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BACKGROUND 

It is often desired in many applications to optimally select the 
locations of a given number of discrete actuators and response measurements. 

For example, ground modal testing involves the determination of the 
structural dynamic characteristics (frequencies, modes, and damping) from 
forced vibration tests. The locations of excitations and measurements are 
usually assigned on the basis of skilled engineering insight. 
intensive processing and review of the test data, it may be further required 

to perform additional testing for a different set of excitation and 
measurement locations. 
have been obtained for all modes of interest. 

After 

The process is repeated until satisfactory results 

Repeated experimentation and data review is a luxury that cannot be 
afforded in the on-orbit verification of the dynamics of complex large 
structures which have been assembled or deployed for the first in space in 
their service configuration. 
to determine in advance the number and locations of required excitations 
such that the quality and quantity of information derived from a single set 
of measurements are maximized. 

Especially in the latter case, it is essential 

When the locations available for placement of the excitation and 
measurement devices are spatially continuous, the usual gradient - based 
optimization methods can be used successfully to determine the optimum 
locations. However, when the available locations are spatially discrete, 
the problem becomes one of integer or combinatorial optimization. Except 
for the simplest cases, combinatorial optimization problems tend to be 
nonconvex and to require the evaluation of very large numbers of combinations 
of possible locations - thus becoming computationally intractable. Their 

exact solution is usually not possible with reasonable expenditure of 
computing resources. Thus instead of seeking the exact optimum, one must 
resort to suboptimal approximate techniques, most of which are 
heuristically-based [l, 2, 3 1 .  In this paper, we further pursue the method 
of simulated annealing of Ref. [ 3 ]  with the objective of (1) exploring a 
number of improvements which aim at incorporating knowledge about the 
structural characteristics in the random search of the simulated annealing 
method, and (2) applying the technique to the problem of finding the optimal 
location of passive dampers. 

~ 

I 

I 
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OPTIMIZATION STATEMENT 

The optimal placement problem at hand may be stated as follows: 

Given I* sensors that may be placed at any of I possible discrete 
locations, and given J* actuators that may be placed at any of J possible 
discrete locations, find the combination of location C(I*, J*), I*EI, J*EJ 
which extremize an objective function E(I*,J*), Figure 1. 

The specific choice of the objective function E, and whether it should 

And just as in the 
be maximized or minimized is problem dependent. 
represent a structural property or a response quantity. 
continuous optimization problems, side constraints may be imposed on the 
design variables (locations of I* and J*) or any function thereof h(I*, J*). 
In some cases, the design variables may consist of sensor locations only or 
actuator locations only. 
admitted . 

It may be taken to 

When both are present, their co-location may be 

Find C(I*, J*); I*cI; J*EJ (1) 

Such that E(I*, J*) + EXTREMUM ( 2 )  

( 3 )  
- 

Side constr. hy h(I*, J*) 2 h 

I Ai 

Figure 1 .  
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COMPUTATIONAL COMPLEXITY 

I 
Through enumeration, it is possible to determine the exact solution to 

the problem stated previously by evaluating the objective function for every 
possible combination of I* sensor locations and J* actuator locations. This 
is a combinatorial optimization problem for which the number of possible 
combinations that must be examined can be found from 

J! +1] 
I! 

rl* - I*!(I-I*)! ' [J*! (J-J*)! (4) 

I The (%) and (+1) account for Maxwell's reciprocity theorem relating 
locations of actions and response. Table 1 below gives numerical values for 
q* for various parameter values. Clearly, the number of possible 
combinations that must be evaluated becomes extremely large rather rapidly 

I for problems with relatively small order. 

Table 1 

I I* J J* I]* 

5 3 5 2 55 

20 5 20 2 1.48 x lo6 

100 10 50 5 1.84 1019 

1000 100 500 10 - Q  

Intractable, Except for Simplest Cases 
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ITERATIVE IMPROVEMENT TECHNIQUES 

4 ACCEPT 
- '  

UNCONDITIONALLY 

Most conventional techniques for finding approximate solutions to 
combinatorial optimization problems are built around the idea of iterative 
improvements. Starting with an initial solution, iterative improvement 
techniques repeatedly consider changes in the current solution and accept 
only those that improve the objective function, see Figure 2. 

disadvantage of these techniques is that they usually get trapped in a local 
optimum. 
will fail to discover more global ones. The simulated annealing technique 
provides such a mechanism and may be considered a variation on iterative 
improvement algorithms. 

The 

Without a mechanism to allow climbing out of local optima, they 

AE = Es+l - E, 

4 
E (i, j )  I 

REJECT 

UNCONDITIONALLY I 

I C ITERATIONS 

Figure 2. 
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THE SIMULATED ANNEALING HEURISTIC 

In trying to numerically simulate the behavior of atoms of a body in 
thermal equilibrium at finite temperature, Metropolis et al. [ 4 ]  observed 
that’ 

disorder whose energy level is high. Following Figure 3 ,  as the temperature 
Th is cooled to To, the atoms migrate to a more ordered state having low 
energy level. 

fast cooling (quenching) is characterized by a monotonic decrease in energy 
to an intermediate state of semi-order. 
(annealing) is characterized by a general decrease in energy accompanied by 
occasional small energy increases whose rate of occurrence may be estimated 
by the probability density 

at high temperature Th the atoms are randomly arranged in a state of 

The final degree of order depends on the cooling rate. Too 

On the other hand slow cooling 

P - l/(eAElKBT) (5) 

where AE is the change in energy, KB is a Boltzmann constant, and T is the 
current temperature. At the low temperature end of the annealing process 
the system’s energy reaches a much lower value (ground state) and the atomic 
arrangement reaches a much higher degree of order (Crystaline) than in the 
rapid quenching regime. Annealing, therefore, allows achieving a more 

global energy optimum than is possible by the local optimum provided by 
rapid quenching. 

Use of the annealing simulation algorithm as an optimization tool is, 

therefore, built on the premise that‘ in anticipation of reaching a more 
globally optimum solution, we must occasionally accept deteriorating ones. 
m e  probability of accepting deteriorating solutions is given by Equation 
(5). And it is these probabilistic jumps that allow the solution to climb 

out of local optima. 
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SIMULATED ANNEALING ALGORITHM 

The flow chart in Figure 4 outlines steps of the simulated annealing 
heuristic just described. 
algorithm mainly in the introduction of the probability function which 
controls the frequency of accepting deteriorating solutions. 
optimization tool, the simulated annealing method does not involve any 
actual annealing or temperature. The product KBT is replaced by B which may 
be viewed as a pseudo temperature, a parameter that controls the frequency 
of accepting deteriorating solution during the optimization process. Notice 
that the probability density function P, ranging from 1.0 to zero, is 
highest at high pseudo temperature 6h, (i-e., at the beginning of the 
optimization iterations). The algorithm therefore begins with a coarse 
global search where more deteriorating solutions are accepted (P = 50% to 
80%), and gradually ends up with fine local search where only improving 
solutions are accepted, 
iteratively, new solutions or configurations must be generated. For the 
type of problems under consideration, a new solution or configuration is 
defined by a set of locations for I* sensors and J* excitations. In an 
earlier application of the method [ 3 ] ,  new solutions were generated from the 
current one by moving the J* excitations one at a time randomly to any of 
the remaining (J-J*) unassigned locations, and moving the I* sensors one at 
a time randomly to any of the remaining (I-I*) unassigned locations. 
Variations on this scheme will be explored subsequently. 

It differs from the iterative improvements 

As an 

As the optimization procedure continues 

START AT 
HIGHEST TEMP Bh + 

OLD SOLUTION (CONFIG) NEW SOLUTION (CONFIG) 

Es+l (i’, j ’ )  

c 
A€ = - E, 

UNCON D IT1 ON ALLY 

OTHERWISE, REJECT 
PROBABI LlTY m 
P - ( 1  /rAEW 

DECREMENT e TILL e I, e,, 

Figure 4. 
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OPTIMAL LOCATIONS OF PASSIVE DAMPERS 

1. DESCRIPTION 

The cantilevered truss shown in Figure 5 consists of 58 axial 
members connecting 23 pinned joints with 114 unrestrained degrees 
of'freedom. The modal masses are not uniformly distributed; 55% 

of the mass is concentrated near the free tip. The first nine 
undamped frequencies and a qualitative description of their 
corresponding modes are listed in Table 2. While the first few 
modes are primarily global in nature, higher modes of the truss 
are primarily local with much of the strain energy tending to be 
concentrated at members near the free tip. Assuming no inherent 
structural damping, we wish to place a limited number of passive 
dampers ND along some members of the truss so as to achieve a 
desired level of modal damping ci in any specified mode i. 
further assume that the target modal damping (i per cycle is to be 
adjusted so that the total decay over one second of time is 
constant = 17.4% for any mode, then (i = .174/fli. These are also 
listed in Table 2. 

If we 

Table 2 

Mode No. 1 2 3 4 5 6 7 8 9 

Freq. (Hz) 8.7 15.5 33.0 6 0 . 0  71.3 74.2 79.5 88.2 95.1 

Mode Type lSt lSt lSt Comb. 2nd local bending & twisting 
xz xy torsion xy xz almost near tip 

XZ 

Target Modal 2% 1.12% .53% .29% .24% .23% .22% .20% .18% 
Damping (i 

Figure 5. 
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OPTIMAL LOCATION OF PASSIVE DAMPERS 

2. PERFORMANCE INDEX 

With the quantities defined below, one may define the performance 
index Je as a measure of performance over all Nm modes under 
consideration. Maximization of Je over all possible combinations 
of ND damper locations will insure the highest possible modal 
damping Ti for modes i=l, . . . ,  Nm. 

The specific form of the performance index Je below is motivated 
by the fact that for r=2, Nm=2, a geometrical interpretation can 
be given: if el and e2 represented two perpendicular sides of a 
triangle, the maximum value for Je for a constant (el + e2) will 
occur when el - e2. 
hyper-dimension Nm and for any r>2. More importantly, this means 
that maximization of Je will insure the maximization of all ei 
quantities more equally. The higher the r-values, the more 

sensitive will Je be to small changes in ei. In the following 
numerical results, r=4 was used. 

This interpretation may be generalized to any 

DEFINE: c o  = 5% = percent damping provided by any of ND 
passive damping elements 

Eij = strain energy ratio imparted in mode i to truss 
member j 

<i = percent modal damping computed for mode i 

= c ro  Eij 
j =1 

- 
ei = ci/Ti = normalized modal damping for mode i 

OBJECTIVE: maximize the performance index Je 

N 
m 

m i=l 
J = (- 1 c (ei)l’r)r e N  

r>2 
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OPTIMAL LOCATION OF PASSIVE DAMPERS 

3. NUMERICAL RESULTS 

In what follows, two cases are considered. They differ in the 
number of passive elements ND used, and the number of modes Nm 
targeted for modal damping alteration. In case 1, four passive 
damping elements are used to achieve the target modal damping in 
the first three modes. In case 2, six passive damping elements 
are used to achieve the target modal damping in all nine modes. 
The optimal locations found by the simulated annealing technique 
are indicated in Figure 6 by 1 and 2, for case 1 and case 2, 
respectively. 
mode for each case in Table 3. 
been exceeded for both cases, except for mode 3 in the second 
case. This could also be satisfied with the addition of a seventh 
damper. 

The corresponding modal damping values are given by 
Note that all target values have 

Table 3 

Mode No. 1 2 3 4 5 6 7 8 9 

I 
~~ 

Case 1 Target Ti .02 .0112 .0053 .0029 .0024 .0023 ,0022 .0020 .0018 
ND-~ 
Nm-3 Computed ci .0207 .0203 .0065 

i-1,. .3 

Case 2 Computed Ti .0208 .0193 .0038 .0330 .0160 .0341 .0304 .0393 .0201 
ND=~ i=l, . . ,9 
Nm=9 

Figure 6. 
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ITERATION HISTORY FOR FOUR PASSIVE DAMPING ELEMENTS 

An insight into how the algorithm converges can be gained by 
examination of the iteration history in Figure 7 for four passive damping 
elements. 
result of the probability function used, the solutions began with large 
variations (in both amplitude and frequency) about a trend line (dotted). 
Gradually, these variations are damped out. Note that an enumeration 
(exact) solution to this problem would require 5 8 ! / [ 4 ! ( 5 8 - 4 ) ! ]  - 4 2 4 , 2 7 0  

evaluations. 

Convergence was achieved after about 200 solutions steps. As a 
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OPTIMAL PLACEMENT OF EXCITATIONS & SENSORS 

In this section, we revisit the previously solved example of the COFS 
space truss [ 3 ] ,  with the aim of introducing a number of improvements in the 
policy of generating new solutions during the simulated annealing 
optimization. The objective here is to place I* sensors and J* actuators so 

as to maximally observe all first thirteen modes of the 960 degrees of 
freedom truss structure. In general, all N=960 degrees of freedom are 
possible sites for excitation and sensing. In practice, however, only a 
subset I are allowed for sensing using I* sensors (I*€ I e N), and only a 
subset J are allowed for excitation using J* actuators (J* c J e N). Co- 
location of sensors and actuators is admitted, and only one sensor and one 
actuator may be placed at a degree of freedom. 

Taking the kinetic energy Eij measured at degree of freedom i due to 
excitation at degree of,freedom j to be the observer for the selected N*-13 
modes, one can form the objective function to be maximized as given below. 
Instead of the kinetic energy E ~ J ,  one may choose to observe the square of 
the displacement UiJ. 
the same, but the optimal locations are expected to be different. This is 
illustrated by the numerical results in Figure 8 for the three cases listed 
in Table 4 below. 

The general form of the objective function remains 

OBJECTIVE: Place a Given Number of Sensors and Excitations 

so as to Maximally Observe a Given Number of Modes. 

1 
J* I* 

Max [ 
I*,J* n m j-1 i=l 

( 1 1 E:)'" r, (I* E I e N), (J* E J e N) 

T 
j = SL Gm diag dm(j) dim mi dindiag dn(j) fin = Energy Transf. Funct. 

Ei 

T 
U: = Um diag Qm(j) dim dindiag dn(j) Un = Displacement Transf. Funct. 

Table 4 

Case N I J N* I* J* 

1 12 2 

2 960 480 480 13 24 2 

3 12 4 
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GENERATING NEW SOLUTIONS 

NEW SOLUTION (CONFIG) 
OLD SOLUTION (CONFIG) * €,+I (i', j ' )  

WITH CO-LOCATION 

One of the key steps in the simulated annealing technique deals with 
how to create a new solution from the current one. 
discussed so far this was done by 
randomly to the remaining (J-J*) unassigned locations, and moving the I* 
sensors one at a time randomly to the remaining (I-I*) unassigned locations. 

In the examples 
moving the J* excitations one at a time 

- 

The following additional rules are now introduced to lend some insightful 
knowledge of the solution behavior into the otherwise highly randomized 
moves above. 

REVISIT BEST 

CONFIGURATION 

DECREMENT e TILL e - e, 

I 

I 1. RULES 

a. Limit the excitation and sensor assignments to a smaller set 
of degree.of freedom D* having relatively high modal 
displacements. D* a D1, D2, . . . DN*, where Di set contains 
degree-of-freedom ( k < N )  with the largest displacement 
magnitudes in mode i. 
the largest of 4 

From the expressions for E ~ J  one can show that 

( E ~ J ) ~ - ~  3 (E~J) izj. 
and I* sensors (whenever possible) will give the largest 
observable response. If I*#J*, the remaining ones are 
assigned independently. 

The size m i s  empirically chosen to be 
and 4 { J Z .  

b. 
Thus co-locating the J* excitations 

c. As new solutions are generated, keep track of the best one so 

far. When 0 is decremented, use this best solution as the 
starting point for the current temperature range. 

I I f 

AE = Es+l - E, 
ACCEPT 

UNCON D I T  I O N  ALLY 

OTHERWISE, REJECT 
ACCEPT ONLY WITH 

PROBABILITY 
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2. NUMERICAL RESULTS 

To assess the effect of the new solution generation rules of the 
previous section, the three cases of Table 4 were resolved with 
and without these rules. Table 5 compares the two sets of results 
using two measures: the maximum observed energy achieved at the 
end of the optimization schedule, and the CPU time required. The 
trend strongly supports the conclusion that the suggested rules 
help the simulated annealing algorithm in achieving more superior 
optima while requiring generally less computing time. 

Figure 10 compares the set of actuator and sensor locations 
corresponding to the cases in Table 5 .  

Table 5 

Max. Observed Energy for 13 Modes 
( - : - )  CPU Time 

Without New Rules With New Rules 

Case 1 5.37 
(1:28) 

Case 2 6.87 
(2:18) 

Case 3 9.62 
( 4 :  54) 

6.61 
(1:26) 

7.71 
(2:24) 

9.72 
(3:36) 
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CONCLUSIONS 

The optimal placement of discrete actuators and sensors is posed as a 
combinatorial optimization problem. Two examples for truss structures were 
used for illustration; the first dealt with the optimal placement of passive 
dampers along existing truss members, and the second dealt with the optimal 
placement of a combination of a set of actuators and a set of  sensors. 
Except for the simplest problems, an exact solution by enumeration involves a 
very large number of function evaluations, and is therefore computationally 
intractable. By contrast, the simulated annealing heuristic involves far 
fewer evaluations and is best suited for the class of problems considered. 
As an optimization tool, the effectiveness of the algorithm is enhanced by 
introducing a number of rules that incorporate knowledge about the physical 
behavior of the problem. Some of the suggested rules are necessarily 

problem dependent. 
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