Math for Chemistry Cheat Sheet

This quick math review outlines the basic rules (left) and chemistry applications (right) of each term.
Unit Conversion - The rocess of converting a given unit to a desired unit using conversion factors.

Using Conversion Factor:
DesiredUnit = Factor x GivenUnit
$=\frac{\text { DesiredUnit }}{\text { GivenUnit }} x$ GivenUnit
Common Conversion Factors:
$1 \mathrm{cal}=4.184 \mathrm{~J} ; 1 \AA=10^{-10} \mathrm{~m}$
1 atm $=760 \mathrm{mmHg} ; 1 \mathrm{~kg}=2.2 \mathrm{lb}$
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
${ }^{\circ} \mathrm{F}=(9 / 5) \mathrm{x}^{\circ} \mathrm{C}+32$
$1 \mathrm{~L}=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$
$1 \mathrm{in}^{3}=1.6387 \times 10^{-6} \mathrm{~m}^{3}$

Metric Conversion: Uses		
multipliers to convert from one sized unit to another		
mega-	M	10^{6}
kilo-	k	10^{3}
deci-	d	10^{-1}
centi-	c	10^{-2}
milli-	m	10^{-3}
micro-	μ	10^{-6}
nano-	n	10^{-9}
pico-	p	10^{-12}

Unit Conversion is used in every aspect of chemistry.
Example 1: How many meters (m) in 123 ft ?
$? m=123 \mathrm{ft}\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=37.4904=37.5 \mathrm{~m}$
Example 2: What is the Fahrenheit at 25 degrees of Celsius?
? ${ }^{\circ} \mathrm{F}=32+(9 / 5) \times{ }^{\circ} \mathrm{C}=32+9 \times 25 / 5=77^{\circ} \mathrm{F}$
Example 3: What is the volume in L of 100 grams of motor oil with a density of $0.971 \mathrm{~g} / \mathrm{cm}^{3}$?
$? L=\frac{100 \mathrm{~g}}{0.971 \mathrm{~g} / \mathrm{cm}^{3}}=102.987=103 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~cm}^{3}}=0.103 \mathrm{~L}$

Significant Figures - The digits in a measurement that are reliable, irrespective of the decimal place's location.

Exponents - The number that gives reference to the repeated multiplication required, that is, in x^{n}, n is the exponent.

Rule of 1: (a) Any number raised to the power of one equals itself, $x^{1}=x$. (b) One raised to any power is one, $1^{n}=1$.
Product Rule: When multipling two powers with the same base, just add the exponents, $x^{m} \cdot x^{n}=x^{m+n}$.
Power Rule: To raise a power to a power, just multiply the exponents, $\left(x^{m}\right)^{n}=x^{m \times n}$.
Quotient Rule: To divide two powers with the same base, just subtract their exponents, $\left(x^{m}\right) \div x^{n}=x^{m-n}$.
Zero Rule: Any nonzero numbers raised to the power of zero equals $1, x^{0}=1 ; x \neq 0$.
Nagative Rule: Any nonzero number raised to a negative power equals its reciprocal raised to the oppositive positive power, $x^{-n}=1 / x^{n} ; x \neq 0$.

Exponents is being used everywhere in chemistry, most noticeably in metric unit conversions and exponential notations. Rule of 1: $12.3^{1}=12.3 ; 1^{3}=1$
Product Rule: $10^{-12} \cdot 10^{-4}=10^{(-12)+(-4)}=10^{-16}$
Power Rule: $\left(10^{-12}\right)^{2}=10^{(-12) \times 2}=10^{-24}$
Quotient Rule: $10^{8} \div 10^{3}=x^{8-3}=10^{5}$
Zero Rule: $10^{0}=1$
Negative Rule: $10^{-2}=1 / 10^{2}=1 / 100=0.01$
Common Student Errors:
$\# 1$: $-10^{2} \neq(-10)^{2}$. The square of any negative is positive.
\#2: $2^{2} \cdot 8^{3} \neq(2 \times 8)^{2+3}$. Product rule applies to same base only.
$\# 3: 10^{2}+10^{3} \neq(10)^{2+3}$. Product rule does not apply to the sum.

Scientific (Exponential) Notations - A exponential form with a number (1-10) times some power of $10, \mathrm{n} \times 10^{\mathrm{m}}$

Addition: $\left(\mathrm{M} \times 10^{\mathrm{n}}\right)+\left(\mathrm{N} \times 10^{\mathrm{n}}\right)=(\mathrm{M}+\mathrm{N}) \times 10^{\mathrm{n}}$
Subtraction: $\left(M \times 10^{n}\right)-\left(N \times 10^{n}\right)=(M-N) \times 10^{n}$
Multiplication: $\left(\mathrm{M} \times 10^{\mathrm{m}}\right) \times\left(\mathrm{N} \times 10^{\mathrm{n}}\right)=(\mathrm{M} \times \mathrm{N}) \times 10^{\mathrm{m}+\mathrm{n}}$
Division: $\left(M \times 10^{m}\right) \div\left(N \times 10^{n}\right)=(M \times N) \times 10^{m-n}$
Power: $\left(N \times 10^{\mathrm{n}}\right)^{\mathrm{m}}=(\mathrm{N})^{\mathrm{m}} \times 10^{\mathrm{n} \cdot \mathrm{m}}$
Root: $\sqrt{N \times 10^{n}}=\left(N \times 10^{n}\right)^{1 / 2}=\sqrt{N} \times 10^{n / 2}$
\#1: $\left(1.23 \times 10^{-5}\right)+\left(0.21 \times 10^{-5}\right)=(1.23+0.21) \times 10^{-5}=1.44 \times 10^{-5}$
$\# 2:\left(5.13 \times 10^{-3}\right)+\left(1.41 \times 10^{-3}\right)=(5.13-1.41) \times 10^{-3}=3.72 \times 10^{-3}$
\#3: $\left(2.5 \times 10^{-3}\right) \times\left(0.43 \times 10^{7}\right)=(2.5 \times 0.43) \times 10^{-3+7}=1.1 \times 10^{3}$
\#4: $\left(2.5 \times 10^{-3}\right) \div\left(0.43 \times 10^{7}\right)=(2.5 \div 0.43) \times 10^{(-3)-(+7)}=5.8 \times 10^{-10}$
\#5: $\left(1.23 \times 10^{-3}\right)^{2}=(1.23)^{2} \times 10^{-3 \times 2}=1.51 \times 10^{-6}$
\#6: $\sqrt{1.2 \times 10^{4}}=\left(1.2 \times 10^{4}\right)^{1 / 2}=\sqrt{1.2} \times 10^{4 / 2}=1.1 \times 10^{2}$

Logarithm - The logarithm of \boldsymbol{y} with respect to a base \boldsymbol{b} is the exponent to which we have to raise \boldsymbol{b} to obtain \boldsymbol{y}.

Definition: $x=\log _{b} y<->b^{x}=y$ (Logarithm <->Exponent)
Operations: $\log (x \cdot y)=\log x+\log y$
$\log (x / y)=\log x-\log y$ $\log \left(x^{n}\right)=n \cdot \log x$
Natural Logarithm: In $x=\log _{\mathrm{e}} \mathrm{x}$, where $\mathrm{e}=2.718$
Sigficant Figures in logarithm: Only the resulting numbers to the right of the decimal place are signficant.
e.g. $\log \left(3.123 \times 10^{5}\right)=5.5092$

Applications: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right], \mathrm{pKa}, \Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln (\mathrm{Q})$
Example: What is the H^{+}concentration in $\mathrm{pH}=3.00$?
Solution: (Illustrated by the KUDOS method)
Step 1-Known: $\mathrm{pH}=3.00$
Step 2 - Unknown: $\left[\mathrm{H}^{+}\right]=$? M
Step 3 - Definition: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, that is, $\left[\mathrm{H}^{+}\right]=10^{-(\mathrm{pH})}$
Step 4 - Output: $\left[\mathrm{H}^{+}\right]=10^{-(\mathrm{pH}}=1.0 \times 10^{-3} \mathrm{M}$
Step 5 - Substantiation: Unit, S.F. and value are reasonable.

Quadratic Equation - A polynomial equation of the second degree in the form of $a x^{2}+b x+c=0$
Equation: $a x^{2}+b x+c=0 \quad$ Roots: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

- It always has two roots (or solutions) $x_{1} \& x_{2}$
- For most chemical problems (mass, temperature, concentration etc.), ignore the negative root.

Example: equilibrum concentration equation $x^{2}+3 x-10=0$. Solution:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-3 \pm \sqrt{3^{2}-4 \times 1 \times(-10)}}{2 x(1)}=\frac{-3 \pm \sqrt{49}}{2}$
$x_{1}=2$ and $x_{2}=-5$, ignore the negative root, so the answer $x=2$

