
.esearc.Ik R e p o r t ' e n e s 002-5

V?

,tvi

o i

Interval Estimation for True Scores 
Under Various Scale Transformations

Won-Chan Lee 

Robert L. Brennan 

Michael J. Kolen

V I

j i l

m

ACT N o v e m b e r  2 0 0

_____



For additional copies write: 
ACT Research Report Series 
P.O. Box 168
Iowa City, Iowa 52243-0168

© 2002 by ACT, Inc. All rights reserved.



Interval Estimation for True Scores 

Under Various Scale Transformations

W on-Chan Lee

ACT, Inc.

Robert L. Brennan 

Michael J . Kolen

The University of Iowa





Table of Contents

Page

A b strac t_____________________________________________________ :___________ iii

Introduction_______________________________________________________________ 1

Intervals for Raw Scores_____________________________________________________3

Confidence Intervals for a Binomial Parameter_________________________________ 3

Conditional Confidence Intervals Using Conditional S E M s______________________ 5

Traditional Confidence Intervals Using Overall SE M ___________________________ 6

Score Confidence Intervals__________________________________________________7

Bayes Confidence Intervals__________________________________________________8

Clopper-Pearson Exact Confidence Intervals___________________________________ 8

Credibility Intervals_____________________________________________________  10

Intervals for Scale Scores_________________________________________________ 12

Normal Approximation__________________________________________________  12

Endpoints Conversion___________________________________________________  15

Numerical Example______________________________________________________ 17

Simulation Study________________________________________________________ 19

Results _________________________________________________________________21

Nominal 95% Intervals__________________________________________________ 21

Nominal 68% Intervals__________________________________________________ 27

Nominal 50% Intervals__________________________________________________ 29

Intervals for the Half-Length Test__________________________________________30

Discussion______________________________________________________________ 31

R eferences_____________________________________________________________ 35

Tables__________________________________________________________________39

F ig u res_________________________________________________________________46





Abstract

This paper reviews various procedures for constructing an interval for an 

individual's true score given the assumption that errors of measurement are distributed as 

binomial. This paper also presents two general interval estimation procedures (i.e., 

normal approximation and endpoints conversion methods) for an individual's true scale 

score; compares the various interval estimation procedures through computer simulation 

studies by evaluating how close actual coverage probabilities are to selected nominal 

levels (i.e., .95, .68. and .5); and provides some practical guidelines for use of the interval 

estimation procedures. To examine the effects of different types of scale scores, four 

non-linearly transformed scale scores are employed. The conditional confidence 

intervals using conditional standard errors of measurement are recommended over the 

traditional confidence intervals using the overall standard error of measurement, 

especially for lower nominal levels. The score confidence interval, Bayes confidence 

interval, and credibility interval tend to provide the actual coverage probabilities that are 

closest to the nominal levels, on average. Results for scale score intervals appear to favor 

the endpoints conversion method using the true-score conversions over the normal 

approximation approach.





Interval Estimation for True Scores Under Various Scale Transformations1 

Introduction

One of the goals of educational and psychological measurement is to estimate 

examinees' true scores. A point estimate of the true score may not be very meaningful 

without being accompanied by some measure of the errors involved in a measurement 

procedure. Standard errors of measurement (SEMs) typically are used to report the 

amount of measurement error in test scores. One very practical use of SEMs is in making 

inferences about an examinee’s true score via confidence intervals (Lord & Novick, 

1968). Traditionally, confidence intervals have been constructed using a strong 

assumption that measurement errors are normally distributed and the standard error of 

measurement is the same for all examinees (Feldt & Brennan, 1989). The traditional 

definition of SEM (i.e., same for all examinees) is sometimes called the overall SEM in 

the sense that it is an average SEM for all examinees in the population.

A large volume of measurement literature, however, has been devoted to the 

theoretical developments and empirical justification for SEMs that differ at different 

points on the score scale (Brennan, 1996, 1998; Feldt, 1984; Feldt & Qualls, 1996; Feldt, 

Steffen, & Gupta, 1985; Lord, 1955, 1957, 1984; Mollenkopf, 1949; Qualls-Payne, 1992; 

Thorndike, 1951). As opposed to the overall SEM, the SEMs associated with 

individuals’ specific score levels are referred to as conditional SEMs. When a confidence 

interval is constructed for an examinee with a particular true score using the examinee’s 

conditional SEM, the interval is referred to here as a conditional confidence interval. 

Note that we can form a confidence interval for an isolated individual using either the 

overall SEM or conditional SEM. It has been suggested in the literature, however, that

1 A previous version of this paper was presented at the Annual Meeting of the National Council on 

Measurement in Education, Montreal, April 1999. The authors thank Chiou-Yueh Shyu and Matthew 

Schulz for their helpful comments on the paper.
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confidence intervals be based on conditional SEMs, not on the SEMs for a test as a whole 

(Feldt etal., 1985; Harvill, 1991).

The SEMs and confidence intervals can be stated in terms of both raw scores (i.e., 

number-correct scores) and transformed scale scores. In recent years, some procedures 

have been developed for estimating conditional SEMs for scale scores (Brennan & Lee, 

1997, 1999; Feldt & Qualls, 1998; Kolen, Hanson, & Brennan, 1992; Kolen & Wang, 

1998; Kolen, Zeng, & Hanson, 1996; Wang, Kolen, & Harris, 2000). These procedures 

could be readily used to construct a conditional confidence interval for an individual’s 

true scale score. The conditional confidence intervals for raw scores or scale scores using 

conditional SEMs have not been considered extensively.

Bayesian inference also provides a means of constructing an interval for an 

individual. The resultant intervals are often called credibility intervals (Novick & 

Jackson, 1974, pp. 119-126). A credibility interval for an examinee gives information 

about the distribution of the examinee’s true score (i.e., posterior distribution), given 

one’s prior knowledge (i.e., prior distribution) and the observed score. As discussed 

later, credibility intervals differ from confidence intervals in several ways. These two 

general approaches are compared in this paper in terms of estimation accuracy.

The present paper (1) reviews various procedures for constructing intervals for 

raw scores, (2) presents two general interval estimation procedures for scale scores, (3) 

compares the various interval estimation procedures through computer simulation studies 

by evaluating how close the actual coverage probabilities are to the nominal levels, and 

(4) provides some practical guidelines for use of the interval estimation procedures. To 

examine the effects of raw-to-scale score transformations, four different types of scale 

scores are used: developmental standard scores (DSSs), grade equivalents (GEs), 

percentile ranks (PRs), and stanines (STs), which are all non-linear transformations of 

raw scores. Developmental standard scores are the primary score scale that is reported to 

test users for the Iowa Tests o f Basic Skills (ITBS) (Hoover, Hieronymus, Frisbie, &
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Dunbar, 1993a). Petersen, Kolen, and Hoover (1989) describe these four types of scale 

scores in some detail.

Note that some interval estimation procedures discussed in this paper were 

developed only for the binomial parameter. Thus, to establish comparability across 

procedures, the binomial error model is considered to be an underlying distribution of 

errors for all procedures. Accordingly, the simulation is based on the binomial error 

model as well.

Intervals for Raw Scores

This paper considers six different interval procedures for raw scores: (1) 

conditional confidence intervals using conditional SEMs, (2) traditional overall 

confidence intervals using the overall SEM, (3) score confidence intervals, (4) Bayes 

confidence intervals, (5) Clopper-Pearson exact confidence intervals, and (6) credibility 

intervals. The first four procedures, in effect, are based on normal distribution 

assumptions in one way or another, while the Clopper-Pearson exact confidence interval 

uses the binomial distribution, which is the ’'exact” distribution for the observed scores 

for a person. Credibility intervals often use a beta distribution to describe the posterior 

distribution. The binomial error model and some issues related to confidence intervals 

for the binomial parameter are discussed first followed by the overviews of the interval 

procedures.

Confidence Intervals fo r  a Binomial Parameter

Let X denote a random variable for an examinee's observed number-correct score. 

Further, let r  be the true score for an examinee, which is defined as the expected value 

of the observed scores obtained from repeated measurements. Under the binomial error 

model, the conditional distribution of observed score X  given an individual’s proportion-
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correct true score, k - T I k , on a test consisting of k dichotomously-scored items is the 

binomial distribution (Lord & Novick, 1968):

?r(X - x \t t ) =
k \  x 

XJ

k - x

(1)

That is, X is binomially distributed with a mean of k n - x  and a standard deviation of

<J.kn(\-n) .

Let X  be a random variable for the observed proportion-correct score, and 

consider the problem of determining a confidence interval for n . From the Central Limit 

Theorem, (X - n ) i  ̂ n{}.-7 t)/k  has a limiting standard normal distribution, N(0,1). 

Using theorems on limiting distributions (Hogg & Craig, 1995, pp. 253-255), it can be 

shown that (X —i t ) / y j x ( \ - X ) / k  has a limiting distribution of N(0,1) as well. Thus, 

we have

Pr
„  X - K

Zy y l x ( \ - x ) i k  Zr
» y , (2)

where y  is a probability value, and zy denotes (l + / ) / 2 th quantile of the standard 

normal distribution. For example, for y  — .50, zy = .6745; for y = .68, zr = 1.0; and for 

y = .95, zy — 1.96. From Equation 2, it is immediate that

P r [x  - z r<7,(jf) <K< X  + Z/T,(X>] “  r , (3)

where &e ( = y j x ( l - x ) / k  is the estimated standard error for X , and the subscript “e” 

represents the error of measurement.

Equation 3 gives an interval for t t , which has two

endpoints that are random variables each of which is dependent upon X\ they will be
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denoted as X L and X v . So, it can be said that, prior to data collection, the probability 

that the random interval (X ^X ^) includes the unknown parameter 7t is y.  Suppose we 

have collected data, then the two endpoints are known and the particular realized interval 

(x l *x u ) either does or does not cover k . However, if many such intervals were 

constructed over repeated applications of an interval estimation procedure, about 

(100/)%  of them would cover the parameter (Feldt & Brennan, 1989). The obtained 

interval I(7u) = (xL,xu ) is called a (100^)% confidence interval for K , and y is the 

confidence coefficient. In the statistics literature, the interval - z yd €{xy * + 

is often called the Wald confidence interval for n  because it is derived from the Wald 

test for n .

The fact that (X -7 t)/y jK {\-7 t)ik  has a Af(0,l) limiting distribution implies 

that X is distributed approximately as N{k7t,k7t(}-7r)\ as k goes to infinity (Hogg & 

Tanis, 1993). One can obtain a confidence interval for t  , / ( r ) , by multiplying the two 

endpoints of l{7t) by ky since T-7rk.  As a result, / ( r )  has the form 

{ x - z y(Je{X), x +zy0 e{X)) , which is referred to here as the Wald confidence interval for t  , 

where 0 e(X) = *Jkx(\-x) = y j x ( k - x ) / k  is the standard error for X. The confidence 

intervals expressed in two different metrics (i.e., total score vs. mean score) should not be 

confused.

Conditional Confidence Intervals Using Conditional SEMs

The rationale for conditional confidence intervals to be discussed here clearly 

parallels the rationale for the Wald confidence intervals discussed previously. The only 

difference is that conditional confidence intervals use an unbiased estimate of SEMs, 

which is called the Lord’s SEM in the measurement literature. Under the binomial error 

model, Lord (1955, 1957) provided an estimated raw-score SEM for an examinee with x 

items correct:
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A \ x ( k - x )  I k j x ( k - x j

^ = r ^ = f c v ~ (4)

where yjk / ( k - 1) is a bias-correction factor to remove the bias in the variability of the 

sample. Then, the approximate confidence interval for the examinee has exactly the 

same form as the Wald confidence interval except that is now used:

W  ~ ZjrO'e(x)c ’ X+ Zy&eiX)c ) • (^)

It is well known that the normal approximation to the binomial distribution works 

best when k is large and n  is close to .5, and many authors have suggested rules of 

thumb (see Leemis & Trivedi, 1996) for appropriate use of the normal approximation. 

For example, Hogg and Tanis (1993) considered k sufficiently large if k7t> 5 and 

k { \ - 7t) > 5 , or a k of at least 30 in all cases. Note also that <Je{X)c would be zero for 

examinees with zero or perfect scores. Thus, it is very likely that the actual coverage 

probabilities for those examinees will be lower than the nominal coverage level.

Traditional Confidence Intervals Using Overall SEM

It has been customary to construct a (100 7 )% confidence interval for r  using the 

normal approximation in conjunction with a strong assumption of the same SEM for all 

examinees. The traditional overall confidence interval is constructed as

*„(*■) = (•* -  * A m *  ■x + ZA<*>«) - (6)

where 0 e{X)o is the estimated overall SEM. The estimated overall raw-score SEM can be 

obtained by &e{X)0 J n  , which is the square root of the average of Lord’s 

error variances for all N  examinees in the sample (Brennan, 1996; Brennan & Kane, 

1977). [In the terminology of generalizability theory, this is a A-type error variance.]
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Score Confidence Intervals

The score confidence interval was first discussed by Wilson (1927), and some 

studies have recommended it over other confidence intervals for k  (Ghosh, 1979; 

Agresti & Coull, 1998; Santner, 1998). The score confidence interval uses the population 

standard error of X  , rather than the estimator in Equations 2 and 3. The two endpoints 

of a score confidence interval are obtained from the fact that (X -7t ) f  ̂ 7 t{\-7r)l k has a 

N(0,1) limiting distribution. Then, a probability statement similar to Equation 2 can be 

made:

Pr (7)

Unlike Equations 2 and 3, Equation 7 is not directly solvable for k , but the 

solution is not very complicated. Equation 7 is equivalent to

Pr
7t{\—7t)l k 7

(8)

The term in brackets in Equation 8 can be written as a quadratic equation for k  . 

The two zeros of the quadratic equation in n  form the endpoints of the score confidence 

interval for n , Now, the score confidence interval for r  is k times the two

endpoints of 7V {7t) , which has the form

X +  Zy  ! 2

k + zt
- z .

x ( k - x ) / k  + z l / 4  x + z l / 2

i k + 4 ) ‘

9 +Zy
k + zl

x(k -  x) / k + z2y / 4

(ifc + z*)'
(9)

The midpoint of I s(t ) can be rewritten as x[k/(k +zl)] + k/2[zy l(k +z^)],  which 

obviously falls between x and k!  2. This midpoint, in effect, shifts the midpoint of the
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conditional and traditional confidence intervals, xy toward k l  2. In addition, the 

multiplier of zy in Equation 9 shows that the problem of zero standard errors for 

examinees with x = 0 or A: is not present for this interval. The term under the square root 

will always result in a positive number regardless of the value of x.

Bayes Confidence Intervals

The normal approximation may not be very accurate when an examinee's 

observed proportion-correct score is near zero or one. An alternative estimate of k  , 

rather than x  , would be a Bayes estimate ft = (x+a)/ (k + a  + p ) , which appears to give 

a more reasonable estimate than x , especially for the extreme values of X  (Chen, 1990). 

The value of ft is the mean of the posterior distribution using the beta prior distribution 

with parameters a  and p . Chen (1990) recommended a  — p - z ^ i  2 , which shrinks the 

individual's observed proportion-correct score to .5. The endpoints of this interval can be 

obtained by replacing x in the Wald confidence interval with f t :

Note that the midpoint of the Bayes interval with a  = p - z ^  I 2 is the same as 

that of the score confidence interval, since ft = (x + a) f(k + a + p )  = (jc + z2y / 2) !{k + z2y).

prevents the estimate from being zero for examinees with zero or perfect observed scores.

Clopper-Pearson Exact Confidence Intervals

The confidence intervals discussed so far are based on limiting distribution theory 

using N(0,1). There are a few confidence intervals for the binomial parameter 7t, which 

use the binomial distribution (i.e., “exact” distribution for X) rather than the approximate 

normal distribution (Blyth & Still, 1983; Clopper & Pearson, 1934; Crow, 1956; Sterne,

( 10)

As for the score confidence interval, the adjusted standard error for x , *Jft( 1 - f t ) I k  ,
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1954). All exact confidence intervals are considered to be conservative in that they are 

guaranteed to have the coverage probability of at least y for any examinee with a 

particular true score (Santner, 1998). The conservatism of exact confidence intervals is 

due to the fact that the binomial distribution of X  is discrete, and thus an exact 

probability, say, .95, can not be attained (Agresti & Coull, 1998; Hogg & Craig, 1995).

Among several methods for constructing exact intervals, the Clopper-Pearson 

(1934) interval is the first and probably most widely known. The endpoints of the 

Clopper-Pearson confidence interval for r  are obtained as follows: xL is k times the 

value of /r such that Pr(X > x\7t,k) = (1 - y ) ! 2  and xv is k times the value of k  such 

that Pr(X < x  IK, k) = (1 -  y) / 2, where

The lower bound is taken to be 0 when x = 0 , and the upper bound is taken to be 1 when 

x = k.

A simple method of solving Equations 11 and 12 involves using either the 

incomplete beta distribution or the F-distribution. Let IBx(a>ff) be the incomplete beta 

distribution for k  with parameters a  and /3 . Then, xL is k times the value of k  for 

which IBn{ x , k - x  + \) = ( \ - y ) l 2 ,  and xu is k times the value of it for which 

IBn(jc + 1,it — *) = (! + y )/2 . Using the F-distribution, the Clopper-Pearson interval is

( U )

and

X  f
Pr(X < x \ x , k )  = '£t . k \ \ - K ) k~j . (12)

/, (t) = k ({1 + [v, / v2]FVi (l, r ) / 2 , {1 + [v3 / v4}FVI (l_rt(2 r 1), (1 3 )
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where v, = 2(k -  x + 1), v2 = 2 x , v3 = 2(/c -  a:) , and v4 = 2{x +1) are degrees of freedom, 

and F(l±r)/2 denotes the ( l± / ) /2 th  quantile of the F-distribution.

The Clopper-Pearson confidence interval is considered to be appropriate even for 

a small k. However, the actual coverage probability of this interval can be much larger 

than the nominal confidence level due to its conservatism.

Credibility Intervals

The statistical method of inference underlying credibility intervals is Bayesian 

statistics. The Bayesian estimation approach takes into account both the test score and 

any prior knowledge about the examinee's true score. Equation 1 enables us to compute 

the probabilities of various observed scores for a known value of k  . Conversely, the 

Bayesian approach considers the problem of inferring the value of it given X = x .  In 

Bayesian statistics, all the information for making inferences about an examinee's true 

score is contained in the conditional distribution of the examinee's true (proportion- 

correct) scores given the observed score. Note that we now consider 7t as a possible 

value of the random variable n  rather than a constant for an examinee. Presumably, n  

is a continuous variable with an interval of 0 < n  < 1.

The conditional distribution of n  given X  =jc, g{7t\x),  is called the posterior 

distribution. Let f{x\7t)  denote the conditional probability density function of X, given 

Y\=7T. The goal of the Bayesian inference is to obtain the posterior distribution, 

g(/rI jc) , using a subjectively selected prior distribution, h(7r) , and f (x \7r) .  A 

(100/)%  credibility interval is constructed by taking the ( l- / ) / 2  and (l + / ) / 2  

quantiles of the posterior distribution. An interval constructed in this way is sometimes 

referred to as a central or an equal-tailed credibility interval (Novick & Jackson, 1974).

According to Bayes theorem,

(14)
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where the symbol «  is read "proportional to". The conditional observed score 

distribution, f ( x  \ n ) , is already known as the binomial model, and the beta distribution, 

B ( a , p ) , is typically used as the prior density. The beta distribution has two parameters 

a  and p , and by varying the two parameter values, one can obtain a family of beta 

densities whose functional form is very similar to that of the binomial distribution. Due 

to their similar density forms, the two distributions combine in a very convenient way. 

Using B(a,P)  as the prior density, h{rc) oc 7Ta 1 and f(x\7Z)'K7Cx(\-7C)k~x.

Thus,

g {7 t  \ X )  oc 7Tx+a- '  (1 - K ) k- x+f}- X . ( 1 5 )

It is obvious from Equation 15 that the posterior distribution has the form of another beta 

distribution with parameters x + a  and k -  x + p .

The endpoints of a (1007)% credibility interval for 7t are computed using the 

incomplete beta distribution with parameters x + a  and k —x + p .  That is, xL is the 

value of k  such that IB^(x + a ,k  - x + p)  = (1 -  y ) /2  , and xu is the value of k  such that 

IBn{x + a ,k  - x  + p )  = (1 + 7) /2 .  A (100^)% credibility interval for t  is obtained by 

multiplying k by the two endpoints.

When the beta prior has parameters a  — p  — 1, it is a uniform distribution on the 

interval [0,1] implying that all values of 1~I are equally likely. This particular prior 

distribution is often called a non-informative prior. For the non-informative prior, the 

posterior distribution is B(x + \yk - x  + \ ) . In this paper, the credibility interval for T 

using the non-informative prior, / p(r) , is compared with the confidence intervals 

previously described.

It is important to recognize that credibility intervals differ from confidence 

intervals in terms of logical interpretation. In a (1007)% credibility interval, (1007)% IS 

the probability attached to the particular interval obtained for an examinee (Novick &
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Jackson, 1974). As such, we can make a probability statement that the probability of an 

examinee’s true score falling between the two endpoints of a credibility interval is 

(10(ty)%. It is the direct use of the distribution of II (i.e., posterior distribution) rather 

than the observed score distribution that makes possible the probability statement. By 

contrast, for a (100y)% confidence interval, the probability attaches to the interval 

estimation method, not to the particular realized interval (Novick & Jackson, 1974). A 

confidence interval is constructed based on the observed score distribution, and the 

particular interval either does or does not contain the true score. As mentioned earlier, a 

confidence interval is typically interpreted as follows: if the interval estimation method 

were applied an infinitely large number of times, it would produce (100y)% intervals 

that cover the true score.

Intervals for Scale Scores

In most testing programs, raw scores typically are transformed to scale scores for 

the purposes of reporting and making decisions about examinees. Thus, if intervals are to 

be reported, they would be most informative if expressed in terms of scale scores. Two 

general procedures are considered in this paper for constructing intervals for scale scores. 

The first, the normal approximation method, might be used for scale scores in 

conjunction with conditional scale-score SEMs or overall scale-score SEMs. The second, 

the endpoints conversion method, provides scale-score counterparts of any raw-score 

interval by converting the lower and upper endpoints of an interval for r  to 

corresponding scale scores according to the functional relationship between raw scores 

and scale scores.

Normal Approximation

Let S be a random variable for scale scores that are transformed from raw scores, 

X , using the transformation function, u ( X ) . Let £ and cre(S) denote the true scale score
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and the sc ale-score SEM for an examinee, respectively. Here, £ is defined as a mean of 

scale scores obtained over repeated measurements, that is

£ = E[H(X )]  = i > ( O P r ( X = < l ; r ) ,  ( 16)
i=0

where E is the expectation operator and Pr(X -i\7t) is given in Equation 1.

Suppose u(X)  is a linear transformation function, w(X) = A(X) + Z?. Then, the 

shape of the conditional distributions for X and S will be the same, which makes it 

sensible to use the normal approximation for scale scores to the extent that it is sensible 

for raw scores. More specifically, if the limiting distribution of X is N[k7T,kx(\ - # ) ] ,  the 

limiting distribution of S is N[Akx +B,A2kft(\-7T)]. For a linear transformation, a eiS) 

is simply Acre{X). Using Lord's SEM (i.e., Equation 4) as the raw-score SEM, the 

conditional confidence interval for £ for an examinee with an observed scale score s is

K (£ )= (* -  z A w e  ’s + v W ) • (l7)

where d , iS) = A^]x(k — x)/(k - 1) . The overall confidence interval for £ , under the

linear transformation, can also be constructed as

h  (#) = ('S -  zAwJo ' * + ZA ( S )„ ) ' ( 18)

where 0 e{S)o = jN  . The same value of <re(5)o is used for all examinees.

Note that the normal approximation will result in exactly the same coverage 

probabilities for the linearly transformed scale scores and corresponding raw scores. For 

a linear transformation, £ = E[w(X)] = E[AX + £] = AE(X) + B = m[E(X)] = u (r) , 

which clearly indicates that the transformation parameters A and B are for both observed 

and true scores. If and only if xL < r < x v , then AxL + B< Ar + B < Axv + B , provided
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that A is a positive value. Consequently, the coverage probabilities for /(£ ) and l{ t )  

will be the same under a linear transformation—the same argument applies to both 

conditional and overall confidence intervals. For non-linear transformations, however, 

the coverage probabilities for /(£ ) and 7(r) will not be identical, because 

% -  E[w(X)] * m[E(^)] »in general. In other words, the relationship between X  and S is 

not the same as the relationship between t  and £ for a non-linear transformation.

A bigger concern about the normal approximation approach for the non-linearly 

transformed scale scores is that the assumption of the limiting normal distribution may 

not hold, because the non-linearity distorts the shape of the conditional distribution for S. 

Even though the normal approximation might work reasonably well for "moderate" non

linear transformations, it may not be appropriate for "severe" non-linear transformations. 

This paper considers four different types of non-linearly transformed scale scores, each of 

which has a different degree of non-linearity; and evaluates the performance of the 

normal approximation when applied to the various scale scores.

For a non-linear transformation, a e(S) is not simply Aae(X) because the slope 

parameter A changes along the score scale. There exist several procedures for estimating 

conditional scale-score SEMs (CSSEMs) when u(X)  is non-linear. In this paper, a 

method called the binomial procedure (Brennan & Lee, 1997, 1999) is employed. The 

binomial procedure provides &e(S), which can be viewed as a scale-score analogue of 

Lord's SEM:

The conditional and overall confidence intervals for non-linearly transformed scale 

scores, respectively, can be constructed by Equations 17 and 18 using &e(S) in Equation

I k k

£ [u ( i) ]2Pr(X =iljr<=x)~ ^ « ( /)P r(X  = i l ^  = 3c) . (19)
i=0

19.
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Endpoints Conversion

As discussed in the previous section, one problem with the normal approximation 

method to constructing confidence intervals for non-linearly transformed scale scores 

arises due to the direct use of the conditional scale-score distributions for which the 

normality assumption seemingly does not hold. Another approach to constructing 

intervals for scale scores presented in this section is free from such a problem because it 

does not assume any distributional form of the scale scores. The method here called 

"endpoints conversion" finds the endpoints of scale-score intervals by converting the 

endpoints of raw-score intervals through a functional relationship between raw and scale 

scores. In effect, the scale-score counterpart of any raw-score interval can be obtained by 

the endpoints conversion method.

There seem to be at least two functional relationships that can be used for 

converting the endpoints. Obviously, the actual observed score transformation, w(X), 

could be used, with which the endpoints for the scale-score counterpart of a raw-score 

interval are obtained as

Iu{<̂) = {u[xLl  «[*„]), (20)

where xL and xv are the two endpoints of the raw-score interval. However, there is a 

complexity. To use a preexisting conversion table, u ( X ) , it must be assumed that the 

transformation is a continuous function, because xL and xv are often non-integer values 

and the corresponding scale scores can not be read directly from the conversion table. 

Thus, an interpolation procedure is usually needed.

Another alternative is to use the relationship between true scores and true scale 

scores. Let v denote the transformation function from r  to £ such that £ = v (r) . Once 

the true-score conversion function, v, is determined, the two endpoints of a raw-score 

interval, xL and xv , are substituted for t  . For the case considered in this paper, v is
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defined by Equations 1 and 16, and the two endpoints of the scale-score counterpart can 

be obtained by substituting xL / k and xu fk  (if xL and Xy are in the total score metric) 

for n  in both equations. Let us express the resultant scale-score interval as:

Iv(t) = (v[xL], v [* J) . (21)

Note that the notation of / u(£) and 7v(f) indicates that they are generic intervals. 

That is, the endpoints of the intervals can be obtained from any raw-score endpoints, and 

different raw-score endpoints will result in different endpoints for / u(£) and / v(£). 

When the true-score conversion, v, is used, the coverage probability of the scale-score 

counterpart, / v(f) , will be equal to that of the raw-score counterpart regardless of 

whether the raw-to-scale score transformation is linear or non-linear, because the 

endpoints and true scores are converted through the same conversion function, v. By 

contrast, the coverage probability of Iu (£) will not be the same as that of the raw-score 

counterpart, because the endpoints and true scores are converted through different 

conversion functions, u and v. In general, the true score conversion approach seems more 

reasonable. It is consistent with the fact that the endpoints are in the metric of true 

scores. The endpoints are almost always non-integer values and are compared with the 

true score to determine the coverage. Moreover, the same coverage probability for raw- 

and scale-score intervals seems appealing in practice.

The two approaches will produce very similar results, however, for a nearly one- 

to-one transformation. Figure 1 depicts the two conversions for the four types of scale 

scores for ITBS Vocabulary (fc = 34), Form K, Level 10. The observed-score 

conversions are the ones that are used operationally for the test, and the true-score 

conversions were computed using Equation 16. Note that Equation 16 will result in zero 

values for £ when r  is either zero or k. Hence, the maximum and minimum values of £ 

were set to equal the maximum and minimum values of the scale scores in the observed-
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score conversions. The label "Raw Score" for the horizontal axis in Figure 1 should be 

interpreted as either the true score or observed score depending upon what type of 

conversion is under consideration. Notice that the two conversions are extremely similar 

for DSSs, GEs, and PRs, largely because they are one-to-one functions throughout most 

of the score ranges. The largest difference is found in the raw-to-ST conversion, where 

many observed raw score points are converted to the same stanine point. The true-score 

conversions are strictly increasing functions (i.e., one-to-one at any score point), and 

appear to be smoother than the observed-score conversions, in general. This paper 

considers the true-score conversions only. Some results based on the observed-score 

conversions are discussed by Lee (1998).

Numerical Example

The interval estimation procedures discussed in the previous sections are 

illustrated using the same test with the conversion table shown in Figure 1. Note that the 

confidence intervals using the overall SEMs are not considered in this example because 

they require actual examinee data. Table 1 displays actual endpoints of the nominal 68% 

raw and DSS intervals at five different score points: x = 5 (DSS = 141);

x = 10 (DSS = 165); j c = 17 (DSS = 187); j c = 25 (DSS = 207); and x  = 30 (DSS = 229). 

The shaded areas in Table 1 indicate the endpoints of DSS intervals obtained through the 

endpoints conversion method with the true-score conversions, Iv (£). The lower panel of 

Table 1 shows the actual raw-to-DSS conversion for the test, which is used to calculate 

the DSS intervals (Hoover, Hieronymus, Frisbie, & Dunbar, 1993b). Readers can verify 

the results reported in Table 1 using this conversion table.

The endpoints of Is(t) and Ih(r) tend to be closer to each other than to any other 

intervals for the nominal level of 68%. Moreover, it can be verified that the midpoints of 

l s(r) and l b(T) are always the same and shifted toward kJ2  from the midpoint of 

Ic ( r ) , which equals j c. That is, the midpoint of Is (r) and Ib (r) is larger than j c when
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x < k / 2 and smaller than x when x > k / 2. The midpoint shift toward k f 2 is also 

observed for Ie(r) and I p(T). At x = k ! 2, which is 17, the midpoints of all five raw- 

score intervals are equal to 17. Note that all procedures produce different endpoints, 

although rounding may cause some endpoints to appear equal.

For the DSS intervals, only Ic{%) has midpoints that are equal to the observed 

DSS scores. The midpoint of / v(£) converted from Ic(t ) does not necessarily equal the 

observed DSS score because of the non-linearity of the raw-to-DSS transformation. 

Likewise, the midpoints of the DSS counterparts of /,.(?") and l b{f) are not necessarily 

the same although their raw-score counterparts have the same midpoints. Another 

important property of the various interval estimation methods is the lengths of the 

intervals. The lengths of each interval across the score scales are plotted in Figure 2.

First notice in Figure 2 that the patterns of the various interval lengths are very 

similar. Actually, the shapes of the interval lengths reflect the shapes of the conditional 

SEMs (presented later in Figure 8)—large (small) conditional SEMs lead to wide (narrow) 

intervals. The irregular pattern of the DSS interval lengths is due to the non-linear 

character of the raw-to-DSS transformation. Notice also that the lengths of Ie(r) for 

both the raw and DSS scores are remarkably larger than the other intervals throughout the 

score range, which, as discussed later, is closely related to the fact that the coverage 

probabilities of Ie(r) are exceptionally large. The lengths of the intervals except for 

Ie(r) do not appear to be very different except at both ends of the score scales. 

Especially, / c(£) and / v(£) converted from Ic(r) exhibit very similar lengths of the 

DSS intervals even though the endpoints of the two intervals are not very close to each 

other (see Table 1). Note that the lengths of 7V(£) converted from I c(t ) and l c{%) are 

zero for the zero and perfect raw and corresponding DSS scores, which is caused by the 

zero estimated conditional SEMs. The approximate ascending order of the raw-score 

interval lengths, mainly in the middle of the score scale, is I p(r) , Jb(r) , Ic(r) ,

and Ie(T). The same ordering applies to the corresponding DSS intervals. All other
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things being equal (such as the same coverage probability), a method with narrow 

intervals would be preferred.

Since all procedures discussed in this paper are associated with the binomial 

distribution of errors in one way or another, a simulation was conducted based on a 

model called the beta-binomial model (Keats & Lord, 1962; Lord & Novick, 1968), 

which assumes that errors are distributed binomially. The beta-binomial model is known 

to fit many observed score distributions very well. In order to generate random data that 

are as realistic as possible, a real test data set initially was used for specifying the 

simulation conditions. This simulation study used data from Level 10, Form K of the 

Vocabulary subtest { k -  34) in ITBS—a random sample of 3000 examinees at grade 4 

(Level 10) was selected from the 1992 Spring standardization sample.

Under the beta-binomial model, the conditional distribution of X  given k  is 

binomial, and n  is distributed as beta with parameters a  and f i , B(a, f3) . Let 

Au = [k / ( k - l ) ] [ \ -pL(k- / i ) / kS2] denote KR21 reliability, where fi and S are the 

mean and standard deviation of the test scores for the 3000 examinees. The parameters 

a  and /? were estimated using the following formulas (see Huynh, 1976; Jarjoura, 

1985):

Simulation Study

\

y

and

p = ( k - M - — D- 
Pi\

(22)

Equation 22 yielded a  = 3.4 and j0 = 1.9, which suggests that the distribution of 

k  is a bit negatively skewed. Negatively-skewed distributions of test scores are typical
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for many standardized achievement tests. Treating the two parameter estimates as 

population parameters, true proportion-correct scores, n , were generated for 1000 

simulees from £(3.4,1.9). In generating random beta deviates, the acceptance-rejection 

method was employed as described in Mooney (1997, pp. 25-30). For each simulee, the 

conditional observed score distribution, Pr(X =x\7t),  was computed using Equation 1, 

and the true number-correct score and true scale score were computed as T - k n  and 

£ = £*_ow(0Pr(X —i\7r). Then, the following steps were executed:

1. A set of & = 34 random 0/1 item responses for each of the 1000 simulees was 

generated by comparing a uniform random deviate r to n  for 34 times. If r < n  

then a score of one was assigned to the item, otherwise a score of zero was 

assigned.

2. All interval estimation procedures were applied to the simulated data, and 

intervals were constructed for each of the 1000 simulees.

3. For each simulee, it was determined whether each interval contained the simulee's 

true (scale) score. If an interval covered the parameter, Cr ~ 1, otherwise,

cr=o.

4. The above steps were replicated R = 1000 times and Cr was calculated for
r= 1

each simulee, which represents the empirical number of times that the intervals 

obtained from repeated measurements include the true (scale) score. The actual 

coverage probability was computed for each simulee, each interval estimation 

procedure, and each type of scale score.

The simulation procedure was replicated for three different nominal confidence 

levels: 95%, 68%, and 50%. The actual coverage probabilities obtained through the 

simulation were compared to these three nominal levels. These three nominal levels were 

used in the previous study by Jarjoura (1985).
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Finally, note that the number of items in the original test was 34. To examine the 

effect of the number of items in the test, the whole simulation was repeated for k = 17 . 

In all other respects, the population characteristics were exactly the same. A shorter 

version of the conversion table was created somewhat arbitrarily by removing the even- 

numbered rows in the original conversion table. Consequently, the patterns of the 

transformations for the shorter test were remarkably similar to those of the original test. 

Figures 3 and 4 show the plots of the transformations for the two tests.

Results

Nominal 95% Intervals

Table 2 contains averages and standard deviations of actual coverage probabilities 

for the nominal 95% intervals. The averages and standard deviations were computed 

based on 1000 simulees' actual coverage probabilities, and the averages are, in fact, the 

actual coverage probabilities over 1,000,000 intervals (1000 simulees times 1000 

replications).

For the raw-score intervals, the score confidence interval, Is(t ), and the 

credibility interval with the non-informative prior, I p(T), appear to show the actual 

coverage probabilities close to the nominal level of .95 with relatively small standard 

deviations. The Bayes confidence interval, Ih(T) , and the Clopper-Pearson exact 

confidence interval, / c(r) , tend to be somewhat conservative (i.e., larger actual coverage 

probabilities than the nominal level). Recall that I£(r) is supposed to have coverage 

probabilities that are constantly bounded below by the nominal confidence level. The 

somewhat conservative coverage probabilities of 7fc(r) are consistent with the previous 

results reported by Agresti and Coull (1998). The conditional confidence interval using 

Lord's SEM, Ic ( r ) , yielded the actual coverage probability that is too small and has the 

largest standard deviation, which is likely due to zero estimated SEMs for x = 0 or k.
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With a zero SEM, the width of Ic(t ) is zero and the actual coverage probability can be 

too low. Apparently, the overall confidence interval using overall SEMs, /„ ( r ) , seems to 

perform better than /c( r ) . It is not necessarily true, however, that a procedure showing a 

better overall coverage probability is more accurate across all levels of the score scale. 

Some procedures might be more accurate than other procedures near the middle of the 

score scale but less accurate at extremes. More discussion about this issue is presented 

later.

The shaded areas in Table 2 and all the subsequent tables represent the coverage 

probabilities for the scale-score counterparts of each of the six raw-score intervals, / v (£), 

obtained by the endpoints conversion method with the true-score conversions. Note that 

the coverage probabilities for / v(f) are exactly the same as those for corresponding raw- 

score intervals regardless of the types of scale scores. The last two columns of Table 2 

are for the conditional and overall scale-score confidence intervals, / c(£) and /„(£)■ 

Clearly, /„(£) provides better actual coverage probabilities and smaller standard 

deviations than Ic (£). As for the conditional raw-score confidence intervals, zero 

estimated CSSEMs at both ends of the score scales are a major problem with / c(£ ) . The 

results suggest that Iv{£) associated with "good” raw-score intervals such as the score 

and Bayes confidence intervals would be preferable to / c(f) and /„(£) for the nominal 

95% intervals.

The plots of actual coverage probabilities for raw-score intervals are shown in 

Figure 5. Each dot represents the coverage probability for a single examinee. Notice that 

the actual coverage probability varies across the levels of the score scale. The coverage 

probabilities of Io{r) display a U-shape trend indicating that the actual coverage 

probability for an examinee would be either too large or too small depending upon where 

the examinee’s true score is located on the continuum, except for the regions where the 

reference line crosses the function of the actual coverage probabilities. As discussed later 

(i.e., Figure 8), this is consistent with the fact that the pattern of the conditional raw-score



23

SEMs is an inverted U-shape, and thus the average SEM would be too large near both 

extremes and too small in the middle of the score scale. Itt (r) may not be adequate for 

reporting individual-level confidence intervals in practice.

By contrast, the coverage probabilities for Ic(t ) are close to .95 in the middle of 

the score range, and tend to decline with increases in the absolute deviation of the raw 

score from the mid-score point. These results are consistent with the conventionally 

known fact that the normal approximation for the binomial parameter works best for n  

values around .5, which is, in the present case, equivalent to the true score of 17. As 

discussed earlier, Jc{t) shows a large drop in the coverage probabilities at the right end 

of the score scale approaching zero. The similar drop would have been noticed at 

extremely low true scores if the simulated data had contained enough data points at the 

region. Compared to I0(t ), the coverage probabilities of / c( r ) ,  however, are fairly 

consistently closer to the nominal level throughout most of the score scale.

The actual coverage probabilities of Is(t) and Ip (t ) tend to be reasonably well 

scattered around the reference line. Notice, however, that both 7V (r) and /  (r) show a 

little drop at the right extreme. For I p (t ) , the endpoints of a 95% interval when x = 33 

and x = 34 (i.e., a perfect score) are (28.928, 33.762) and (30.599, 33.976), respectively. 

Suppose an examinee has a true score of 33.8. Whenever the examinee's observed score 

is less than perfect, the interval will not cover the examinee's true score. The upper 

endpoint of Ip {t ) when x -  k -1 is the lower bound of a range of r  values that falls in 

the interval only when x  = k . The simulated data actually had three simulees with the 

true scores greater than 33.762, which exactly matches the number of dots in the plot that 

are far below the nominal level at the right end of the score scale. Although the 

simulated data do not contain such cases, a similar remark can be made for r  values near 

zero. There is also a range of r  values that can be covered in the interval only when 

x -  0 . The range is bounded above by the lower endpoint of the interval when x = 1, 

which is .238 for k = 34 . The credibility interval has an additional problem. Note that
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the upper endpoint of I p{r) is 33.976 when x = 34 . Thus, the coverage probability for 

an examinee with a true score greater than 33.976 will be zero necessarily. The present 

data do not have such high true score values. As discussed later, however, this actually 

happens with lower nominal confidence levels when the width of the interval gets 

narrower. The range of T values for which the actual coverage probability is necessarily 

zero gets smaller as the number of items increases.

The score confidence interval has a similar, but less serious problem. The 

endpoints of the 95% score confidence interval when x = 33 is (28.929, 33.823). Note 

that the upper endpoint is larger than the corresponding value for I p( t ) .  Again, the 

upper endpoint 33.823 is the lower bound of the range of r  values that falls in the 

interval only when x = 34 . There is only one simulee as shown in the plot who has a true 

score greater than 33.823. However, 7((r) does not have the problem of zero coverage 

probability for extremely high true scores as does 7 ( r ) , because the upper endpoint of 

7V (r) when x = k is always k.

The actual coverage probabilities of Ih{r) and l e{r) are almost uniformly larger 

than the nominal level along the entire score scale, with Ie(r) being somewhat more 

conservative. Compared to 7p(r) and 75(r), the range of r  values that is covered by the 

exact confidence interval only when x ~ k  is very small. This range does not even exist 

for Jh(r) . When x ~ 33, the upper endpoint of Ie(r) is 33.975, but the upper endpoint of 

Ib (r) is 34.426, which is greater than the maximum true score, k. The upper endpoint of 

Ie(t)  when x = k is set equal to k. The upper endpoint of l b{t) when x - k  is allowed 

to be greater than k~the limit approaches k from above as k goes to infinity.

The actual coverage probabilities for Ic{£) and 7o(£) are plotted in Figures 6 and 

7. Notice that, as for the raw score case, the coverage probabilities for the conditional 

scale-score confidence intervals are very low near the right extreme because of zero 

estimated CSSEMs when x = k .  Unlike the results for 7c(r) and 7o(r) , however, the 

patterns of the coverage probabilities for the scale-score confidence intervals across the
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score scales tend to be irregular largely because of the non-linearity in the 

transformations. There are at least two potential sources of inaccuracy due to the non- 

linearity, which causes the coverage probabilities for the scale-score confidence intervals 

based on the normal approximation to deviate from the nominal levels: (a) bias in the 

estimated CSSEMs and (b) violation of the normality assumption.

The degree of bias in the estimated CSSEMs can be evaluated by comparing them 

with the true CSSEMs. Since the parameter n  is known for each simulee, the true SEMs 

can be computed. The true raw-score SEM for an examinee under the binomial error 

model is cr,(X) -  yjk7r(\-^r) , and the true CSSEM is

Figure 8 displays the true and mean estimated SEMs (over replications) for the 

raw and scale scores. The shape of the conditional raw-score SEMs is a concave-down 

parabola (Brennan, 1996, 1998; Feldt et al., 1985), and there does not seem to exist any 

noticeable bias in the estimated SEMs. The mean estimated overall raw-score SEM is a 

constant and an overestimate for examinees with very low and high true scores, but an 

underestimate for examinees in the middle of the true score distribution.

The CSSEMs typically are irregular depending upon the pattern of non-linear 

transformations (Brennan & Lee, 1997, 1999; Feldt & Qualls, 1998; Kolen, Hanson, & 

Brennan, 1992). The CSSEMs are larger, in general, at the score points where the slope 

is steeper. However, in many cases, the estimated CSSEMs tend to be small at both 

extremes of the score scales regardless of the degree of the slope because the conditional 

raw-score SEMs are too small at the extremes (Brennan & Lee, 1997, 1999). Lee, 

Brennan, and Kolen (1998, 2000) reported that the estimated CSSEMs tended to be 

biased, and the direction of bias was related to the magnitude of the CSSEMs along the

(23)
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score scale. As seen in Figure 8, the CSSEMs tend to be overestimated near the middle 

values of the true scale scores, at which the CSSEMs are the local minima. However, the 

CSSEMs are underestimated near the true scale scores showing the local maximum 

values of the CSSEMs. It may be noticed in Figures 6 and 7 with conditional DSS and 

GE intervals that the most accurate coverage probabilities are associated with the scale 

score values at which the pattern or slope of the transformations change (i.e., inflection 

points) shown in Figure 1. Indeed, Lee et al. (1998, 2000) found that the degree of bias 

in the estimated CSSEMs is smallest near the inflection points. Also, notice that the 

actual coverage probabilities for the PR intervals tend to be less irregular than the other 

scale score results, because the raw-to-PR transformation is nearly linear throughout most 

of the score scale. The constant estimated mean overall scale-score SEMs shown in 

Figure 8 produces bias throughout the score scales. Figure 9 shows the bias plots for the 

estimated SEMs.

Figure 10 provides plots of the nominal 95% confidence intervals based on the 

normal approximation using the true conditional SEMs computed by Equation 23. The 

actual coverage probabilities are nearly uniformly distributed around the reference line of 

.95. Comparing Figure 10 and Figures 5, 6, and 7 along with Figure 9 provides a general 

idea about the effect of bias in the estimated SEMs on the actual coverage probabilities. 

It seems evident that the patterns of the coverage probabilities depicted in Figures 5 

(conditional and overall confidence intervals only), 6, and 7 tend to mirror, in general, the 

patterns of the bias functions shown in Figure 9. However, the actual coverage 

probabilities for the confidence intervals with conditional SEMs near very high and low 

true scores tend to be too small even though the estimated conditional SEMs do not 

exhibit any noticeably large bias. This appears to be caused by an SEM of zero when an 

observed raw score is equal to k .

How can the actual coverage probability be too small when there is no bias in the 

mean estimated SEM? Let us take an example. Consider a simulee with a true score of
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33.831 and the true SEM of 0.410. For this simulee, a large number of confidence 

intervals will not contain the true score when x = k because the estimated SEM is zero. 

However, the mean estimated SEM is close to the true SEM, because, for this simulee, x 

is equal to 34 or 33 in most cases and the estimated SEM is either zero or 1.0 (see 

Equation 4), and thus, the average becomes close to the true value of 0.410.

The variability of the coverage probabilities in Figure 10 is indicative of the effect 

of the violation of the normality assumption. The degree of the violation seems to vary 

depending on the types of scale scores and the location of the true (scale) scores. 

Obviously, the results for ST show the largest variability. This issue is discussed in a 

greater detail in the next section of nominal 68% intervals.

Nominal 68% Intervals

The results for the nominal 68% intervals are summarized in Table 3. In general, 

the conditional confidence intervals for both raw and scale scores, Ic{t ) and /c(£), 

outperform the overall confidence intervals, / H(r) and /„(£), with respect to both the 

average and standard deviation of the actual coverage probabilities. Especially, Ic(t ) 

performed nearly as well as I p(t) and Ib( t ) . For scale scores, Iv(£) appears to provide 

better coverage probabilities than Ic (£) and Ia ( f ) ,  when the endpoints of / v (£) are 

obtained from converting the endpoints of any raw-score intervals except for I„(r) and 

l e(T) . Note that the coverage probabilities for /„(£) are larger than .68 for all four types 

of scale scores. The results also show that Is{r) works better than the others, which in 

turn, leads to the better performance of the scale-score counterparts of /,.(t). The actual 

coverage probabilities of Ie(r) are excessively large. In comparison with the results for 

the nominal level of .95, the standard deviations of the actual coverage probabilities for 

the 68% confidence intervals tend to be much larger. One reason might be that the 

coverage probabilities of 68% confidence intervals have more room to move up and 

down.
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The results for 68% raw-score intervals are plotted in Figure 11. Clearly, 7c(r) 

provides the coverage probabilities that are closer to the nominal level than /„(r) 

throughout most of the score scale. Also notice that the patterns of the actual coverage 

probabilities for 7v(r), 7fe(r) ,an d  /  p(r) are remarkably similar, except that I p(t ) shows 

a zero coverage probability at the true score of near 34. The endpoints of a 68% 

credibility interval when X  =34 are (32.266, 33.831). Since jt = 34 is the maximum 

number of items correct, the upper endpoint of the interval can not be greater than 

33.831. Thus, the coverage probability of the credibility interval for an examinee with 

the true score greater than 33.831 will be zero regardless of the examinee's observed 

score, and the simulated data contain one simulee with such a high true score. A similar 

remark can be made for the other end of the score range.

Figures 12 and 13 depict the actual coverage probabilities for 68% scale-score 

confidence intervals. As noted in Table 3, 7c(f) shows much better patterns for the 

actual coverage probabilities than Io (£), except for the ST results. The excessive 

variation in the coverage probabilities for both conditional and overall ST confidence 

intervals makes them totally unacceptable. Since the plot for the ST counterpart of, for 

example, 7v(t) will be the same as the plot for Is (t ) (i.e., the coverage probabilities for 

7V(£) are identical to those for the corresponding raw-score intervals), the endpoints 

conversion method clearly provides better coverage probabilities for STs.

Figure 14 contains plots for the nominal 68% confidence intervals based on the 

normal approximation using the true conditional SEMs. Since the true SEMs are used 

here, the variations in the actual coverage probabilities are mainly due to the violation of 

the normality assumption. It appears that the normality assumption does not hold very 

well for STs and PRs at both ends of the score scale. For the sake of argument, let us 

consider the PR case, and presume that the normality assumption holds fairly well across 

the entire range of the raw-score scale. As shown in Figure 3, the slope of the raw-to-PR 

transformation is almost linear along the score scale except for both extremes where the
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transformation becomes flat. Thus, the PR distribution at very high or low score points 

will be much narrower than the raw-score distribution, which, in turn, will result in large 

actual coverage probabilities as seen in Figure 14.

Nom inal 50% Intervals

The actual coverage probabilities for the nominal 50% intervals are presented in 

Table 4. The inferences that can be made from Table 4 are pretty much the same as those 

that can be made from Table 3 for the 68% intervals. Some minor differences include 

that the results for 50% intervals show slightly larger standard deviations than those of 

the 68% intervals, in general. Also, the better performance of the conditional confidence 

intervals than the overall confidence intervals becomes more salient. In addition, the 

coverage probabilities for Ie(t) now tend to exceed the nominal level to a prohibitive 

degree.

Plots are provided in Figures 15 through 18. The coverage probabilities for / ,(r)  

and Ih(T) tend to get more similar as the nominal level decreases shown in Figure 15. 

The coverage probabilities for the nominal 50% scale-score intervals (Figures 16 and 17) 

are generally more variable than those for the higher nominal levels. In particular, the ST 

confidence intervals display overly variable coverage probabilities. The large variation in 

the coverage probabilities of the ST confidence intervals is primarily due to the many-to- 

one conversion characteristics of the raw-to-ST transformation (see Figure 3). Likewise, 

the coverage probabilities for PR intervals tend to be more variable than those for DSSs 

and GEs at both tails of the score scale. As shown in Figure 3, several raw-score points 

are converted to the same PR point at both ends of the raw-to-PR transformation. In 

addition, the coverage probabilities for the PR intervals are fairly flat, like those for the 

conditional raw-score intervals, which is associated with the approximately linear pattern 

of the raw-to-PR transformation throughout a wide range of the score scale. The actual 

coverage probabilities for the conditional 50% confidence intervals using the true
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conditional SEMs (i.e., Figure 18) show patterns that are similar to those for the 68% 

intervals, except that the 50% ST intervals and PR intervals at both ends tend to produce 

very low coverage probabilities due to narrow intervals coupled with narrow scale score 

distributions.

Intervals fo r  the Half-Length Test

The whole simulation study was repeated for a test with a smaller number of 

items (k = \ l ) ,  and the results for the three nominal confidence levels are summarized in 

Tables 5, 6, and 7. A more meaningful interpretation of these results might be made 

through a comparison with the results for the original test. One apparent difference is 

that, with the shorter test, the standard deviations of the actual coverage probabilities for 

all interval estimation procedures are somewhat larger than those with the full-length test. 

As expected, the conditional confidence intervals performed worse with the shorter test— 

they produced coverage probabilities that are noticeably lower or higher than the nominal 

levels. Also notice that the overall coverage probabilities for Ie(f)  for the shorter test are 

larger than those for the longer test, which were themselves larger than the nominal 

levels. In general, the other three raw-score intervals tend to work slightly worse with the 

shorter test.

A series of figures is provided for the shorter test results: Figures 19-21 for 95%; 

Figures 22 - 24 for 68%; and Figures 25 - 27 for 50%. A few comments will suffice. 

The general patterns of the actual coverage probabilities are very similar to those for the 

full-length test. For the scale-score confidence intervals, the similarity might be due to 

the similar pattern of the transformations for the two tests as shown in Figures 3 and 4. 

The plots for the shorter tests show more white spaces between chunks of dots, however, 

which is due to discreteness. There are only 17+1 possible intervals, relative to the 

longer test for which there are 35 possible intervals.
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Discussion

Agresti and Coull (1998) recommended score confidence intervals for nearly any 

sample size and parameter value, and the results of the present study support this 

recommendation. One minor drawback of the score confidence interval is that, as 

discussed earlier, it would have an actual coverage probability that is far below the 

nominal confidence level for an examinee with the true proportion-correct score of near 

zero or one. As the number of items increases, however, the problem diminishes. On 

average, the score confidence intervals provided the actual coverage probabilities closest 

to the nominal levels regardless of the test length.

One interesting observation is that the actual coverage probabilities for the score 

confidence intervals in Figures 5, 11, and 15 are almost identical to those for the 

conditional raw-score confidence intervals using the true SEMs (Figures 10, 14, and 18). 

This appears to be related to the fact that the true SEM is defined in this paper based on 

the binomial model, and that the derivation of the endpoints for a score confidence 

interval involves use of the true SEMs (see Equations 7 and 8).

In general, credibility intervals with a non-informative prior worked very well. 

One conceptual advantage of the credibility intervals is that we can make a probabilistic 

statement about a particular interval. There seem to be two technical problems with the 

credibility intervals, however. One, as with the score confidence intervals, there are true 

score regions at which the actual coverage probabilities could be too low, and the regions 

tend to be slightly larger than those associated with the score confidence intervals. This 

problem diminishes as the test gets longer. Two, especially for lower nominal levels, the 

actual coverage probabilities can drop to zero for extremely high or low true scores. A 

practical solution to the second problem might be to set the upper endpoint of the interval 

equal to the maximum number-correct score for an examinee with a perfect score, and the 

lower endpoint equal to zero for an examinee with zero score.
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The results of the present study clearly showed that the Clopper-Pearson exact 

confidence intervals give actual coverage probabilities that substantially exceeded the 

nominal confidence levels. The exact confidence intervals are useful, however, as a 

conservative procedure. That is, with these intervals we can be sure that intervals will, on 

average, have at least the desired coverage probability regardless of score levels. Of 

course, if it is desired to have coverage probabilities as close as possible to the specified 

level at all score points, then the score and credibility intervals would be preferable.

The performance of the Bayes confidence intervals was acceptable, and it worked 

especially well with the nominal levels of .68 and .50. One advantage of the Bayes 

confidence intervals is that it does not have the problem of seriously low coverage 

probabilities. Also, the form of the Bayes intervals is identical to the familiar confidence 

interval form of x ± { z r)SEM using the Bayes estimate in place of the mean observed 

score.

Users might still insist on using intervals that involve adding and subtracting 

estimated SEMs multiplied by a z-score, since they are very popular and easy to 

implement. In such cases, it is recommended that the conditional SEMs be used rather 

than the overall SEM, especially for moderate and small confidence levels. Though the 

traditional overall confidence intervals, on some occasions, provide the overall actual 

coverage probabilities closer to the nominal confidence level, the intervals using 

conditional SEMs tend to produce the actual coverage probabilities that are constantly 

closer to the nominal level across the wide range of the score scale. This 

recommendation is applicable to both raw- and scale-score confidence intervals.

In addition, note that the computation of the conditional confidence intervals is 

based on test data for a single examinee only, whereas the traditional confidence intervals 

using the overall SEM make use of data from other examinees. Therefore, the 

conditional confidence interval might be more appropriate for a uniquely identifiable 

examinee. For instance, a counselor dealing with an individual student (especially one
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who is particularly challenged or able) may be well advised to use an interval such as 

7c( r ) , because it is based on the student's test data only. By contrast, a test publisher, not 

knowing individual examinees, may opt for reporting intervals such as / w(r) in test 

manuals.

The accuracy of the actual coverage probabilities for the conditional scale-score 

confidence intervals appears to depend upon (1) the pattern of transformation (i.e., slope), 

(2) the accuracy of the estimated CSSEMs, and (3) the transformation type (one-to-one or 

many-to-one). The pattern of the transformation is closely related to the accuracy of the 

estimated CSSEMs. Both the pattern and type of the transformation are important factors 

since they can distort the shape of the conditional scale score distributions and thus the 

normality assumption may not hold any more for the scale scores. Given the fact that the 

normal approximation works fairly well for the raw scores, the more severe the 

transformation, the more likely the normality assumption is violated for the scale scores.

When constructing intervals for scale scores, the results presented here suggest 

that the endpoints conversion method using the true-score conversion is preferable to the 

normal approximation approach. It is recommended that the normal approximation be 

used for scale-score confidence intervals only when the transformation is approximately 

linear. One comment on the true-score conversion should be made. In order to get the v 

transformation, which converts true scores into true scale scores, we begin with obtaining 

the observed score distribution given r . Doing so requires a model, and in the present 

case, the binomial error model was used. Although we can use any psychometric model 

for the true-score conversion that is assumed to hold for our data, such as one based on 

item response theory, the actual coverage probability for the scale-score counterparts will 

always be the same as the raw-score coverage probability.

Although this paper employed the true-score conversion for the endpoints 

conversion method, the observed-score conversion (i.e., Equation 20) could be another 

alternative. For a nearly one-to-one transformation, the two conversion functions will be

i
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very similar, and the resultant scale-score endpoints will be very similar as well. 

However, when the transformation is many-to-one, such as the raw-to-ST transformation 

considered in this paper, the true-score conversion would be smoother than the observed- 

score conversion, and provide somewhat better coverage probabilities (see Lee, 1998 for 

the results of the ST confidence intervals using the observed-score conversion). In 

general, the true score conversion approach would be preferred because it is consistent 

with the fact that the endpoints are on the metric of true scores, and it always produces 

the same coverage probability for the raw- and scale-score intervals. Depending upon the 

type of the transformation, the observed-score conversion approach might be preferred 

because it is relatively easy to implement using a simple interpolation procedure.
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Endpoints of Nominal 68% Intervals at Some Selected Observed 

Raw and DSS Scores with k = 34

TABLE 1

W I si r) Ib(T) Ie(r) *PW /e(f)

x = 5, DSS --■ 141

Raw 2.9, 7.1 3.3, 7.4 3.2, 7.5 2.9, 8.0 3.6, 7.7

DSS |!lS4Si®9|^: ^fKJolilliSlj 132.1, 149.9
\ . . ... • *■-.. «:■ {r '• ' i

x = 10, DSS= 165

Raw 7.3, 12.7 7.6, 12.8 7.5, 12.9 7.1, 13.3 7.8, 13.0

DSS | 152 0 173 8 153:27174.2' f153.0, \ l M
■■ . . .<:*

\ *. > f * , 
151:27175:9

.*> . ;:Ti: , *: 
-J

■ "
°!? 

■

153.8, 176.2

*= 17, DSS= 187

Raw 14.1, 19.9 14.1, 19.9 14.1, 19.9 13.7, 20.3 14.2, 19.8

DSS 1
: "V .;L

179.4, 194.6

x = 25, DSS= 207

Raw 22.4, 27.6 22.2, 27.3 22.2, 27.4 21.7, 27.7 22.0, 27.1

DSS j 200.2; 218: l; '
"" : " "=■" ' ■........ ■
199.87216.8 ; *199.7, 217i0

/ r :
Li' 198.472187 ; 199:3,'215.8 i> •: IVi- .... •- i

198.1,215.9

x = 30, DSS= 229

Raw 28.1, 31.9 27.8,31.5 27.7,31.6 27.2,31.9 27.4,31.2

DSS •. '220:47241.9 ^.^i6|S?i*8:~ 217H, 237.0 218.3,239.7

Raw-to-DSS Conversion

Raw 0 1 2 3 4 5 6 7 8 9 10 11

DSS 124 127 130 133 137 141 146 150 155 160 165 169

Raw 12 13 14 15 16 17 18 19 20 21 22 23

DSS 173 176 179 182 184 187 189 191 194 196 199 201

Raw 24 25 26 27 28 29 30 31 32 33 34

DSS 204 207 210 214 219 224 229 234 241 250 261
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TABLE 2

Average Actual Coverage Probabilities of

Nominal 95% Intervals with k -  34

/ c(r) w Ie(r) iM )

Raw Mean

SD

.924

.062

.947

.028

.952 .967 

.012 .010

.970

.009

.953

.014

DSS Mean i-" .924- -  .947 , .;9 5 2 |l^ 9 6 7 "  : .970 " ■ "953*3 .944 .949

SD K>062
r:' ^

.028 .012 f  010
■A' : . X  ̂ i *

.009 .014 fj 

^953-|

.068 .032

GE Mean | ; .924 . J 5 2 ^ ;4-967 ; .970 .944 .949

SD ! .062 :4 .028-; .009 .014;:;i
\ , = ̂ \,3

.070 .053

PR Mean ' .924 ’ .947 .952 .967 ^ .9 7 0 ; ■■'.953 ;: - .889 .941

SD ; .062 .028 .012 .010  ̂ .009 . .014 .074 .037

ST Mean b-\.924' J9 ;952ir ;;^967; : ' .970 „ ' .953; ^ .911 .943

SD 1062
I ^ ■

.028 ! .012 .010 ̂ ■ - ■. ■ .009 ' ^.0l4’| | .087 .039

Note: Shaded area is for 7V(£) = scale-score counterparts using true-score conversions; 

7c(r) = conditional confidence intervals using conditional SEMs; 

l 0(t) = overall confidence intervals using overall SEMs;

Is {t ) -  score confidence intervals;

Ib(t)  = Bayes confidence intervals;

Ie(r) = Clopper-Pearson exact confidence intervals;

I p(t)  = credibility intervals with non-informative prior;

7c(f) = conditional scale-score confidence intervals using CSSEMs; and 

J«(£) = overall scale-score confidence intervals using overall scale-score SEMs.
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TABLE 3

Average Actual Coverage Probabilities of

Nominal 68% Intervals with k = 34

7c(r) I0(r) 7v(r)

Raw Mean 

SD

DSS Mean

GE

I t f ) / ,(£ ) US)

.691

.047

.766

.046

.686

.052

% 6 | | SiSSI .697 .709

> ;o47: ; .046 :.i'052;J# .071 .096

;766 V;';&86 jS

• v l)5 2 l

.700 .728

. - .047 .- j .046 .083 .126

lean S ;'|6 7 6 iE !g fe ' 1  ;681 "  -.691'.;;' .76
. ■ - - ■*. ; ■ . ■ . * ■ ■ ■ ■ - ■ ‘ 

SD h :^ 0 5 8 « |0 ? 3 ‘ - :047 “ “ ‘ ‘ ' ' '

Note: Shaded area is for 7v(£) = scale-score counterparts using true-score conversions; 

7t (r) = conditional confidence intervals using conditional SEMs;

Itf{?) = overall confidence intervals using overall SEMs;

7,(r) = score confidence intervals;

Ib(T) = Bayes confidence intervals;

Ie(r) = Clopper-Pearson exact confidence intervals; 

l p (?) -  credibility intervals with non-informative prior;

7C(£) = conditional scale-score confidence intervals using CSSEMs; and

= overall scale-score confidence intervals using overall scale-score SEMs.
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TABLE 4

Average Actual Coverage Probabilities of

Nominal 50% Intervals with k -  34

w Ie(T) / ,(D I ' ig) /,(£ )

Raw Mean .497 .519 .499 .503 .617 .501

SD .064 .114 .060 .058 .057 .063

.501 1 

: .Q63 •;

DSS Mean

SD

';..49.7,-v:

.064^

.519 ^
■ <* ’»9feC'

. 114,S';;

:W 9 ; iy .5d3 > 

.060 ;; |5 :0 5 8 . , r';057

.516

.074

.526

.102

GE Mean : -497. .519' ■ v... v.499/ : .503 ^ 6 1 7 • :.501;:'S .525 .545

SD ;064J N;:H 45 ' .060 ;:v .058 :: \0 5 T r 063 j .091 .130

PR Mean .497 .519 499 503 ; ;617 ' *501- ■] .487 .537

SD .064? jiV I '; .  

?1 ^

.060 |  .058 -::.057 :063 J
- . j

.074 .188

ST Mean .497 .519 499 :503 i 1 .617 ,501 ■; .490 .521

SD .064t .060 ^ 0 5 8 ^ 0 5 7 ;0(53f 1
, iW V S

.155 .164

Note: Shaded area is for / v(£) = scale-score counterparts using true-score conversions; 

7c(r) = conditional confidence intervals using conditional SEMs; 

l0(f) = overall confidence intervals using overall SEMs;

/  .(r) = score confidence intervals;

Ib (t ) -  Bayes confidence intervals;

Ie(r) -  Clopper-Pearson exact confidence intervals; 

l p(t)  = credibility intervals with non-informative prior;

7C(£) = conditional scale-score confidence intervals using CSSEMs; and 

Ia{£) = overall scale-score confidence intervals using overall scale-score SEMs.
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TABLE 5

Average Actual Coverage Probabilities of

Nominal 95% Intervals with k = 17

IC(T) Ia(T) / ,( r )  Ib(r) w 1P(T) 1 M )

Raw Mean .898 .947 .954 .977 .976 .954

SD .089 .030 .015 .010
1 ' " ' .....

.010

0 1 B B I

.034

r-T".-."
DSS Mean

SD

.898 .947 .954 . .977 • .976

l i l B S

@ 5 1 8

, ; « | | |

.928

.103

.951

.029

GE Mean 'J’-S
■■ ■ ■’’ ’' ■" s+>'■ •> • ~ • vi&-■"1 ■ "W 3§iihv - i?■ & & - < 4'. ■ > , v; ■ • *■, fX <?' ^ .

.976,; .926 .947

SD . ,,089:v ; .010 .034 ,
M

.105 .060

PR Mean

SD

, '• ' ■ ' S' s •'  ̂ ■

: .898 , '’j l . 9 ^ ^ ^ . 9 5 ? 1' ' \  ••.977 

;089’ •' ! .010 .

,976 

f .010

y \ 
.9,54 •

.034

.856

.090

.940

.043
K i

ST Mean

SD

,.898,: V ;977;‘

... .0 8 9 '::5 'S M IS o i5 ;.'i .;!O Id ’

976

.010

.887

.104

.947

.031

Note: Shaded area is for / v(£) = scale-score counterparts using true-score conversions; 

Ic (r) = conditional confidence intervals using conditional SEMs;

10(t ) = overall confidence intervals using overall SEMs;

/ v (r) = score confidence intervals;

Ih(t) = Bayes confidence intervals;

I t ( T )  =  Clopper-Pearson exact confidence intervals; 

l p(r) = credibility intervals with non-in formative prior;

/ c(£) = conditional scale-score confidence intervals using CSSEMs; and 

Ia{£) = overall scale-score confidence intervals using overall scale-score SEMs.
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TABLE 6

Average Actual Coverage Probabilities of

Nominal 68% Intervals with k = 17

/ , w W / , w h i ® /„(£)

Raw Mean .666 .693 .676 .697 .803 .690

SD .075 .115 .063 .063 .052 .062

DSS Mean

SD

llplllllllilfi
.666

l i i ^ l  

! 5

■■ ■ ■ 
.693 

; 115

6 ^ 7 -

.063

■ .803

: ;052 ^
'' > '' ■

.690
k,.- . ■

062

.703

.106

.707

.104

GE Mean
i ' k ̂ _
f:'^666A' .693 676 .697 .690 .709 .731

SD i:?=ia75f - .115; : .063 :;:063 052 : .062 .108 .129

PR Mean .666 : .693 .676 ,*697;' .803 .690 .635 .695

SD
j" i

• .115 .063
s-y - :£>

.062 .079 .149

ST Mean 1^:666 ■; .693 . . . ^ 7 6 . ; , .697 . .803 ■'a"1' .690A- f .665 .702

SD g g f iis i j .063: .062 ; .136 .138

Note: Shaded area is for 7V(£) = scale-score counterparts using true-score conversions; 

1c(t ) = conditional confidence intervals using conditional SEMs;

Io (t ) = overall confidence intervals using overall SEMs;

7t(r) = score confidence intervals;

Ih(r) -  Bayes confidence intervals;

Ie(r) ~ Clopper-Pearson exact confidence intervals;

1 p{f) = credibility intervals with non-informative prior;

7C(£) = conditional scale-score confidence intervals using CSSEMs; and 

/„(£) = overall scale-score confidence intervals using overall scale-score SEMs.
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TABLE 7

Average Actual Coverage Probabilities of

Nominal 50% Intervals with k = 17

W  i 0{T) /,(T) Ib(t) Ie(r) / (r) I M )  Ia{£)

Raw Mean .495 .513 .496

SD .088 .130 .090

.505 .661 .510

.086 .078 .084

J 661 "
: - ' . j. 
^0861;^ . 

==■■

>-r
:078

. . -J. . ■ ■

. - 0 ^

DSS Mean }•';,495StS513 ; - .4 9 6 ^ ^ 5 0 5 8 ^ .6 6 1  '^ 1 0 « |  .530 .531

SD ( : .0 8 8 |^ ;;;I3Q ,.090> '■ :078 M m  .099 .118
1 . ■ -

GE Mean |  lt)S| .535 .552

SD .108 .149

;4 9 5 a ® K 5 » ... ..496V-f?i5(KS«':-66l .;5-10;* .468 .526PR Mean
, .................. ... ~ . . ẑ stw&W' ■ - ■ v

SD ,088 ^! vBO .090 Y ^086*  .078 .084&1 .082 .192

■■■ —■ -''ktXCl
ST Mean j i.495& S M 3 ;661. ,^.;5 'l€)t .484 .526

SD .178 .209

Note: Shaded area is for / v(f) = scale-score counterparts using true-score conversions; 

Ic(t ) = conditional confidence intervals using conditional SEMs;

It)(r) = overall confidence intervals using overall SEMs;

I s(t ) -  score confidence intervals;

Ih(T) -  Bayes confidence intervals;

Ie(T) = Clopper-Pearson exact confidence intervals;

/  (t ) = credibility intervals with non-informative prior;

/ c(£) = conditional scale-score confidence intervals using CSSEMs; and .

= overall scale-score confidence intervals using overall scale-score SEMs.
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FIGURE 1 . True-Score and Observed-Score Conversions
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FIGURE 2 . Lengths of Nominal 68% Intervals for Raw and DSS Scores with k = 34
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FIGURE 3 . Raw to Scale-Score Transformations with k = 34
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FIGURE 4 . Raw to Scale-Score Transformations with k = 17
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FIGURE 5 . Actual Coverage Probabilities of Nominal 95 %

Raw-Score Intervals with k = 34
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FIGURE 6. Actual Coverage Probabilities of Nominal 95% Scale - Score Intervals

Using Conditional Scale - Score SEMs [/c (£)] with k = 34
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FIGURE 7. Actual Coverage Probabilities of Nominal 95 % Scale - Score Intervals

Using Overall Scale - Score SEMs [/„ (£)] with k -  34
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FIGURE 8 .  True and Estimated SEMs with k = 34

True SEMs

Mean Estimated Conditional SEMs

Straight Line = Mean Estimated Overall SEMs

Raw

True Score

DSS

True DSS

GE

True GE

PR

True PR

ST

True ST

i



54

FIGURE 9 . Bias for Estimated SEMs with k = 34
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FIGURE 1 0 . Actual Coverage Probabilities of Nominal 95% Conditional

Confidence Intervals Using True Conditional SEMs with k = 34
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FIGURE 1 1 . Actual Coverage Probabilities of Nominal 68%

Raw-Score Intervals with k = 34
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FIGURE 12. Actual Coverage Probabilities of Nominal 68% Scale - Score Intervals

Using Conditional Scale - Score SEMs [7C (£)] with k = 34
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FIGURE 13. Actual Coverage Probabilities of Nominal 68% Scale - Score Intervals

Using Overall Scale - Score SEMs [Io (£)] with k = 34
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FIGURE 1 4 . Actual Coverage Probabilities of Nominal 68% Conditional

Confidence Intervals Using True Conditional SEMs with k = 34
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FIGURE 1 5 . Actual Coverage Probabilities of Nominal 50%

Raw-Score Intervals with k = 34
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FIGURE 16. Actual Coverage Probabilities of Nominal 50% Scale - Score Intervals

Using Conditional Scale - Score SEMs [lc (£)] with k = 34
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FIGURE 17, Actual Coverage Probabilities of Nominal 50% Scale - Score Intervals

Using Overall Scale - Score SEMs [I0 ( f )] with k = 34
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FIGURE 1 8 . Actual Coverage Probabilities of Nominal 50% Conditional

Confidence Intervals Using True Conditional SEMs with k = 34
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FIGURE 1 9 . Actual Coverage Probabilities of Nominal 95%

Raw-Score Intervals with k -  17
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FIGURE 20, Actual Coverage Probabilities of Nominal 95 % Scale - Score Intervals

Using Conditional Scale - Score SEMs [7C (£)] with k = 17
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FIGURE 21, Actual Coverage Probabilities of Nominal 95% Scale - Score Intervals

Using Overall Scale - Score SEMs [/,, (£)] with k = 11
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FIGURE 2 2 . Actual Coverage Probabilities of Nominal 68%

Raw-Score Intervals with k = 17
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FIGURE 23. Actual Coverage Probabilities of Nominal 68% Scale - Score Intervals

Using Conditional Scale - Score SEMs [Ic (£)] with k = 17
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FIGURE 24. Actual Coverage Probabilities of Nominal 68% Scale - Score Intervals

Using Overall Scale - Score SEMs [Ia (£)] with k = 17
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FIGURE 2 5 . Actual Coverage Probabilities of Nominal 50%

Raw-Score Intervals with k = 17
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FIGURE 26. Actual Coverage Probabilities of Nominal 50% Scale - Score Intervals

Using Conditional Scale - Score SEMs [7C (£)] with k = 17

1.0 -

0.9 ■

0.8 •

0.7 -

X) 06  -
o

Oh 0.5 -
U
00
rt 0.4 -

O
> 0.3 -
o

U 0.2 -

0.1

0.0

120

DSS

V T T

150 180 210 240 270

True DSS

GE

0 1 2  3 8 9 10

True GE

x>

o

4>
DO
«
u.

<L>
>
o
U

1.0 -1 

0.9 - 

0.8 -  

0.7 * 

0.6 -  

0.5 

0.4 - 

0.3 - 

0.2 -  

0.1 - 

0.0

PR ST

f  •

0 20 40 60

True PR

80 100

True ST



72

FIGURE 27. Actual Coverage Probabilities of Nominal 50% Scale - Score Intervals

Using Overall Scale - Score SEMs [Ia ( f )] with k = 17
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