Android **specific Bugs**:

- No Security Analysis of the Code Functionality
- No Power Analysis of the Application components and code
- No **Profiling** of the resource consumption of individual applications
- Cannot Regulate/Deny the access and use of phone subsystems (Camera, Microphone, GPS..)





### it

# App Vetting & Control

- App Signing Prevent unauthorized App Execution
  - Approved Apps are signed by the program designated approval authority
  - Only program signed Apps can be installed on the device
    - Customizations made to Android package framework
- App Analysis & Testing
  - All Apps are analyzed for malware and potential vulnerabilities
    - AV Scans
    - Vulnerability Scans (Fortify)
  - Expose hidden & unwanted functionality
    - Hidden in Native Libraries
    - Dynamic or obfuscated code
  - Permissions manifest reconciliation against code

National Institute of Standards and Tech



# Android Application Control

- Application Signing Prevent unauthorized App Execution
  - Approved Apps are signed by the program designated approval authority
  - Only program signed Apps can be installed on the device
    - Customizations made to Android package framework
- Application Stress Testing
  - Measure Power Consumption
  - Identify Input Errors / Find UI bugs





#### Application Analysis Framework

- Android Specific Analysis includes analysis of the Application Security Manifest
  - Tailored to the Android Permission Model
- Verify if the requested permissions are warranted by the submitted code
  - Remove excessive permissions & enforce a tighter security model
- Regulate access to critical/restricted resources
  - Modifications on the Android Engine to enable dynamic policies
  - Control the underlying Dalvik engine to report absence/depletion of resources instead of lack of permissions



**TU** 





### Application Policy Enforcement

#### **Solution: Per Application Policy Enforcement**

#### Provide Dalvik mechanisms to

- Enforce application Access & Capabilities
  - Tailored to specific Location or Time
  - Tailored to specific Mission
- Application can still be installed but deprived access to resources and data selectively

Policy Enforcement paired with Device Security can significantly reduce the risk of **Data Exfiltraction** 

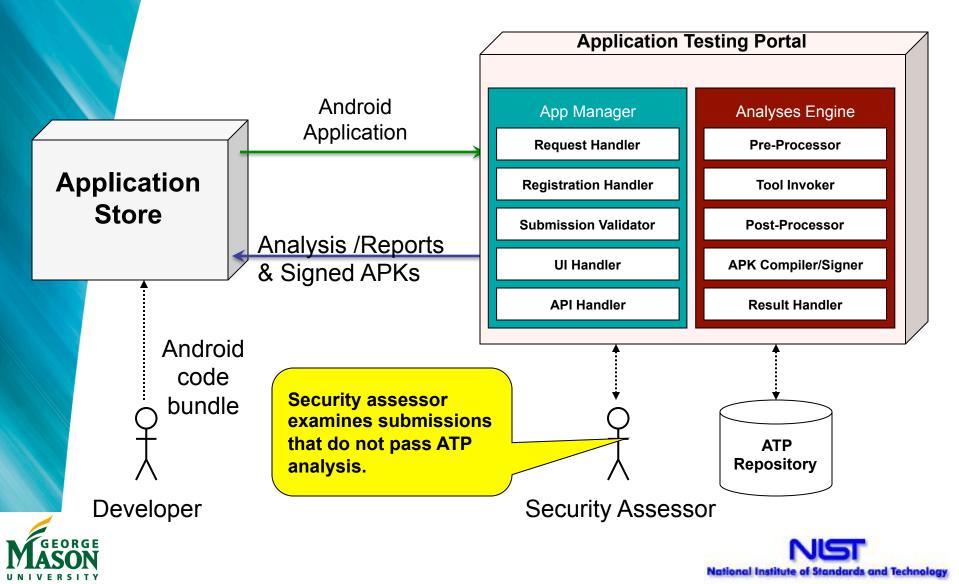






### Power Metering Framework

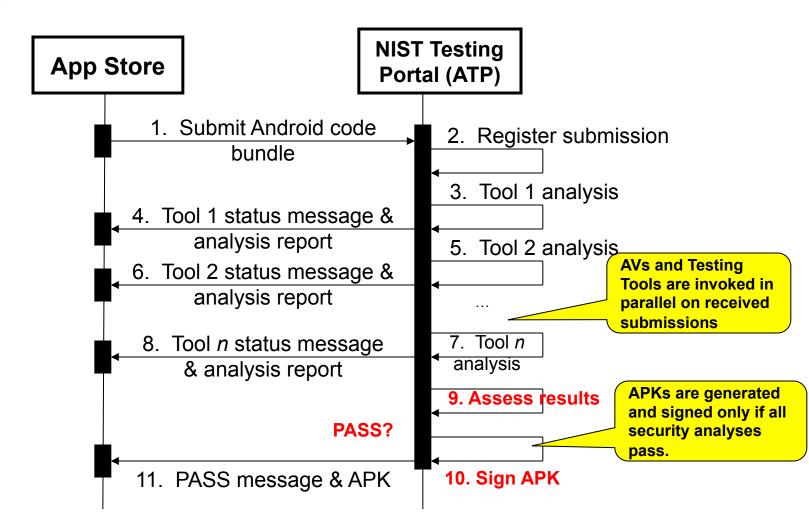
- Design & Implement an accurate model for accounting and policing energy consumption
- Two-pronged approach
  - Meter the per-process CPU & Device utilization over time
  - Identify the relative impact of each device component on energy consumption
- Design an Android kernel subsystem to estimate energy
  - Meter energy consumption for each App/process
  - Use for characterizing application behavior
  - This behavior is Application dependent
  - Sometimes the behavior is also User dependent








#### **ATP Architecture**


ATP analyzes Android code bundles and returns messages, analysis reports, and signed APKs





#### Mobilize-ATP Workflow (PASS Use-Case)

#### ATP applies Testing to Analyze Android code bundles









#### **ATP Monitor**

| Testing Portal - W<br>→ III https://a                                |                 |                   | pp Testing Portal     |                       |           | ŵ        |
|----------------------------------------------------------------------|-----------------|-------------------|-----------------------|-----------------------|-----------|----------|
| JIST A<br>q logged in                                                | \рр Те          | sting Por         | tal                   |                       |           |          |
| Contents<br>ViewApps<br>SubmitApp<br>Account<br>Documents<br>Log out | Registered Apps |                   |                       |                       |           |          |
|                                                                      | App ID          | Name              | Submitted             | Status                | Submitter | Approved |
|                                                                      | 3665043         | Illumination-test | 2011-11-16 14:44:26.0 | ANDROID COMPILE ERROR | cnri      | REJECTED |
|                                                                      | 7238834         | Illumination-test | 2011-11-16 14:54:47.0 | ANDROID COMPILE ERROR | cnri      | REJECTED |
|                                                                      | 1423329         | Illumination-test | 2011-11-16 14:56:26.0 | ANDROID UPDATE OK     | cnri      | TBD      |
|                                                                      | 5766277         | Illumination-test | 2011-11-16 15:09:31.0 | ANDROID COMPILE ERROR | cnri      | REJECTED |
|                                                                      | 130670          | DariToEnglish2.3  | 2011-11-16 15:10:53.0 | ANALYSIS COMPLETE     | cnri      | APPROVED |
|                                                                      | 426641          | Illumination-test | 2011-11-16 15:33:06.0 | ANDROID COMPILE ERROR | cnri      | REJECTED |
|                                                                      | 8276571         | DariToEnglish2.3  | 2011-11-16 15:34:34.0 | ANALYSIS COMPLETE     | cnri      | APPROVED |
|                                                                      | 6052763         | Illumination-test | 2011-11-16 16:17:04.0 | ANDROID COMPILE ERROR | cnri      | REJECTED |
|                                                                      | 6489049         | Illumination-test | 2011-11-16 16:20:23.0 | ANDROID COMPILE ERROR | cnri      | REJECTED |
|                                                                      | 8460629         | DariToEnglish2.3  | 2011-11-16 16:58:59.0 | ANALYSIS COMPLETE     | steveq    | APPROVED |
|                                                                      | 5809194         | Illumination-test | 2011-11-17 09:59:41.0 | ANALYSIS COMPLETE     | cnri      | APPROVED |
|                                                                      | 5560815         | DariToEnglish2.3  | 2011-11-17 10:34:36.0 | ANALYSIS COMPLETE     | cnri      | APPROVED |
|                                                                      | 6130090         | Illumination-test | 2011-11-17 10:46:40.0 | ANALYSIS COMPLETE     | cnri      | APPROVED |
|                                                                      | 9740421         | Illumination-test | 2011-11-17 11:45:20.0 | ANDROID COMPILE ERROR | cnri      | REJECTED |
|                                                                      | 982873          | DariToEnglish2.3  | 2011-11-17 11:47:03.0 | ANALYSIS COMPLETE     | cnri      | APPROVED |
|                                                                      |                 |                   | 2011-11-17 12:50:58.0 | ANDROID COMPILE ERROR | cnri      | REJECTED |



National Institute of Standards and Technology



#### Defense in-Depth: Multiple Levels of Security

- Application Vetting & Testing
- Device Lock-down and Encryption of ALL Data and Communications
- Enforcement of Security Policies in the Android Framework
- Second-level Defenses placed in the Android Linux Kernel
  - Prevent Attacks that bypass Android Security Framework
  - Android has Inherited some (if not all) of the Linux Vulnerabilities
  - Java Native Interface to Linux Libraries a potential Avenue for Exploitation







### Conclusions

Assuring the Secure Operation of Smart Devices has a wide-range of requirements

- Application Testing
  - Static & Dynamic
  - In-Field Instrumentation
  - Power Behavior Metering & Policing

Physical Device Security
Lock-Down of the Device I/O (USB, WiFi, etc.)
Encryption of Data both on the Phone & Network
Securing Provisioning Process

National Institute of Standards and Tech

