CELL	DESCRIPTION	GROUP
D00001	Name Plate	GP & E
D00002	Active points for text placement	GP & E
D00003	Temporary Concrete Barrier	GP & E
D00004	Total Bill of Material, 15 line	GP & E
D00005	Total Bill of Material, 20 line	GP & E
D00006	Total Bill of Material, 25 line	GP & E
D00007	Total Bill of Material, 30 line	GP & E
D00010	Section thru integral abutment for PPC beams	GP & E
D00011	Section thru integral abutment for steel beams	GP & E
D00012	Section thru pile supported stub abutment for PPC beams	GP & E
D00013	Section thru pile supported stub abutment for steel beams	GP & E
D00014	Section thru semi-integral abutment for PPC beams	GP & E
D00015	Section thru semi-integral abutment for steel beams	GP & E
D00016	Riprap for section thru abutments (use with D00010 through D00015)	GP & E
D00017	Slopewall for section thru abutments (use with D00010 through D00015)	GP & E
D00018	Section Thru Filled Vaulted Abutment	GP & E
D00020	Parapet Joint Details	Superstructure
D00021	Parapet Joint at Sidewalk	Superstructure
D00022	Section thru sidewalk	Superstructure
D00023	42" Section thru parapet for base sheet S-D or S-I-D	Superstructure
D00024	d(E) bar bending diagram for 42" parapet for base sheet S-D or S-I-D	Superstructure
D00025	42" parapet joint details for base sheet S-D or S-I-D	Superstructure
D00026	Anchor rod for light pole mounted on parapet	Superstructure
D00027	d2(E) bar bending diagram for parapet with light pole	Superstructure
D00028	d3(E) bar bending diagram for parapet with light pole	Superstructure
D00029	Plan view of parapet with light pole, conduit inside parapet	Superstructure
D00030	Section A-A of parapet with light pole, conduit inside parapet	Superstructure
D00031	Plan view of parapet with light pole, conduit outside parapet	Superstructure
D00032	Section A-A of parapet with light pole, conduit outside parapet	Superstructure
D00033	Inside Elevation of 42" Parapet for superstructure detail sheet	Superstructure
D00040	Drainage Scupper, DS-11 details, left drain	Drainage
D00041	Drainage Scupper, DS-11 details, right drain	Drainage
D00042	Drainage Scupper, DS-12 details, left drain	Drainage
D00043	Drainage Scupper, DS-12 details, right drain	Drainage
D00044	Drainage Scupper, DS-12M10 details	Drainage
D00045	Drainage Scupper, DS-33 details, right drain	Drainage

CELL	DESCRIPTION	GROUP
D00046	4 in x 12 in drain details	Drainage
D00050	Strip seal joint for deck beams with CWS	Joint
Note:	Cells D00060 thru D00069 are to be used as required on PPC Deck Beam Superstructure sheets where sections are	e to be inserted.
D00060	Sect thru fixed abut for 11" PPC deck beam with conc. wearing surface and approach slab	Deck beams
D00061	Sect thru fixed abut. for 11" PPC deck beam with HMA wearing surface and approach slab	Deck beams
D00062	Sect thru fixed abut. for 17" and 21" PPC deck beams with conc. wearing surface and approach slab	Deck beams
D00063	Sect thru fixed abut. for 17" and 21" PPC deck beams with HMA wearing surface and approach slab	Deck beams
D00064	Sect thru fixed abut. for 27", 33", and 42" PPC deck beams with conc. wearing surface and approach slab	Deck beams
D00065	Sect thru fixed abut. for 27", 33", and 42" PPC deck beams with HMA wearing surface and approach slab	Deck beams
D00066	Sect thru fixed abut. for 11" thru 42" PPC deck beams with conc. wearing surface without approach slab	Deck beams
D00067	Sect thru fixed abut. for 11" thru 42" PPC deck beams with HMA wearing surface without approach slab	Deck beams
D00068	Sect thru fixed pier for 11" thru 42" PPC deck beams with concrete wearing surface	Deck beams
D00069	Sect thru fixed pier for 11" thru 42" PPC deck beams with HMA wearing surface	Deck beams
D00070	Plan View of alternate fixed bearings at abutments	Deck beams
D00071	Plan View of alternate fixed bearings at pier	Deck beams
D00072	Sect thru fixed abut. with alternate fixed bearings	Deck beams
D00073	Sect thru fixed pier with alternate fixed bearings	Deck beams
D00074	Sect thru expansion abut. for 11" PPC deck beams with conc. wearing surface	Deck beams
D00075	Sect thru expansion abut. for 17" and 21" PPC deck beams with conc. wearing surface and approach slab	Deck beams
D00076	Sect thru expansion abut. for 17" and 21" PPC deck beams with HMA wearing surface and approach slab	Deck beams
D00077	Sect thru expansion abut. for 27", 33", and 42" PPC deck beams with conc. wearing surface and approach slab	Deck beams
D00078	Sect thru expansion abut. for 27", 33", and 42" PPC deck beams with HMA wearing surface and approach slab	Deck beams
D00079	Sect thru expansion abut. for 11" thru 42" PPC deck beams with conc. wearing surface without approach slab	Deck beams
D00080	Sect thru expansion abut. for 17" thru 42" PPC deck beams with HMA wearing surface without approach slab	Deck beams
D00081	Sect thru expansion pier for 11" thru 42" PPC deck beams with conc. wearing surface	Deck beams
D00082	Sect thru expansion pier for 17" thru 42" PPC deck beams with HMA wearing surface	Deck beams
D00083	Retainer angle at expansion joint of deck beams	Deck beams
D00084	Shear key clamping details at stage construction joint	Deck beams
D00090	Bearing detail for integral abutment with steel beams	Bearing
D00100	Stud shear connector details	Structural Steel
D00101	Interior diaphragm beam or girder up to 42"	Structural Steel
D00102	Interior diaphragm plate girder < 48"	Structural Steel
D00103	End diaphragm for wide flange beams	Structural Steel
	End diaphragm for shallow plate girders	Structural Steel
	End diaphragm for plate girders < 48" and skew < 45 deg with finger plate or modular joints	Structural Steel
D00110	End diaphragm stage construction sequence for wide flange beams	Structural Steel

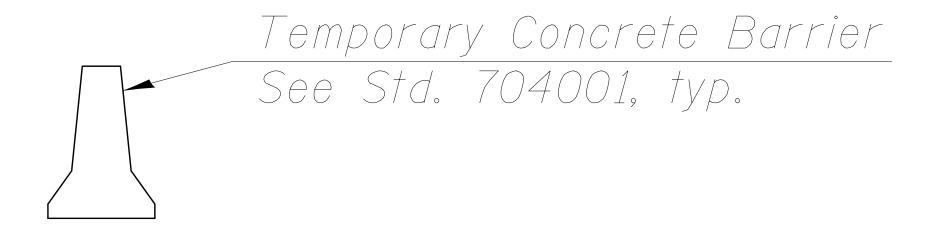
CELL	DESCRIPTION	GROUP
D00111	End diaphragm stage construction sequence for plate girders	Structural Steel
D00120	Wide flange splice detail (outside flange plates only)	Structural Steel
D00130	LRFD data tables (Non-composite in negative moment regions)	Design Tables
D00131	LRFD data tables (Composite in negative moment regions)	Design Tables
D00132	LRFD data tables for curved girders	Design Tables
D00133	LRFD PPC I beam data tables	Design Tables
D00134	LFD data tables	Design Tables
D00135	LFD data tables for curved girders	Design Tables
D00136	LFD PPC I beam data tables	Design Tables
D00140	Geotextile wall form brace details	Wall
D00141	Geotextile wall procedure	Wall
D00150	Phoebe nesting site	Culvert
D00155	Permanent bracing details for IL27 & IL36 beams	Superstructure
D00156	Permanent bracing details for IL45 & IL54 beams	Superstructure
D00157	Permanent bracing details for IL63 & IL72 beams	Superstructure
D00158	Permanent bracing detail - No skew	Superstructure
D00159	Permanent bracing detail - Skewed	Superstructure
D00160	Permanent bracing details for 36" & 42" PPC I beams	Superstructure
D00161	Permanent bracing details for 48" & 54" PPC I beams	Superstructure
D00162	Permanent bracing details for Bulb T beams	Superstructure
D00163	Bar splicer assembly for edge beams at stage construction joint	Superstructure
D00170	View E-E for Bridge approach slabs with 42" parapets	Approach slabs
D00200	Dead load deflection diagram for top of slab elevations	TOS Elevations
D00201	PPC Bulb T-beam fillet height detail for top of slab elevations	TOS Elevations
D00202	PPC I-beam fillet height detail for top of slab elevations	TOS Elevations

Cell Name: D00001 Descrip: Name Plate

STATION

BUILT BY

STATE OF ILLINOIS


LOADING HL-93

STRUCTURF NO.

NAME PLATE
See Std. 515001

Descrip: Active points for text placement

Descrip: Temporary Concrete Barrier

Descrip: Total Bill of Material, 15 line

TOTAL BILL OF MATERIAL

ITEM	UNIT	SUPER	SUB	TOTAL
				_

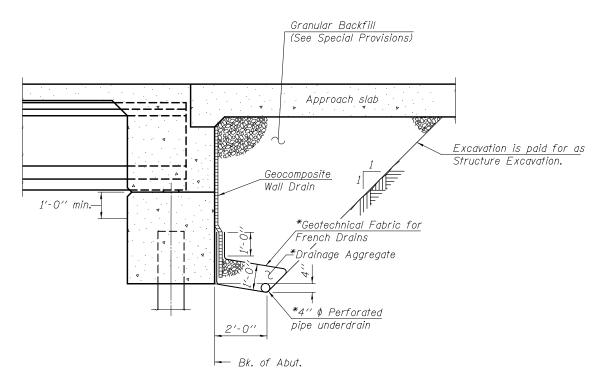
Descrip: Total Bill of Material, 20 line

TOTAL BILL OF MATERIAL

ITEM	UNIT	SUPER	SUB	TOTAL

Descrip: Total Bill of Material, 25 line

TOTAL BILL OF MATERIAL

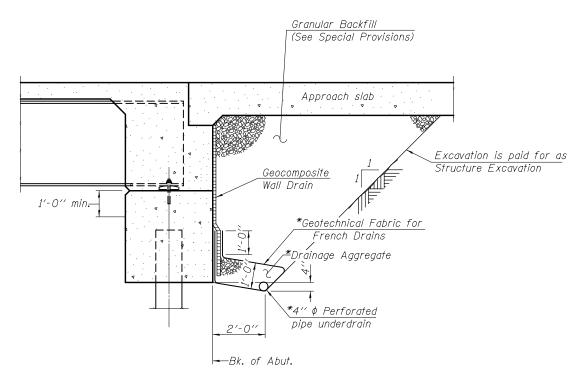

ITEM	UNIT	SUPER	SUB	TOTAL
	37.127			-

Descrip: Total Bill of Material, 30 line

TOTAL BILL OF MATERIAL

ITEM	UNIT	SUPER	SUB	TOTAL			

Descrip: Section thru integral abutment for PPC beams

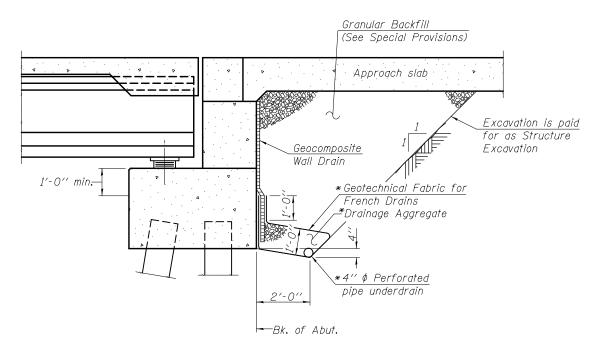

SECTION THRU INTEGRAL ABUTMENT (Horiz. dim. @ Rt. L's)

*Included in the cost of Pipe Underdrains for Structures. (See Special Provisions)

Note:

All drainage system components shall extend to 2'-0'' from the end of each wingwall except an outlet pipe shall extend until intersecting with the side slopes. The pipes shall drain into concrete headwalls. (See Article 601.05 of the Standard Specifications and Highway Standard 601101).

Descrip: Section thru integral abutment for steel beams


SECTION THRU INTEGRAL ABUTMENT (Horiz. dim. @ Rt. L's)

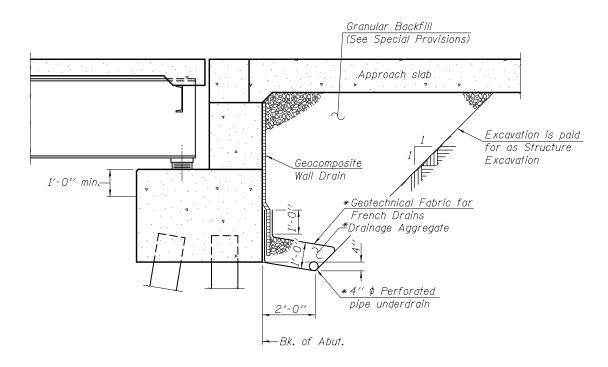
*Included in the cost of Pipe Underdrains for Structures. (See Special Provisions)

Note:

All drainage system components shall extend to 2'-0'' from the end of each wingwall except an outlet pipe shall extend until intersecting with the side slopes. The pipes shall drain into concrete headwalls. (See Article 601.05 of the Standard Specifications and Highway Standard 601101).

Descrip: Section thru pile supported stub abutment for PPC beams

<u>SECTION THRU PILE SUPPORTED</u> STUB ABUTMENT


(Horiz. dim. @ Rt. L's)

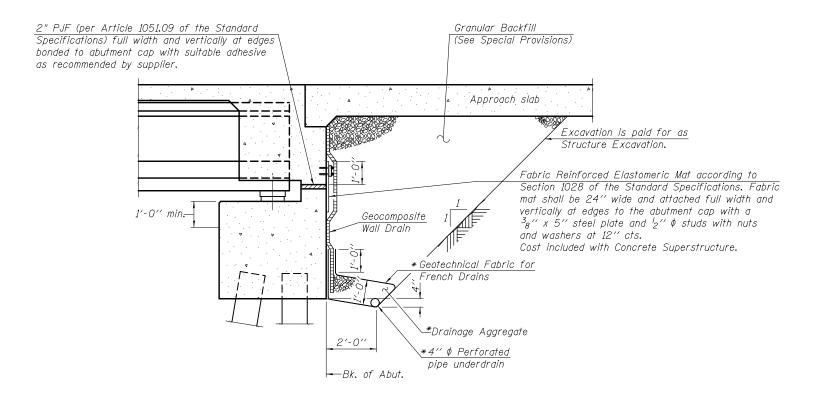
*Included in the cost of Pipe Underdrains for Structures. (See Special Provisions)

Note:

All drainage system components shall extend parallel to the abutment back wall until they intersect the wingwalls or 2'-0" from the end of the wingwalls when the wings are parallel to the abutment. The pipe shall extend under the wingwall, if necessary, until intersecting the side slopes. The pipes shall drain into concrete headwalls. (See Article 601.05 of the Standard Specifications and Highway Standard 601101).

Descrip: Section thru pile supported stub abutment for steel beams

SECTION THRU PILE SUPPORTED STUB ABUTMENT


(Horiz. dim. @ Rt. L's)

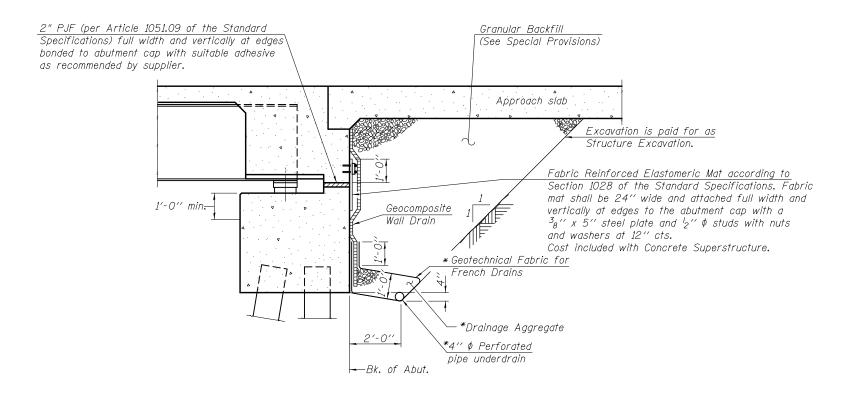
*Included in the cost of Pipe Underdrains for Structures. (See Special Provisions)

Note:

All drainage system components shall extend parallel to the abutment back wall until they intersect the wingwalls or 2'-0" from the end of the wingwalls when the wings are parallel to the abutment. The pipe shall extend under the wingwall, if necessary, until intersecting the side slopes. The pipes shall drain into concrete headwalls. (See Article 601.05 of the Standard Specifications and Highway Standard 601101).

Descrip: Section thru semi-integral abutment for PPC beams

SECTION THRU SEMI-INTEGRAL ABUTMENT

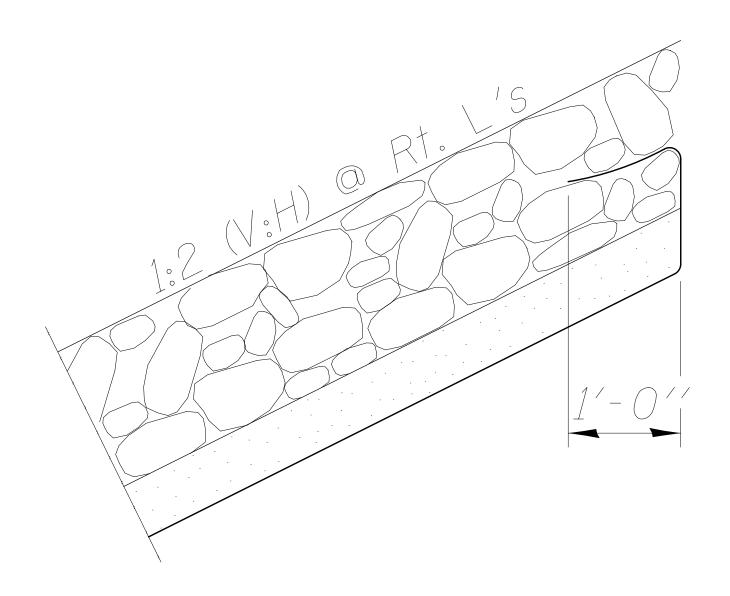

(Horiz. dim. @ Rt. L's)

*Included in the cost of Pipe Underdrains for Structures. (See Special Provisions)

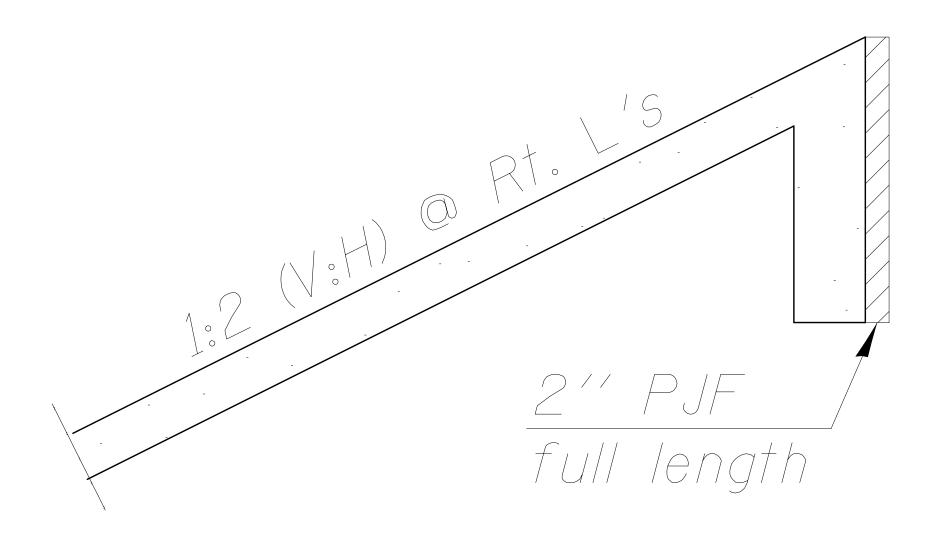
Note

All drainage system components shall extend to 2'-0" from the end of each wingwall except an outlet pipe shall extend until intersecting with the side slopes. The pipes shall drain into concrete headwalls. (See Article 601.05 of the Standard Specifications and Highway Standard 601101).

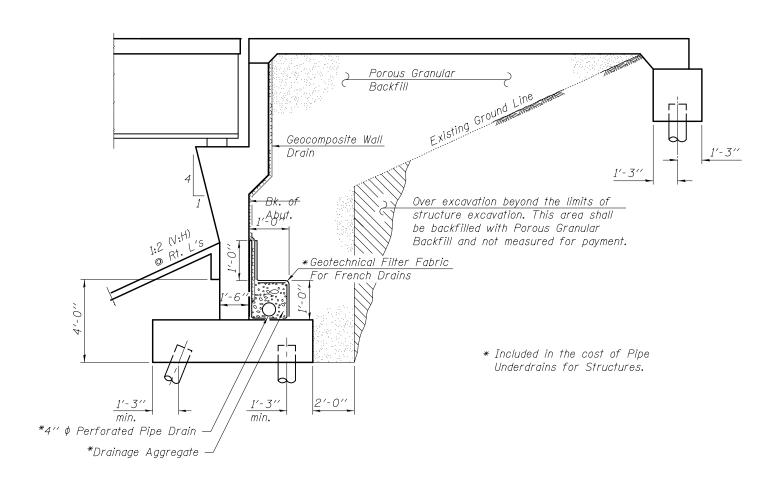
Descrip: Section thru semi-integral abutment for steel beams



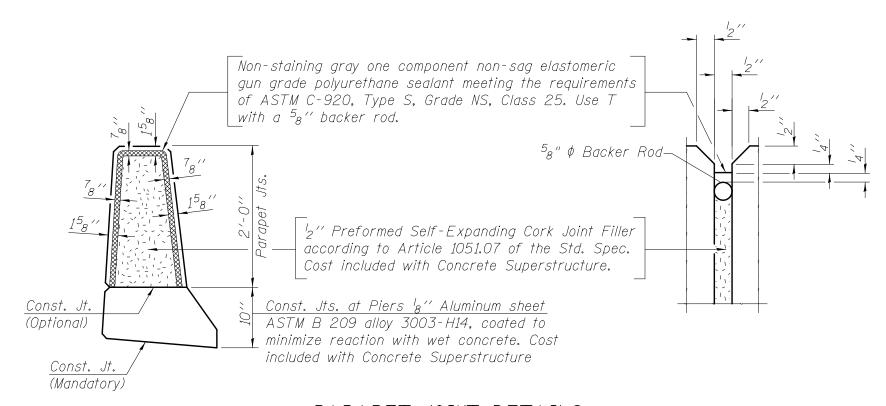
SECTION THRU SEMI-INTEGRAL ABUTMENT (Horiz. dim. @ Rt. L's)


*Included in the cost of Pipe Underdrains for Structures. (See Special Provisions)

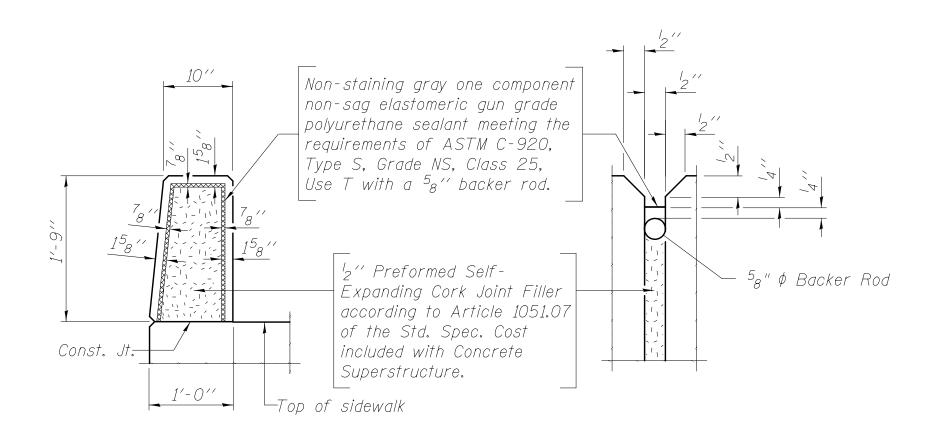
All drainage system components shall extend to 2'-0" from the end of each wingwall except an outlet pipe shall extend until intersecting with the side slopes. The pipes shall drain into concrete headwalls. (See Article 601.05 of the Standard Specifications and Highway Standard 601101).


Descrip: Riprap for section thru abutments (use with D00010 through D00015)

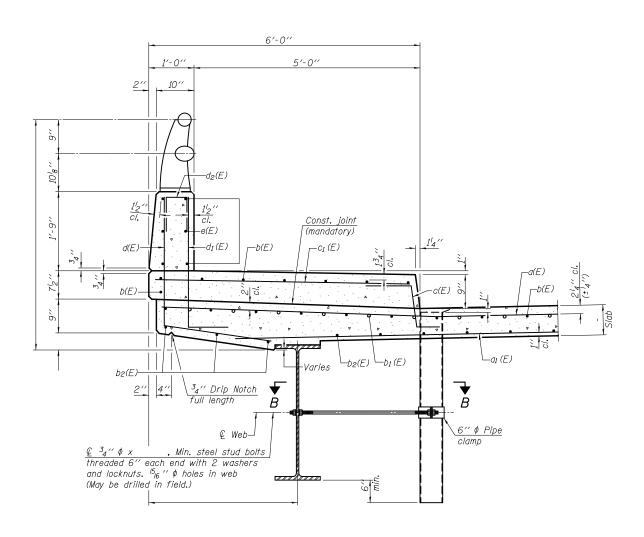
Descrip: Slopewall for section thru abutments (use with D00010 through D00015)


Descrip: Section Thru Filled Vaulted Abutment

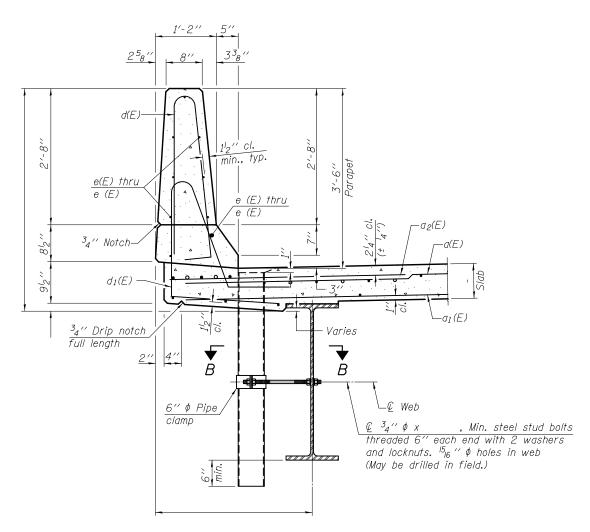
SECTION THRU FILLED VAULTED ABUTMENT


(Horiz. dim. @ Rt. L's)

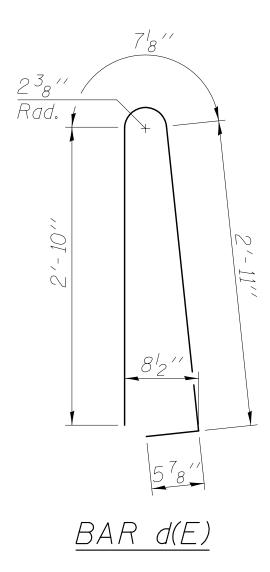
Descrip: Parapet Joint Details


PARAPET JOINT DETAILS

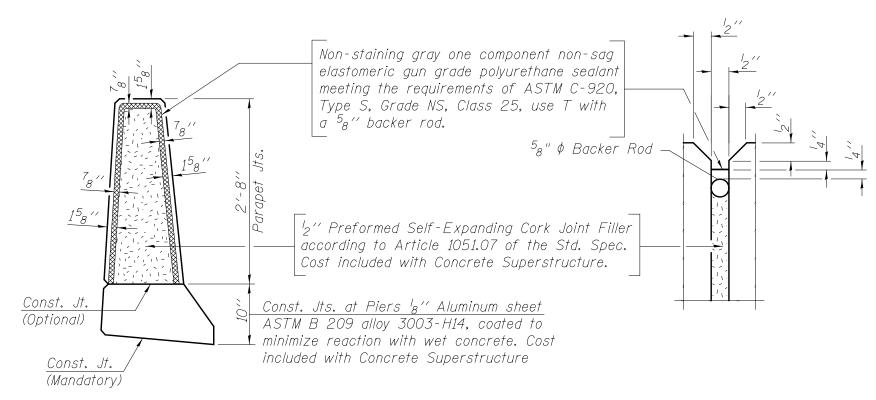
Descrip: Parapet Joint at Sidewalk


PARAPET JOINT DETAILS

Descrip: Section thru sidewalk

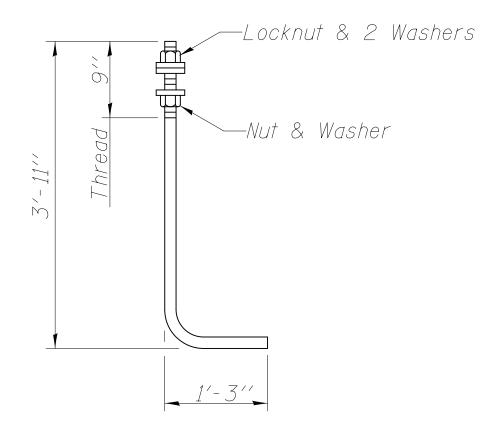

SECTION THRU SIDEWALK

Descrip: 42" Section thru parapet for base sheet S-D or S-I-D



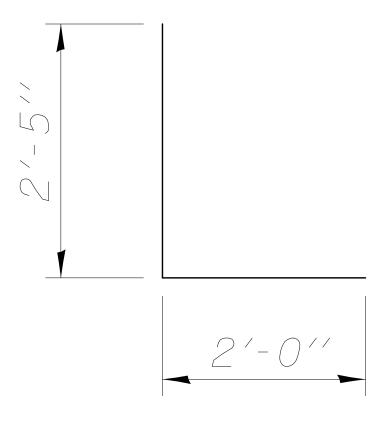
SECTION THRU PARAPET

Descrip: d(E) bar bending diagram for 42" parapet for base sheet S-D or S-I-D

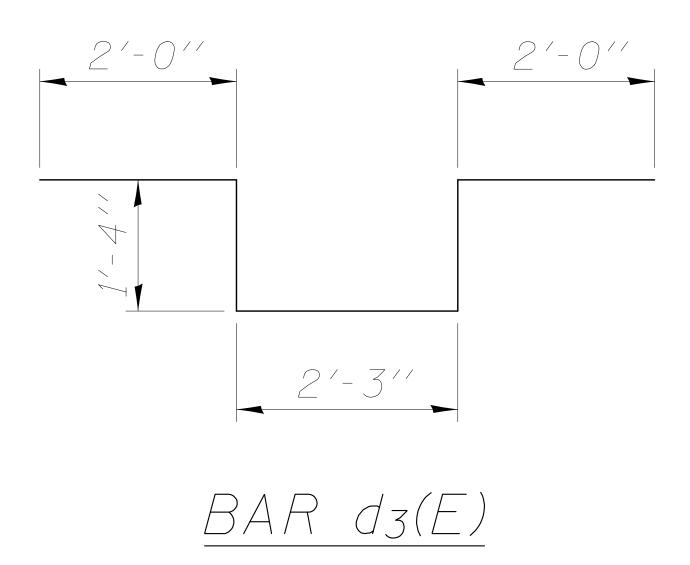


Descrip: 42" parapet joint details for base sheet S-D or S-I-D

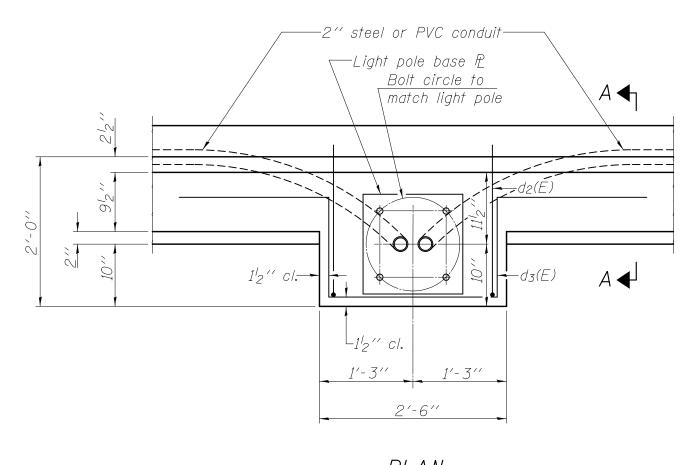
PARAPET JOINT DETAILS


Descrip: Anchor rod for light pole mounted on parapet

ANCHOR ROD


Diameter as specified for light poles. (ASTM F 1554 Grade 105)

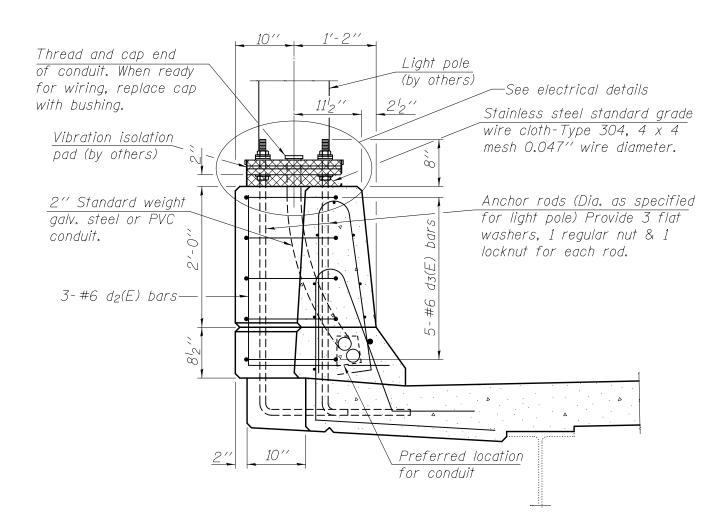
Descrip: d2(E) bar bending diagram for parapet with light pole



BAR d2(E)

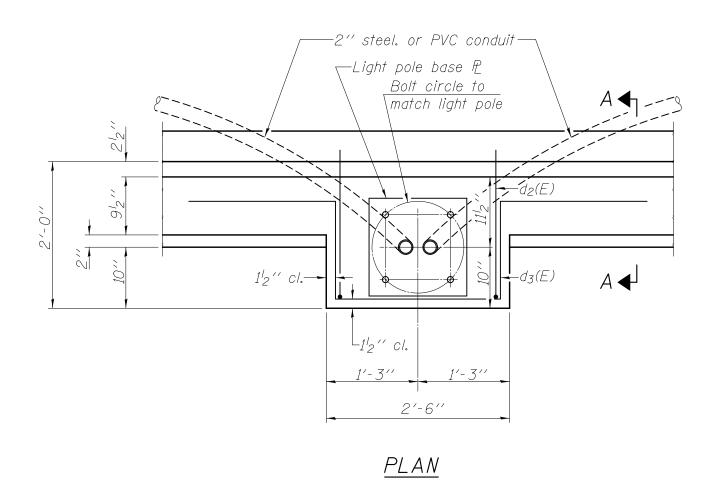
Descrip: d3(E) bar bending diagram for parapet with light pole

Descrip: Plan view of parapet with light pole, conduit inside parapet



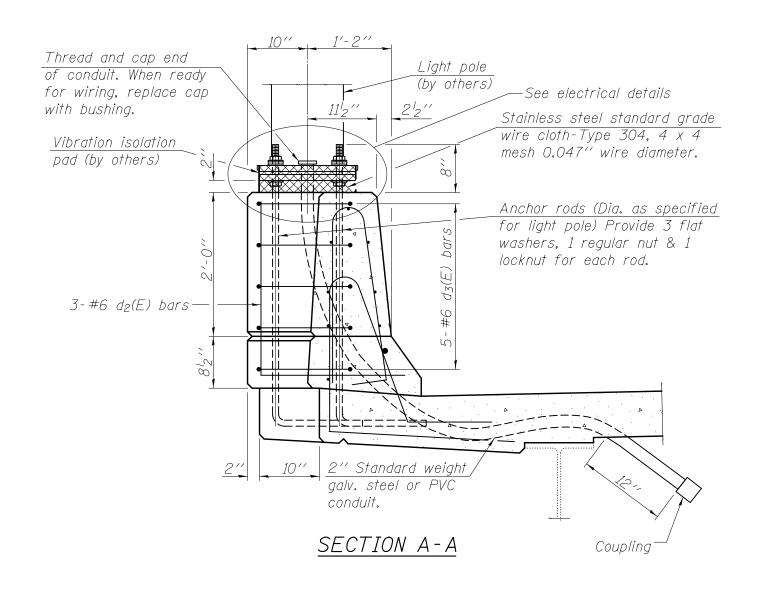
<u>PLAN</u>

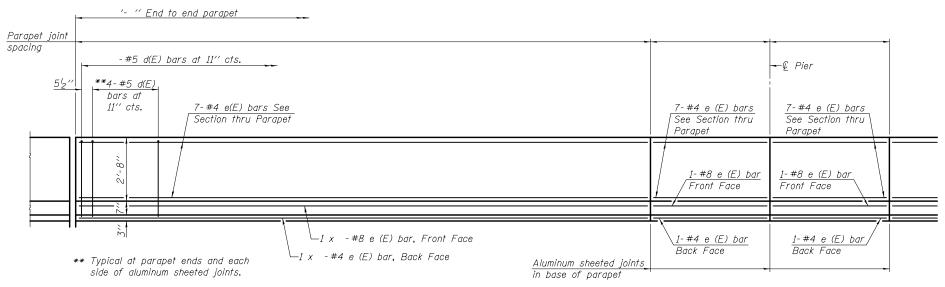
Note:


Cost of anchor rods and conduit is included with Concrete Superstructure.

Descrip: Section A-A of parapet with light pole, conduit inside parapet

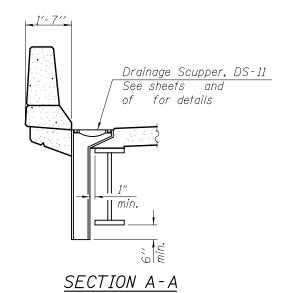
SECTION A-A

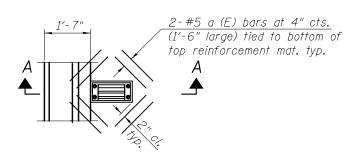

Descrip: Plan view of parapet with light pole, conduit outside parapet


Note:

Cost of anchor rods and conduit is included with Concrete Superstructure.

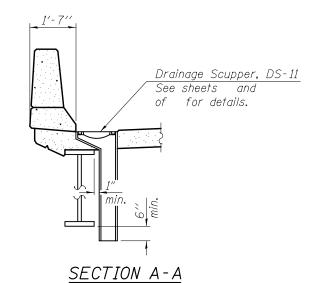
Descrip: Section A-A of parapet with light pole, conduit outside parapet

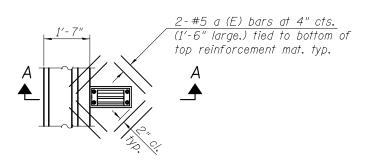



Descrip: Inside Elevation of 42" Parapet for superstructure detail sheet

INSIDE ELEVATION OF PARAPET

Descrip: Drainage Scupper, DS-11 details, left drain

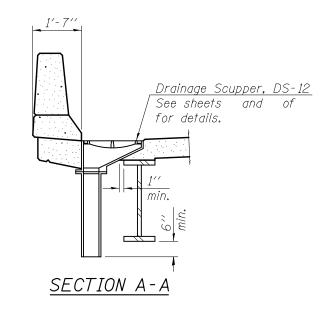


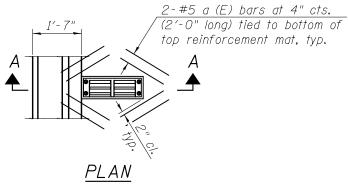


Note:
Cut longitudinal reinforcement to clear drainage scuppers.

PLAN

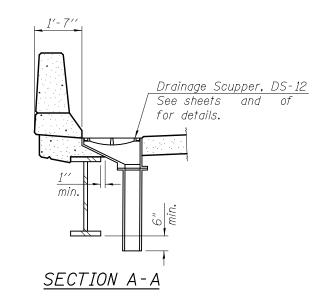
Descrip: Drainage Scupper, DS-11 details, right drain

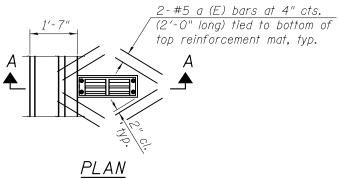




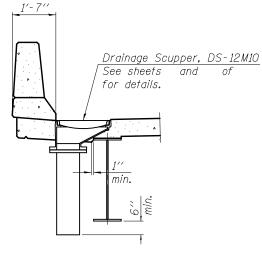
PLAN

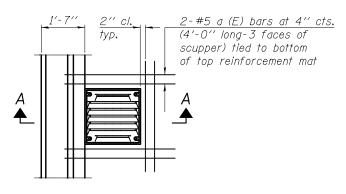
Note: Cut longitudinal reinforcement to clear drainage scuppers.


Descrip: Drainage Scupper, DS-12 details, left drain



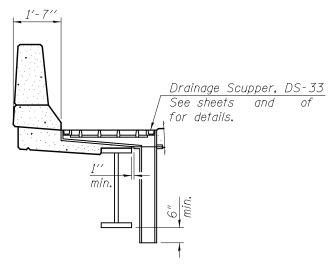
Note:
Cut longitudinal reinforcement to clear drainage scuppers.

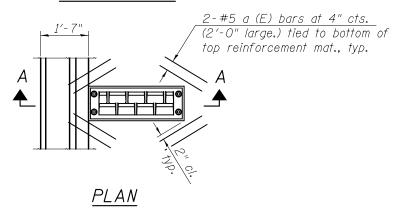

Descrip: Drainage Scupper, DS-12 details, right drain



Note:
Cut longitudinal reinforcement to clear drainage scuppers.

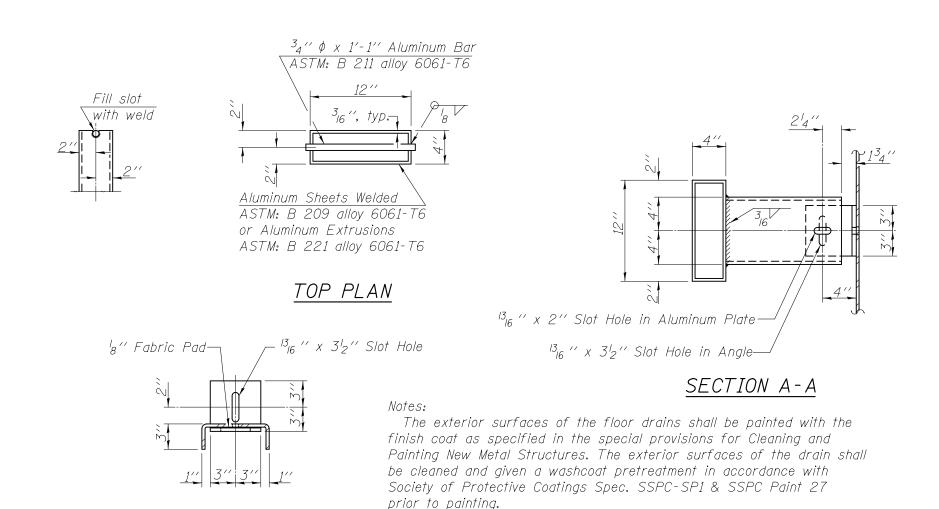
Descrip: Drainage Scupper, DS-12M10 details

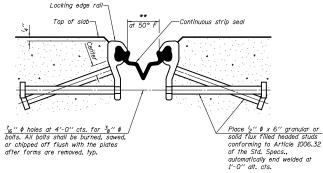

SECTION A-A


PLAN

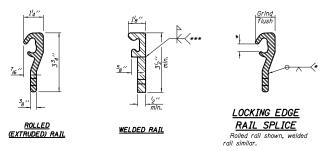
Note:
Cut longitudinal reinforcement to clear drainage scuppers.

Descrip: Drainage Scupper, DS-33 details, right drain


SECTION A-A


Note: Cut longitudinal reinforcement to clear drainage scuppers.

Descrip: 4 in x 12 in drain details


SECTION B-B

Descrip: Strip seal joint for deck beams with CWS

SECTION THRU STRIP SEAL JOINT FOR OVERLAY OVER DECK BEAMS

LOCKING EDGE RAIL

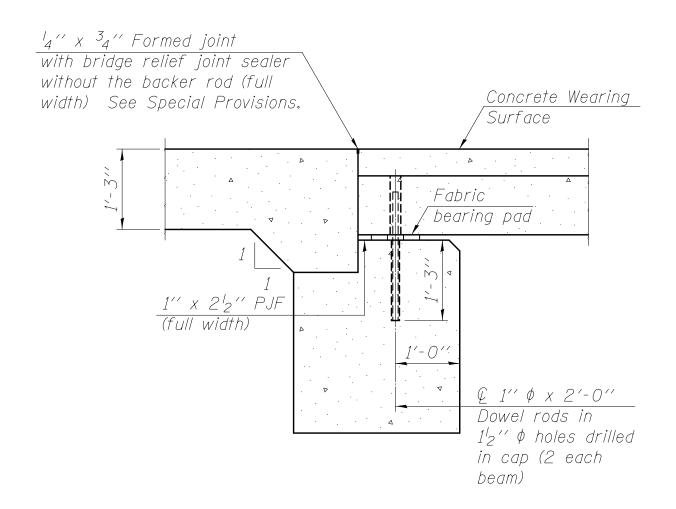
- * Omit weld at seal opening.
- ** The minimum dimension shall be 1/2"
- for installation purposes.
- *** Back gouge not required if complete joint penetration is verified by mock-up.

Note:

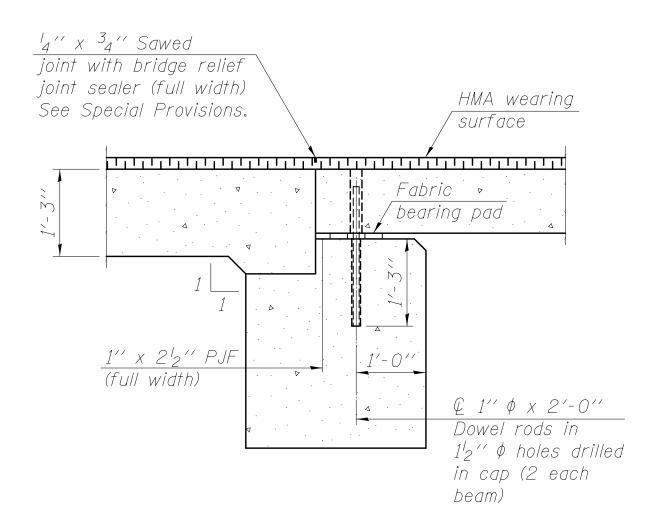
The strip seal shall be made continuous and shall have a minimum thickness of '4". The configuration of the strip seal shall match the configuration of the Locking Edge Rails.

the Locking Edge Ralls.
The height and thickness of the Locking Edge Ralls shown are minimum dimensions. The actual configuration of the Locking Edge Ralls and matching strip seal may vary from manufacturer to manufacturer. Flanged edge ralls will not be allowed.

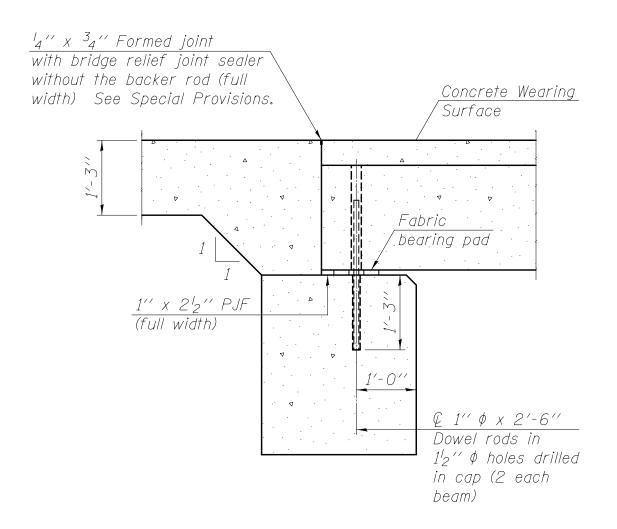
will not be allowed.

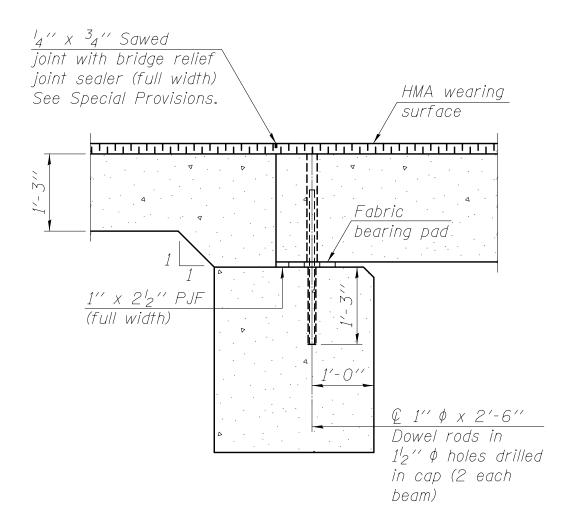

The inside of the Locking Edge Rall groove shall be free of weld residue.

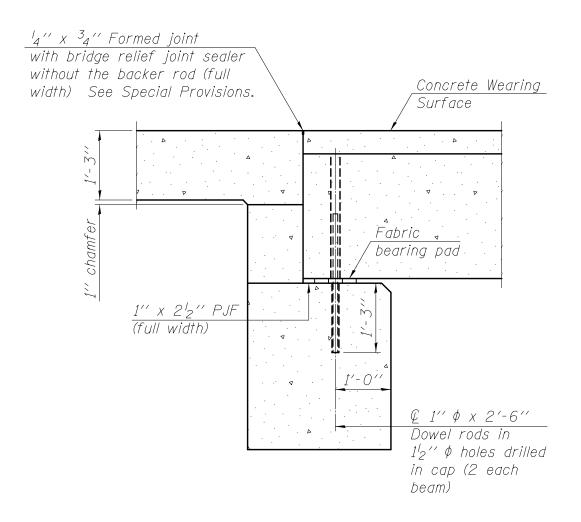
Locking Edge Ralls may be spliced at slope discontinuities and stage construction joints.

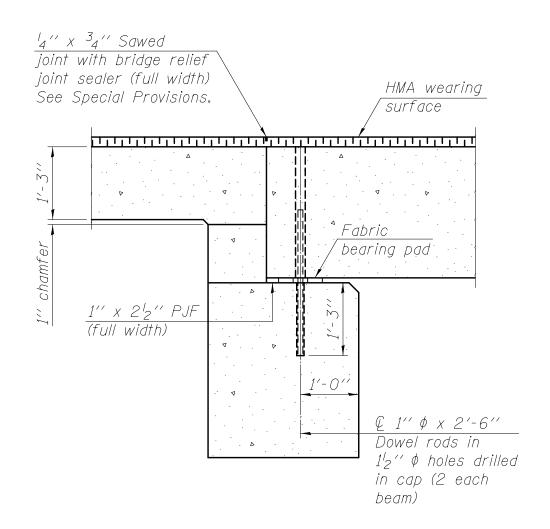

The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article \$20,03 of the Standard Specifications.

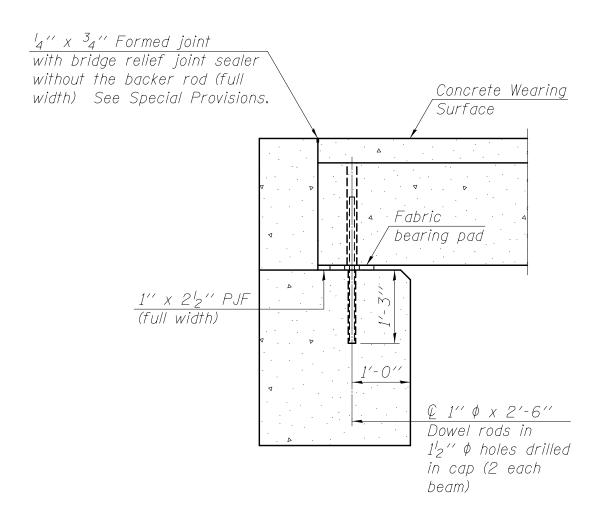
Maximum space between rail segments at stage lines shall be $^3{}_{\rm l6}$ ", sealed with a suitable sealant

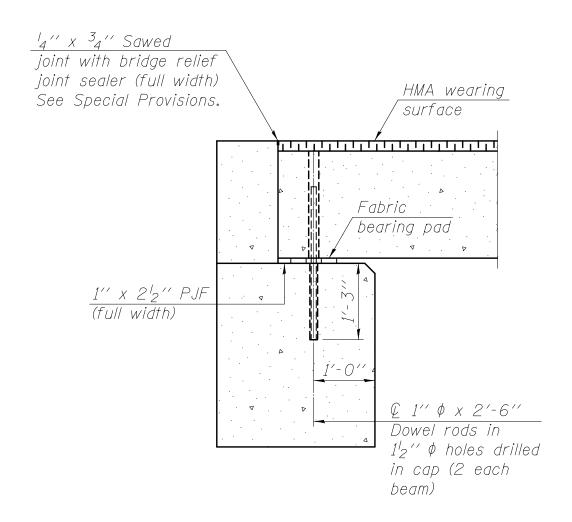

Descrip: Sect thru fixed abut for 11" PPC deck beam with conc. wearing surface and approach slab

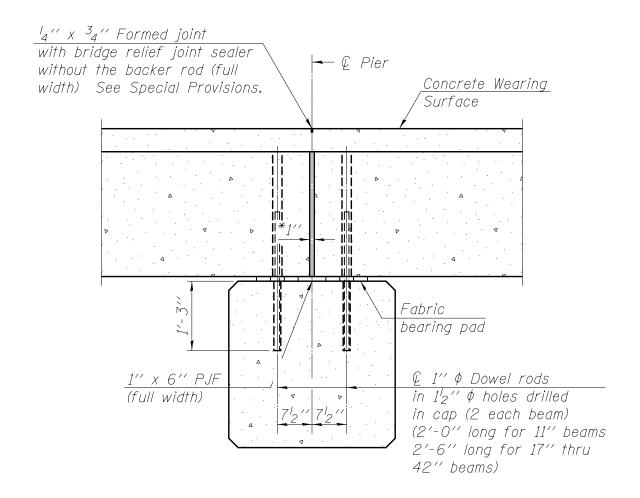

Descrip: Sect thru fixed abut. for 11" PPC deck beam with HMA wearing surface and approach slab

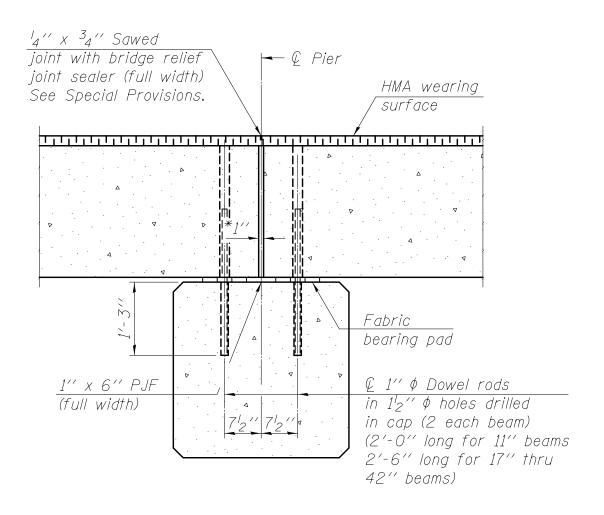

Descrip: Sect thru fixed abut. for 17" and 21" PPC deck beams with conc. wearing surface and approach slab

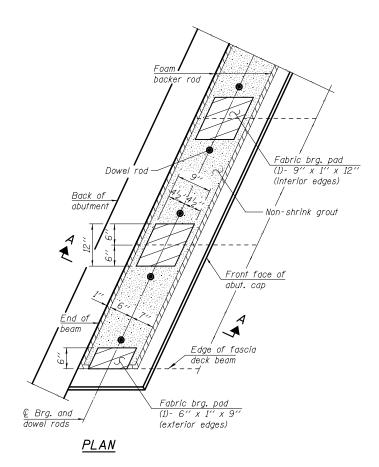

Descrip: Sect thru fixed abut. for 17" and 21" PPC deck beams with HMA wearing surface and approach slab


Descrip: Sect thru fixed abut. for 27", 33", and 42" PPC deck beams with conc. wearing surface and approach slab

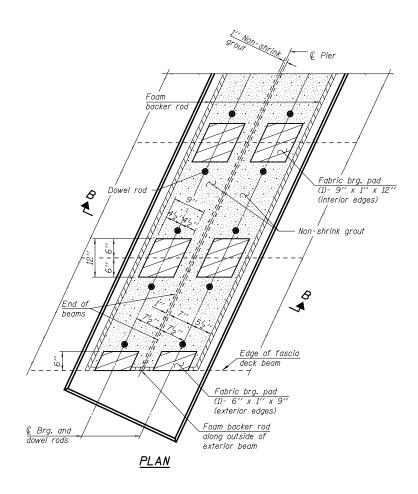

Descrip: Sect thru fixed abut. for 27", 33", and 42" PPC deck beams with HMA wearing surface and approach slab


Descrip: Sect thru fixed abut. for 11" thru 42" PPC deck beams with conc. wearing surface without approach slab


Descrip: Sect thru fixed abut. for 11" thru 42" PPC deck beams with HMA wearing surface without approach slab

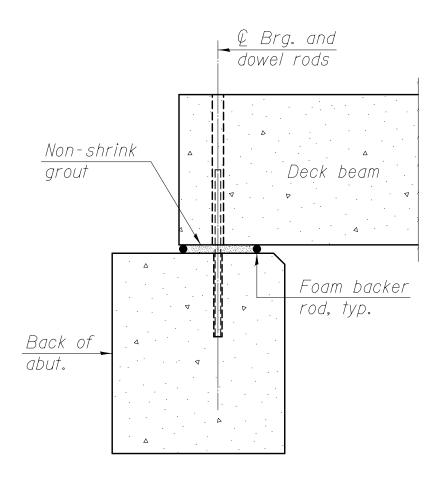

Descrip: Sect thru fixed pier for 11" thru 42" PPC deck beams with concrete wearing surface

Descrip: Sect thru fixed pier for 11" thru 42" PPC deck beams with HMA wearing surface

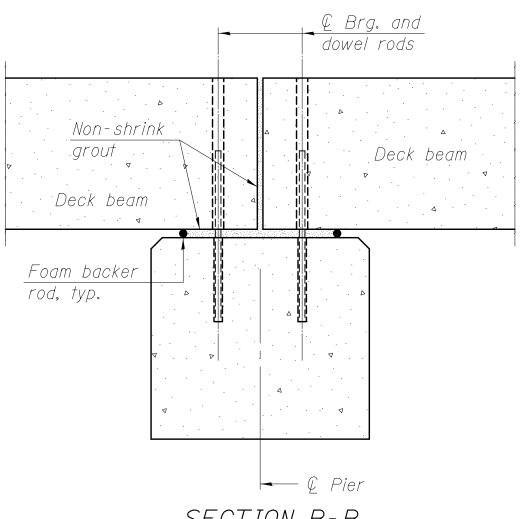

Descrip: Plan View of alternate fixed bearings at abutments

Notes:

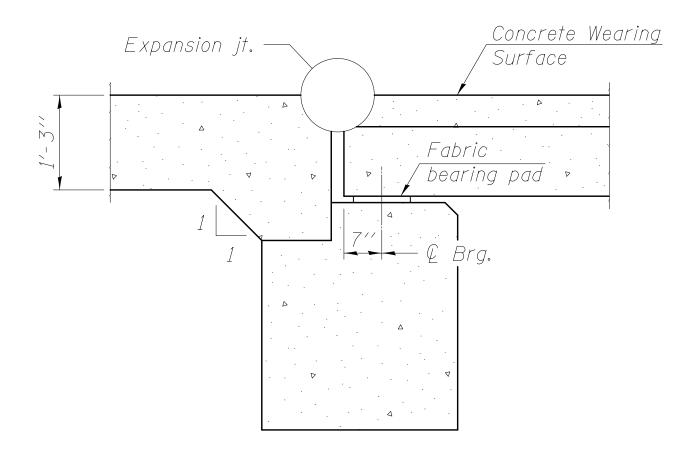
The bearing seat surfaces shall be adjusted by shimming the bearing to assure firm and even bearing prior to placement of grout. $2-\frac{1}{8}$ " fabric adjusting shims of the dimensions of the exterior bearing pad shown shall be provided for each bearing.


Descrip: Plan View of alternate fixed bearings at pier

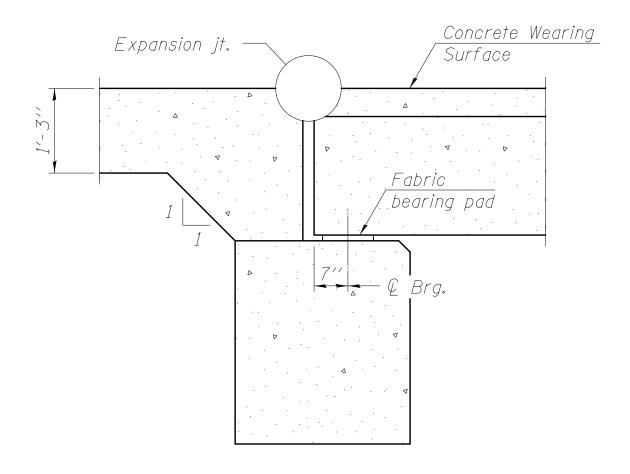
Notes


The bearing seat surfaces shall be adjusted by shimming the bearing to assure firm and even bearing prior to placement of grout. 2-8" fabric adjusting shims of the dimensions of the exterior bearing pad shown shall be provided for each bearing.

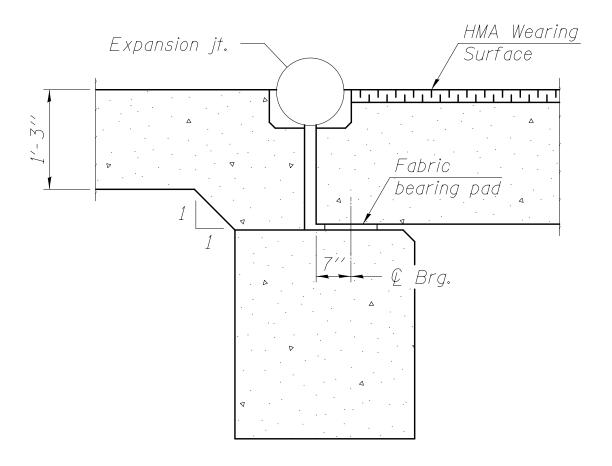
Descrip: Sect thru fixed abut. with alternate fixed bearings


SECTION A-A

Descrip: Sect thru fixed pier with alternate fixed bearings

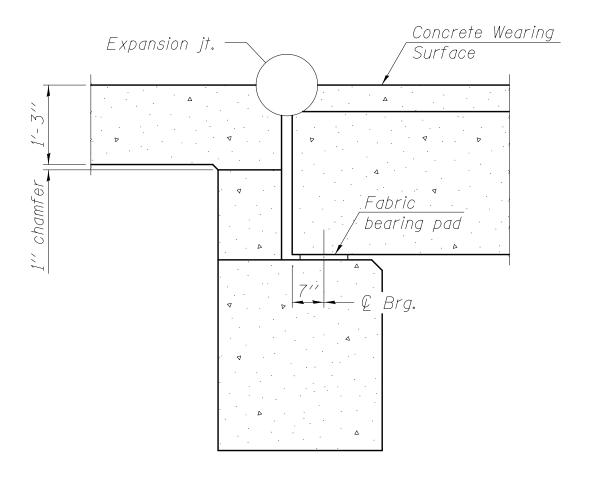

SECTION B-B

Descrip: Sect thru expansion abut. for 11" PPC deck beams with conc. wearing surface

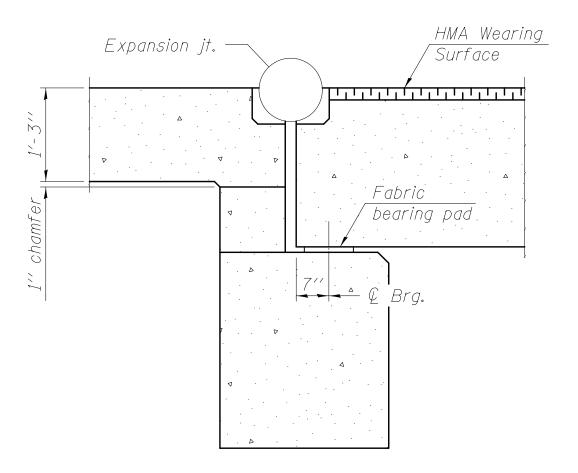

SECTION THRU ABUTMENT
(Dimensions are at Rt. L's)

Descrip: Sect thru expansion abut. for 17" and 21" PPC deck beams with conc. wearing surface and approach slab

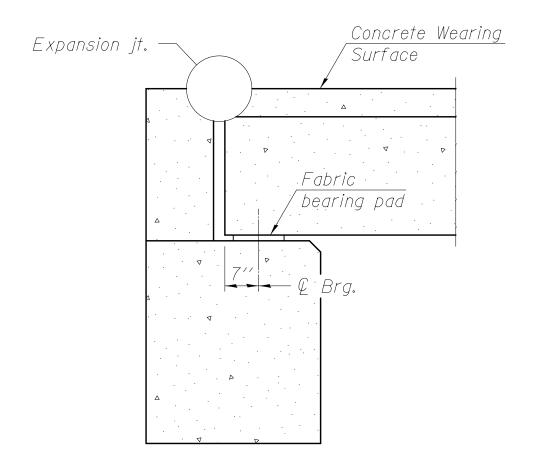
SECTION THRU ABUTMENT
(Dimensions are at Rt. L's)


Descrip: Sect thru expansion abut. for 17" and 21" PPC deck beams with HMA wearing surface and approach slab

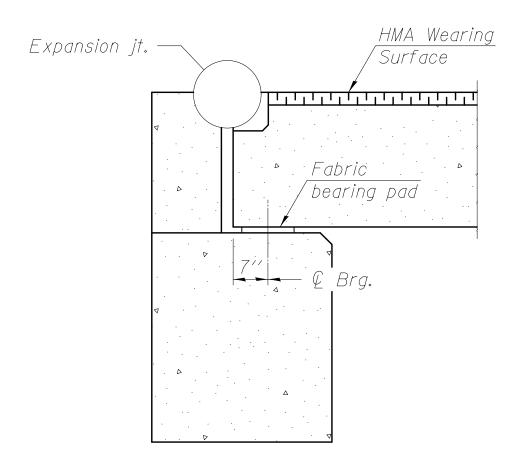
SECTION THRU ABUTMENT


(Dimensions are at Rt. L's)

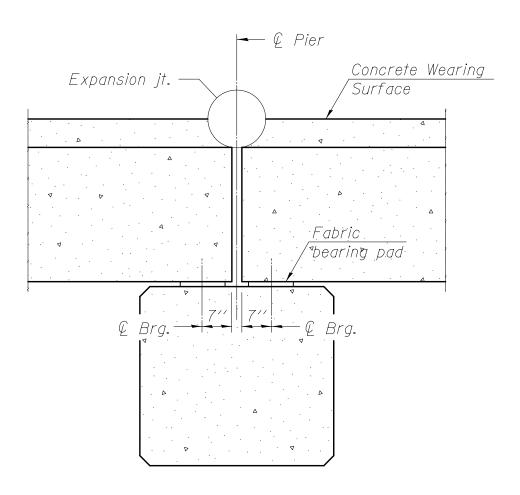
Descrip: Sect thru expansion abut. for 27", 33", and 42" PPC deck beams with conc. wearing surface and approach slab


SECTION THRU ABUTMENT
(Dimensions are at Rt. L's)

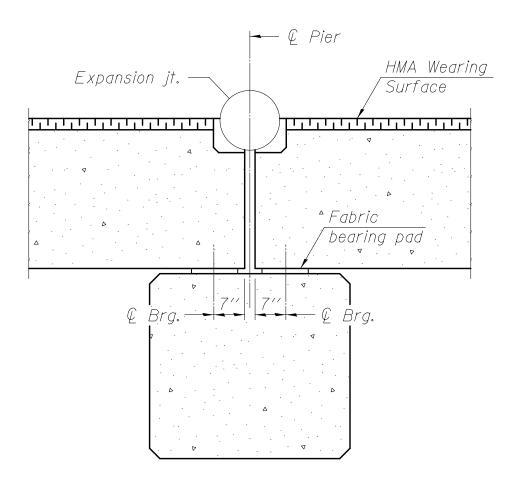
Descrip: Sect thru expansion abut. for 27", 33", and 42" PPC deck beams with HMA wearing surface and approach slab


SECTION THRU ABUTMENT
(Dimensions are at Rt. L's)

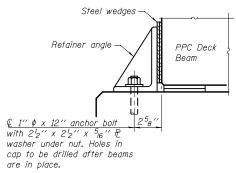
Descrip: Sect thru expansion abut. for 11" thru 42" PPC deck beams with conc. wearing surface without approach slab


SECTION THRU ABUTMENT
(Dimensions are at Rt. L's)

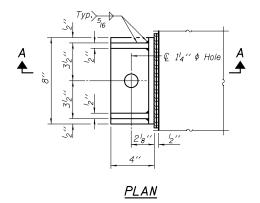
Descrip: Sect thru expansion abut. for 17" thru 42" PPC deck beams with HMA wearing surface without approach slab


SECTION THRU ABUTMENT
(Dimensions are at Rt. L's)

Descrip: Sect thru expansion pier for 11" thru 42" PPC deck beams with conc. wearing surface


SECTION THRU PIER (Dimensions are at Rt. L's)

Descrip: Sect thru expansion pier for 17" thru 42" PPC deck beams with HMA wearing surface



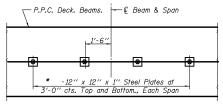
SECTION THRU PIER (Dimensions are at Rt. L's)

Descrip: Retainer angle at expansion joint of deck beams

SECTION A-A

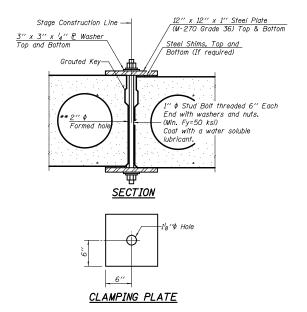
Notes

Cost of retainer and accessories are included with Precast Prestressed Concrete Deck Beams.


Equivalent rolled angle with stiffeners will be allowed in lieu of welded plates.

The side retainers shall be galvanized after shop fabrication according to AASHTO M 111 and ASTM 385. Anchor bolts and plate washers shall be galvanized

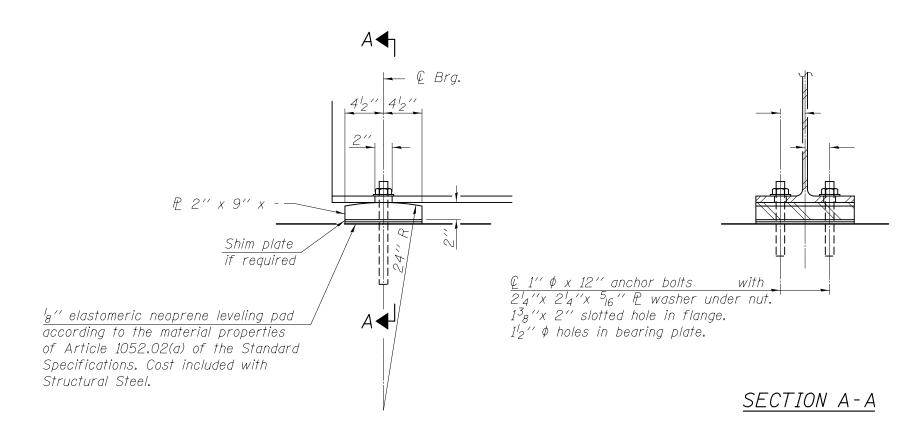
according to AASHTO M 232.


After the notch or concrete overlay are poured and cured, the steel wedges shall be removed.

Descrip: Shear key clamping details at stage construction joint

PLAN

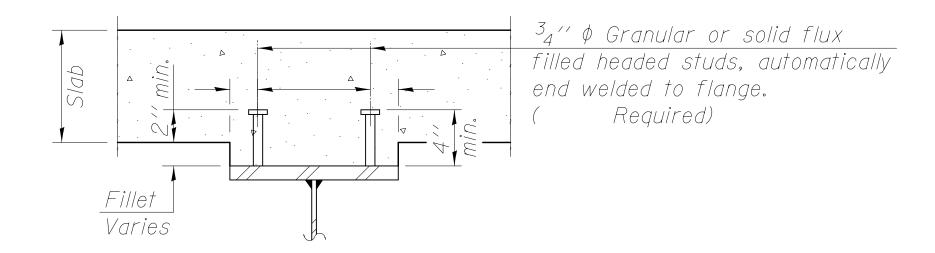
*Space plates to miss Temporary Bridge Rail Posts.


SHEAR KEY CLAMPING DETAILS AT STAGE CONST. JT.

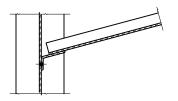
Cost included with Precast Prestressed Concrete Deck Beams. See Stage Construction Details for traffic lanes.

** Cast semicircular recesses in the sides of each beam adjacent to the stage construction line. These recesses should align to form a hole at the appropriate locations

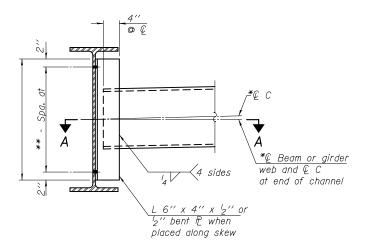
for the clamping device bolts.


Descrip: Bearing detail for integral abutment with steel beams

ELEVATION AT ABUTMENT


FIXED BEARING

Descrip: Stud shear connector details

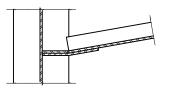


SECTION A-A

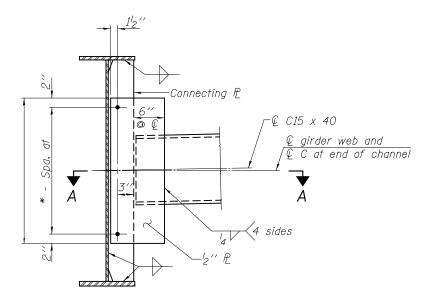
Descrip: Interior diaphragm beam or girder up to 42"

SECTION A-A

INTERIOR DIAPHRAGM


Note:

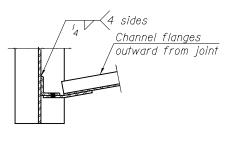
Two hardened washers required for each set of oversized holes.


*Alternate channels are permitted to facilitate material acquisition. Calculated weight of structural steel is based on the lighter section. The alternate, if utilized, shall be provided at no additional cost to the Department.

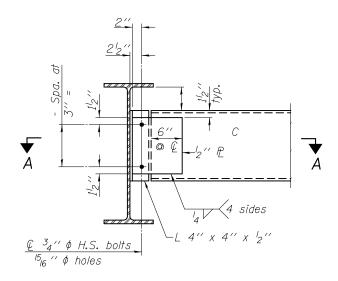
***3₄" \$\phi\$ HS bolts, \$\frac{15}{16}\$" \$\phi\$ holes

Descrip: Interior diaphragm plate girder < 48"

SECTION A-A



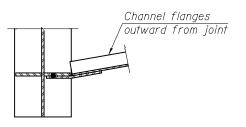
INTERIOR DIAPHRAGM


Note:

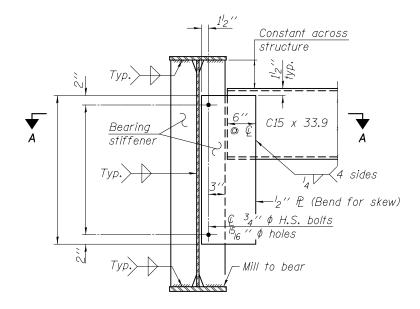
Two hardened washers required for each set of oversized holes. *3 $_4^{\prime\prime}$ ϕ HS bolts, $^{15}_{16}$ $^{\prime\prime}$ ϕ holes

Descrip: End diaphragm for wide flange beams

SECTION A-A

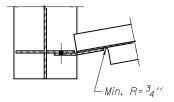


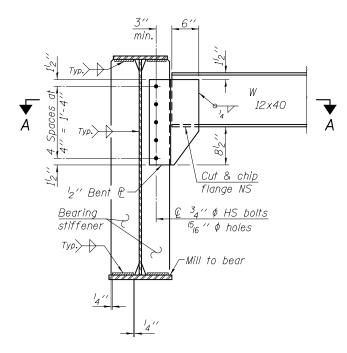
END DIAPHRAGM


Note:

Two hardened washers required for each set of oversized holes.

Descrip: End diaphragm for shallow plate girders

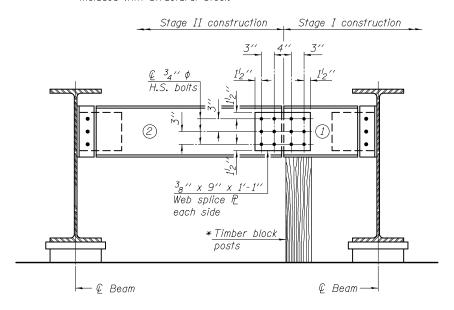

SECTION A-A


END DIAPHRAGM

Note: Two hardened washers required for each set of oversized holes.

Descrip: End diaphragm for plate girders < 48" and skew < 45 deg with finger plate or modular joints

SECTION A-A



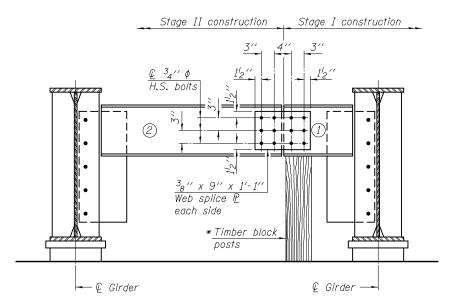
END DIAPHRAGM

Note: Two hardened washers required for each set of oversized holes.

Descrip: End diaphragm stage construction sequence for wide flange beams

* Cost of Timber Block Posts is included with Structural Steel.

END DIAPHRAGM

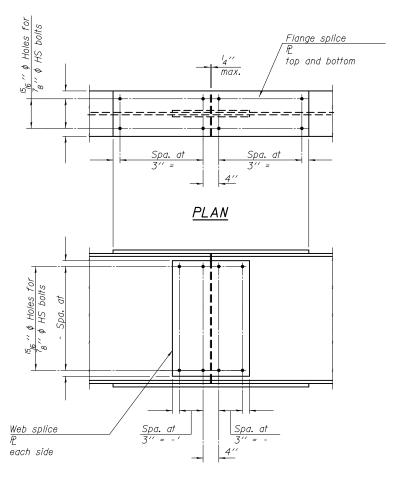

END DIAPHRAGM STAGE CONSTRUCTION SEQUENCE

Order diaphragm in two sections.

- 1.) Attach section (1) of diaphragm to beam
- 2.) Place timber block posts between section (1) of diaphragm and
- 3.) abutment bearing section.
- 4.) Attach section ② of diaphragm to both beam and section ①
- 5.) of diaphragm during stage II construction with splice plates. Remove timber block posts.

Descrip: End diaphragm stage construction sequence for plate girders

* Cost of Timber Block Posts is included with Structural Steel.


END DIAPHRAGM

END DIAPHRAGM STAGE CONSTRUCTION SEQUENCE

Order diaphragm in two sections,

- 1.) Attach section (1) of diaphragm to girder .
- 2.) Place timber block posts between section ① of diaphragm and
- 3.) abutment bearing section.
- 4.) Attach section ② of diaphragm to both girder and section ①
- 5.) of diaphragm during stage II construction with splice plates. Remove timber block posts.

Descrip: Wide flange splice detail (outside flange plates only)

ELEVATION

 $\frac{\textit{SPLICE DETAIL}}{\textit{(Required)}}$

Descrip: LRFD data tables (Non-composite in negative moment regions)

INTERIO	R GIF	DER MOM	ENT TA	BLE	
		0.4 Sp. 1			Pier
I_s	(in ⁴)				
I _c (n)	(in4)				
Ic(3n)	(in4)				
S_s	(in ³)				
Sc(n)	(in ³)				
Sc(3n)	(in ³)				
DC1	(k/')				
M DC1	('k)				
DC2	(k/')				
M DC2	('k)				
DW	(k/')				
MDW	('k)				
M4 + IM	('k)				
Mu (Strength I)	('k)				
$\phi_f M_n$	('k)				
fs DC1	(ksi)				
fs DC2	(ksi)				
fs DW	(ksi)				
fs (4+IM)	(ksi)				
fs (Service II)	(ksi)				
0.95RhFyf	(ksi)				
fs (Total)(Strength I)	(ksi)				
$\phi_f F_n$	(ksi)				
Vf	(k)	, and the second	•	•	

INTERIOR	INTERIOR GIRDER REACTION TABLE						
		Abut.	Pier				
R DC1	(k)						
R DC2	(k)						
Row	(k)						
R4 + IM	(k)						
RTotal	(k)						

```
I<sub>s</sub>, S<sub>s</sub>: Non-composite moment of inertia and section modulus of the
steel section used for computing f<sub>s</sub> (Total-Strength I, and
Service II) due to non-composite dead loads (in.<sup>4</sup> and in.<sup>3</sup>).
```

 $I_c(n)$, $S_c(n)$: Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing $f_s(Total-Strength\ I$, and Service II) due to short-term composite live loads (in.4 and in.3).

I_c(3n), S_c(3n): Composite moment of inertia and section modulus of the steel and deck based upon 3 times the modular ratio, "3n", used for computing f_s(Total-Strength I, and Service II) due to longterm composite (superimposed) dead loads (n,4 and in,3).

DC1: Un-factored non-composite dead load (kips/ft.).

 $\textit{M}_{\textit{DCI}}$: Un-factored moment due to non-composite dead load (kip-ft.).

DC2: Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).

MDC2: Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).

DW: Un-factored long-term composite (superimposed future wearing surface only) dead load (kips/ft.).

M_{DW}: Un-factored moment due to long-term composite (superimposed future wearing surface only) dead load (kip-ft.).

MŁ + Im: Un-factored live load moment plus dynamic load allowance (impact) (kip-ft.).

 M_U (Strength I): Factored design moment (kip-ft.). 1.25 (M_{DCI} + M_{DC2}) + 1.5 M_{DW} + 1.75 $M_{\frac{1}{2}}$ + M_{DC}

φ_fM_n: Compact composite positive moment capacity computed according to Article 6.10.7.1 or non-slender negative moment capacity according to Article A6.1.1 or A6.1.2 (kip-ft).

fs DCI: Un-factored stress at edge of flange for controlling steel flange due to vertical non-composite dead loads as calculated below (ksi).

MDCI / Snc

fs DC2: Un-factored stress at edge of flange for controlling steel flange due to vertical composite dead loads as calculated

MDc2/ Sc(3n) or MDc2 / Sc(cr) as applicable.

fs DW: Un-factored stress at edge of flange for controlling steel flange due to vertical composite future wearing surface loads as calculated below (ksi).

MDw / So(3n) or MDw / So(cr) as applicable.

f_s (½+IM): Un-factored stress at edge of flange for controlling steel flange due to vertical composite live plus impact loads as calculated below (ksi).

M 4 + IM / Sc(n) or M 4 + IM / Sc(cr) as applicable.

 f_s (Service II): Sum of stresses as computed below (ksi).

fsdc1 + fsdc2 + fsdw + 1.3 fs Ł + im

0.95R_hFyf: Composite stress capacity for Service II loading according to Article 6.10.4.2 (ksi).

fs (Total)(Strength I): Sum of stresses as computed below on non-compact section (ksi).

1.25 (fsDc1 + fsDc2) + 1.5 fsDw + 1.75 fs \ + IM

φ_fF_n: Non-Compact composite positive or negative stress capacity
for Strength I loading according to Article 6.10.7 or 6.10.8 (ksi).

Vr: Maximum factored shear range in composite portion of span computed according to Article 6.10.10.

Descrip: LRFD data tables (Composite in negative moment regions)

INTERIOR GIRDER MOMENT TABLE								
		0.4	Sp.	1 01	0.6	Sp	. 2	Pier
I_s	(in4)							
$I_c(n)$	(in ⁴)							
$I_c(3n)$	(in4)							
Ic(cr)	(in4)							
Ss	(in ³)							
So(n)	(in ³)							
So(3n)	(in ³)							
So(cr)	(in ³)							
DC1	(k/')							
M DC1	('k)							
DC2	(k/')							
M DC2	('k)							
DW	(k/')							
Mow	('k)							
M& + IM	('k)							
Mu (Strength I)	(′k)							
$\phi_f M_D$	(′k)							
fs DC1	(ksi)							
fs DC2	(ksi)							
f _s DW	(ksi)							
fs (4+IM)	(ksi)							
fs (Service II)	(ksi)							
0.95RhFyf	(ksi)							
fs (Total)(Strength I)	(ksi)							
$\phi_f F_n$	(ksi)							
Vf	(k)							

INTERIOR GIRDER REACTION TABLE						
		Abut.	Pier			
R _{DCI}	(k)					
R _{DC2}	(k)					
Row	(k)					
R4 + 14	(k)					
RTotal	(k)					

- Is, Ss: Non-composite moment of inertia and section modulus of the steel section used for computing f₈ (Total-Strength 1, and Service II) due to non-composite dead loads (in.4 and in.3).
- $I_c(n)$, $S_c(n)$: Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, $^{n}n^*$, used for computing $f_s(Total-Strength\ I$, and Service II) in uncracked sections due to short-term composite live loads (in.4 and in.3).
- Ie(3n), Se(3n): Composite moment of inertia and section modulus of the steel and deck based upon 3 times the modular ratio. "3n" used for computing fs(Total-Strength I, and Service II) in uncracked sections, due to long-term composite (superimposed) dead loads (in.4 and in.3).
- I_e(cr), S_o(cr): Composite moment of inertia and section modulus of the steel and longitudinal deck reinforcement, used for computing f_s (Total-Strength I and Service II) in cracked sections, due to both short-term composite live loads and long-term composite (Superimposed) dead loads (in.⁴ and in.³).
 - DC1: Un-factored non-composite dead load (kips/ft.).
 - $\textit{M}_{\textit{DCI}}$: Un-factored moment due to non-composite dead load (kip-ft.).
 - DC2: Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).
 - MDC2: Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).
 - DW: Un-factored long-term composite (superimposed future wearing surface only) dead load (kips/ft.).
 - Mpw: Un-factored moment due to long-term composite (superimposed future wearing surface only) dead load (kip-ft.).
 - Mi + IN: Un-factored live load moment plus dynamic load allowance (impact) (kip-ft.).
- M_u (Strength I): Factored design moment (kip-ft.).
 - 1.25 (M_{DC1} + M_{DC2}) + 1.5 M_{DW} + 1.75 M \(\) + 1M

 \$\psi_t M_n\$: Compact composite positive moment capacity computed according
 - to Article 6.10.7.1 or non-slender negative moment capacity according to Article A6.11.1 or A6.1.2 (kip-ft).
 - f_s DCI. Un-factored stress at edge of flange for controlling steel flange due to vertical non-composite dead loads as calculated below (ksi). Mpc:/ S_{nc}
 - fs DC2: Un-factored stress at edge of flange for controlling steel flange due to vertical composite dead loads as calculated below (ksi).
 - MDc2/S_c(3n) or MDc2/S_c(cr) as applicable. fs DW: Un-factored stress at edge of flange for controlling steel flange due to vertical composite future wearing surface loads as calculated below (ksl).
 - M_{DW} / $S_c(3n)$ or M_{DW} / $S_c(cr)$ as applicable.
 - f_s (\(\xi\)+\(\text{IM}\)\). Un-factored stress at edge of flange for controlling steel flange due to vertical composite live load plus impact loads as calculated below (\(\kappa\)sign.
 - $M_{\frac{1}{4}}$ + IM / $S_c(n)$ or M_{DW} / $S_c(cr)$ as applicable.
- fs (Service II): Sum of stresses as computed below (ksi).
 - fsDC1 + fs DC2 + fs DW + 1.3 fs (4 + IM)
 - 0.95R_hFyf: Composite stress capacity for Service II loading according to Article 6.10.4.2 (ksi).
- fs (Total)(Strength I): Sum of stresses as computed below on non-compact section (ksi).
 - 1.25 (fsDCI+ fsDC2) + 1.5 fsDW + 1.75 fs(& + IM)
 - $\phi_f F_n$: Non-Compact composite positive or negative stress capacity for Strength I loading according to Article 6.10.7 or 6.10.8 (ksi).
 - V_f: Maximum factored shear range in span computed according to Article 6.10.10.

Note:

 $M_{\mathbb{E}}$ and $R_{\mathbb{E}}$ include the effects of centrifugal force and superelevation.

Descrip: LRFD data tables for curved girders

INTERIOR GIRDER MOMENT TABLE						
		0.4 Sp. 1		0.6 Sp. 2		
I_s	(in ⁴)					
I _c (n)	(in4)					
I _c (3n)	(in4)					
Ic(cr)	(in ⁴)					
Ss	(in ³)					
So(n)	(in ³)					
Sc(3n)	(in ³)					
So(cr)	(in ³)					
Sxc	(in ³)					
DC1	(k/')					
MDCI	('k)					
DC2	(k/')					
M DC2	('k)					
DW	(k/')					
Mow	('k)					
MŁ + IM	('k)					
f: (Strength I)	('k)					
Mu + 1/3 f Sxc	('k)					
Φ _f M _n	('k)					
f _s DC1	(ksi)					
f _s DC2 f _s DW	(ksi)					
f _s DW	(ksi)					
fs (4+IM)	(ksi)					
f: (Service II)	(ksi)					
$f_s + f_{2}$ (Service II)	(ksi)					
0.95R _h Fyt	(ksi)					
f_s + f_{3} (Total)(Strength I)	(ksi)					
$\phi_f F_n$	(ksi)					
Vf	(k)					
<u> </u>						

$\overline{}$								
	INTERIOR GIRDER REACTION TABLE							
		N. Abut.	Pier	S. Abut.				
R DCI	(k)							
R DC2	(k)							
RDW R&+IM	(k)							
R4 + 14	· (k)							
RTotal	(k)							

 I_s , S_s : Non-composite moment of inertia and section modulus of the steel section used for computing $f_s(Total-Strength\ I$, and Service II) due to non-composite dead loads (in.4 and in.3).

Ic(n), Sc(n): Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing f_s(Total-Strenath I, and Service II) in uncracked sections due to short term composite live loads (in.4 and in.3).

 $I_c(3n)$, $S_c(3n)$: Composite moment of inertia and section modulus of the steel and deck based upon 3 times the modular ratio, "3n", used for computing f_s (Total-Strength I, and Service II) in uncracked sections due to long-term composite (superimposed) dead loads (in.4 and in.3).

Ic(cr), Sc(cr): Composite moment of inertia and section modulus of the steel and lonalitudinal deck reinforcement, used for computing fs (Total-Strength I and Service II) in cracked sections, due to both short-term composite live loads and long-term composite (superimposed) dead loads (in.4 and in.3).

Sxc: Section modulus about the major axis of section to the controlling flange, tension or compression, taken as yield moment with respect to the controlling flange over the yield strength of the controlling flange (in.3).

DCI: Un-factored non-composite dead load (kips/ft.).

MDCI: Un-factored moment due to non-composite dead load (kip-ft.). DC2: Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).

Mpc2: Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).

DW: Un-factored long-term composite (superimposed future wearing surface only) dead load (kips/ft.).

Mow: Un-factored moment due to long-term composite (superimposed future wearing surface only) dead load (kip-ft.).

M + 1M: Un-factored live load moment plus dynamic load allowance (impact)(kip-ft.).

Mu (Strength I): Factored design moment (kip-ft.).

1.25 (Mpc) + Mpc2) + 1.5 Mpw + 1.75 Mb + 1µ
fi : Factored calculated normal stress at edge of flange for controlling flange plate due to lateral bending, Strength I or Service II as applicable (kip-ft.).

φ_fM_n: Compact composite positive moment capacity computed according to Article 6.10.7.1 or non-slender negative moment capacity according to Article A6.1.1 or A6.1.2 (kip-ft.).

fs DC1: Un-factored stress at edge of flange for controlling steel flange due to vertical non-composite dead loads as calculated below (ksi).

fs DC2: Un-factored stress at edge of flange for controlling steel flange due to vertical composite dead loads as calculated

MDC2/ So(3n) or MDC2 / So(cr) as applicable.

fs DW: Un-factored stress at edge of flange for controlling steel flange due to vertical composite future wearing surface loads as calculated below (ksi). MDW / Sc(3n) or MDW / Sc(cr) as applicable.

 f_s (½+IM): Un-factored stress at edge of flange for controlling steel flange due to vertical composite live plus impact loads as calculated below (ksi).

Concounted below (ks). $f_s * f'/_2$ (Service II): Sum of stresses as computed below (ks)). $f_s \circ f'/_2$ (Service II): Sum of stresses as computed below (ks)). $f_s \circ f'/_2 \circ f_s \circ$

to Article 6.10.4.2 (ksi).

 f_s + $f_{/3}$ (Total)(Strength I): Sum of stresses as computed below on non-compact

section (ksi). $1.25 (f_{SDCI} + f_{SDC2}) + 1.5 f_{SDW} + 1.75 f_{S}(\frac{1}{4} + IM) + \frac{f}{3}$

\$\psi_F_n\$: Non-Compact composite positive or negative stress capacity for Strength I loading according to Article 6.10.7 or 6.10.8 (ksi).

Vr: Maximum factored shear range in span computed according to Article 6.10.10.

M4 and R4 include the effects of centrifugal force and

Descrip: LRFD PPC I beam data tables

	INTERIC	OR BEAM MOME	NT TABLE	
		0.4 Sp. 1 0.6 Sp. 3	Pier 1 or 2	0.5 Sp. 2
I	(in ⁴)			
I'	(in4)			
Sb	(in ³)			
Sb'	(in ³)			
St	(in ³)			
St'	(in ³)			
DC1	(k/')			
MDC1	('k)			
DC2	(k/')			
M DC2	('k)			
DW	(k/')	•		
Mow	('k)			
M 4 + IM	('k)			

	INTERIOR BEAM REACTION TABLE							
		Abut.	Pier 1 Pier 2	Span 1 Span 3	Pier 1 Pier 2	Span 2 'Span 2		
	R DCI (k)							
*	R_{DC2} (k)							
*	R DW (k)							
*	R + IM (k)							
	R Total (k)							

^{*} At continuous piers, reactions from composite loads are assumed to be equally distributed to each bearing line.

- I: Non-composite moment of inertia of beam section (in.4).
- I': Composite moment of inertia of beam section (in.4).
- S_b : Non-composite section modulus for the bottom fiber of the prestressed beam (in. 3).
- S_b ': Composite section modulus for the bottom fiber of the prestressed beam (in. 3).
- S_t : Non-composite section modulus for the top fiber of the prestressed beam (in. 3).
- $S_{t'}$: Composite section modulus for the top fiber of the prestressed beam (in. 3).
- DC1: Un-factored non-composite dead load (kips/ft.).
- M_{DCI}: Un-factored moment due to non-composite dead load (kip-ft.).
- DC2: Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).
- M_{DC2}: Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).
- DW: Un-factored long-term composite (superimposed future wearing surface only) dead load (kips/ft.).
- Mpw: Un-factored moment due to long-term composite (superimposed future wearing surface only) dead load (kip-ft).
- M4 + IM: Un-factored live load moment plus dynamic load allowance (impact) (kip-ft.).

Descrip: LFD data tables

		INTERIOR GIF	RDER MOI	MENT T	ABLE		
			0.4 Sp.	1 or 0.0	6 Sp. 2	? Pi	er
	$I_{\mathcal{S}}$	(in ⁴)					
	$I_c(n)$	(in ⁴)					
	$I_c(3n)$	(in ⁴)					
	Ss	(in ³)					
	Sc(n)	(in ³)					
	Sc(3n)	(in ³)					
	Z	(in ³)					
	P	(k/')					
	MQ	('k)					
	s P	(k/')					
	Ms 2	('k)					
	M Ł	('k)					
	М Ім	('k)					
	⁵ 3 [MŁ + I]	(′k)					
	Ма	('k)					
*	Mu	(′k)					
	fs ⊉non-comµ						
	f _s ₽ (comp)	(ksi)					
	fs ⁵ 3 [M \ + N						
	fs (Overload)	(ksi)					
**	fs (Total)	(ksi)					
	VR	(k)					

INTERIOR GIRDER REACTION TABLE						
		Abut.	Pier			
R₽	(k)					
R 4	(k)					
RI	(k)					
R Total	(k)					

- * Compact section
- ** Braced non-compact and partially braced section

- Is. Ss: Non-composite moment of inertia and section modulus of the steel section used for computing f_s (Total and Overload) due to non-composite dead loads (in.4 and in.3).
- $I_c(n)$, $S_c(n)$: Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing f_s (Total and Overload) due to short-term composite live loads (in.4 and in.3).
- $I_c(3n)$, $S_c(3n)$: Composite moment of inertia and section modulus of the steel and deck based upon 3 times the modular ratio, "3n", used for computing f_s (Total and Overload) due to long-term composite (superimposed) dead loads (in.4 and in.3).
 - Z: Plastic Section Modulus of the steel section in non-composite areas (in. 3).
 - Q: Un-factored non-composite dead load (kips/ft.).
 - M ?: Un-factored moment due to non-composite dead load (kip-ft.).
 - s P: Un-factored long-term composite (superimposed) dead load (kips/ft.)
 - Ms P: Un-factored moment due to long-term composite (superimposed) dead load (kip-ft.).
 - Mt: Un-factored live load moment (kip-ft.).
 - MI: Un-factored moment due to impact (kip-ft.).
 - Ma: Factored design moment (kip-ft.).
 - 1.3 [$MP + M_SP + \frac{5}{3}$ ($M_L + M_I$)] M_U : Compact composite moment capacity according to AASHTO LFD 10.50.1.1 or compact non-composite moment capacity according to AASHTO LFD 10.48.1 (kip-ft.).
- fs (Overload): Sum of stresses as computed from the moments below (ksi). $MQ + M_SQ + \frac{5}{3}(ML + M_I)$
 - fs (Total): Sum of stresses as computed from the moments below on non-compact section (ksi).
 - 1.3 [MQ + M_sQ + $\frac{5}{3}$ (M½ + M_I)]
 - VR: Maximum 4 + impact shear range within the composite portion of the span for stud shear connector design (kips).

Descrip: LFD data tables for curved girders

	INTERIOR GIRDER MOMENT TABLE					
		0.4 Sp. 1	Pier	0.6 Sp. 2		
$I_{\mathcal{S}}$	(in ⁴)					
$I_c(n)$	(in ⁴)					
Ic(3n)	(in ⁴)					
Ss	(in ³)					
Sc(n)	(in ³)					
Sc(3n)	(in³)					
Si	(in³)					
P	(k/')					
MΘ	('k)					
s P	(k/')					
Ms ₽	('k)					
M Ł	('k)					
M_I	('k)					
⁵ 3[M½ + MI]	(′k)					
Ma	('k)					
Mba	('k)					
fsℚ (non-comp)	(ksi)					
$f_s \mathbb{Q}$ (comp)	(ksi)					
fs ⁵ 3 [M L + M _I]	(ksi)					
fx	(ksi)					
fs (Overload)	(ksi)					
fs (Total)	(ksi)					
F _{cr} (Overload)	(ksi)					
VR	(k)					
Fcr	(ksi)					

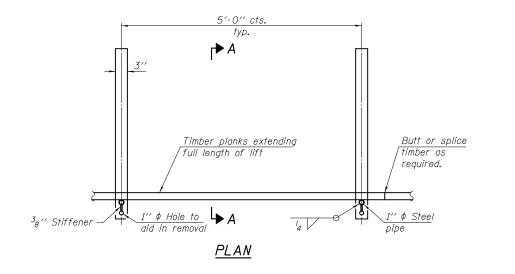
INTERIOR GIRDER REACTION TABLE						
		N. Abut.	Pier	S. Abut.		
R₽	(k)					
R4	(k)					
R_I	(k)					
R Total	(k)					

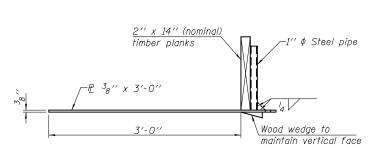
- I_s , S_s : Non-composite moment of inertia and section modulus of the steel section used for computing f_s (Total and Overload) due to non-composite dead loads (in.4 and in.3).
- $I_c(n)$, $S_c(n)$: Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing f_s (Total and Overload) due to short-term composite live loads (in.4 and in.3).
- $I_c(3n)$, $S_c(3n)$: Composite moment of inertia and section modulus of the steel and deck based upon 3 times the modular ratio, "3n", used for computing $f_s(Total\ and\ Overload)\ due\ to\ long-term\ composite\ (superimposed)\ dead\ loads\ (in4\ and\ in3\).$
 - S1: Section modulus of one flange plate for lateral flange bending $(in.^3)$.
 - Q: Un-factored non-composite dead load (kips/ft.).
 - MP: Un-factored moment due to non-composite dead load (kip-ft).
 - sq: Un-factored long-term composite (superimposed) dead load (kips/ft.).
 - $\mathit{Ms}\ \mathbb{Q}$: Un-factored moment due to long-term composite (superimposed) dead load (kip-ft.).
 - M\(\frac{1}{2}\): Un-factored live load moment (kip-ft.).
 - M_I: Un-factored moment due to impact (kip-ft).
 - Ma: Factored design moment (kip-ft.).
 - 1.3 [MQ + M_sQ + $\frac{5}{3}$ (M4 + M_I)]
 - Mbs: Factored lateral bending moment for flange plate (kip-ft.).
 - fi: Factored calculated normal stress at the edge of flange due to lateral bending (ksi).
 - fs (Overload): Sum of stresses as computed from the moments below (ksi). $MQ + M_SQ + \frac{5}{2}$ (M4 + M1)
 - fs(Total); Sum of stresses as computed from the moments below (ksi). 1.3 [MQ + M_SQ + $\frac{5}{3}$ (M4 + M_I)]
- F_{cr} (Overload): Critical average flange stress at overload computed according to the 2003 AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges Section 9.5 (ksi.).
 - For: Critical average flange stress (smaller of F_{cr1} or F_{cr2} for partially braced flanges and F_y for continuously braced flanges) computed according to the 2003 AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges (Sections 5.2, 5.3 and 5.4) (ksi).
 - VR: Maximum 4+ impact shear range within span for stud shear connector design (kips).

Note:

 $M \not\in and \ R \not\in include \ the \ effects \ of \ centrifugal \ force \ and \ superelevation.$

Descrip: LFD PPC I beam data tables

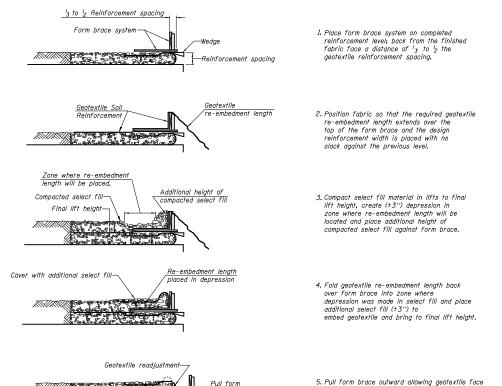

	INTERI	OR BEAM MOME	NT TABLE	
		0.4 Sp. 1 0.6 Sp. 3	Pier 1 or 2	0.5 Sp. 2
I	(in ⁴)			
I'	(in ⁴)			
S_b	(in ³)			
S _b	(in ³)			
S_t	(in3)			
S _t '	(in ³)			
Q	(k/')			
M 2	('k)			
s P	(k/')			
Ms P	('k)			
M 4	('k)			
M_I	(′k)			


	INTERIOR BEAM REACTION TABLE									
		Abut.	Pier Pier	1	Span Span	<i>1</i>	Pier Pier	1	Span Span	2
	R P (k)		7 707	_	opun		7 707	_	Opan	
*	$R_s \varrho$ (k)									
*	$R \not = (k)$									
*	R_I (k)									
	R Total (k)									

^{*} At continuous piers, reactions from composite loads are assumed to be equally distributed to each bearing line.

- I: Non-composite moment of inertia of beam section (in.4).
- I': Composite moment of inertia of beam section (in.4).
- S_b : Non-composite section modulus for the bottom fiber of the prestressed beam (in.³).
- S_b ': Composite section modulus for the bottom fiber of the prestressed beam (in.3).
- S_t : Non-composite section modulus for the top fiber of the prestressed beam (in. 3).
- S_1 ': Composite section modulus for the top fiber of the prestressed beam (in. 3).
 - Q: Un-factored non-composite dead load (kips/ft.).
- MQ: Un-factored moment due to non-composite dead load conservatively taken at 0.5 of the span (kip-ft.).
- sp: Un-factored long-term composite (superimposed) dead load (kips/ft.).
- M_s \mathbb{Q} : Un-factored moment due to long-term composite (superimposed) dead load (kip-ft.).
- M4: Un-factored live load moment on the composite section (kip-ft.).
- MI: Un-factored moment due to impact on the composite section (kip-ft.).

Descrip: Geotextile wall form brace details

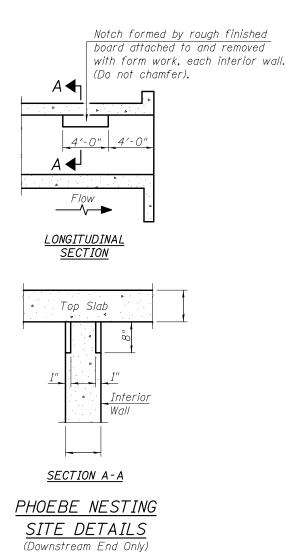


SECTION A-A

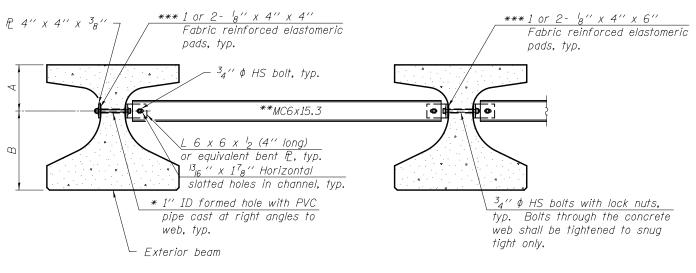
<u>GEOTEXTILE</u> <u>FORM BRACE DETAIL</u> Note:

This is a suggested detail, the Contractor is responsible for the design of the form brace system to be used.

Descrip: Geotextile wall procedure


GEOTEXTILE WALL CONSTRUCTION SEQUENCE

to slightly readjust to form tight round face level with plan reinforcement spacing.


Note

The geotextile soil reinforcement shall have a minimum allowable tensile strength (T min.) of | lb./in. as determined by the procedure described in the Special Provision. The computations supporting the determination of (T min.) shall be submitted to the engineer for approval.

Descrip: Phoebe nesting site

Descrip: Permanent bracing details for IL27 & IL36 beams

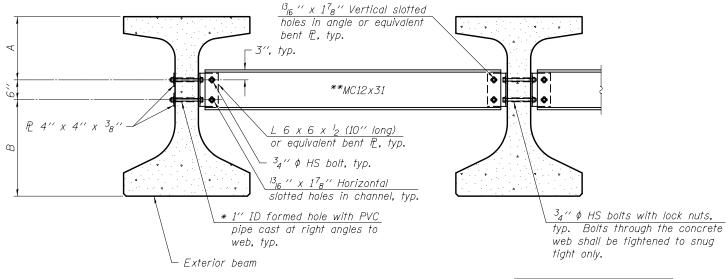
Notes:

All material for bracing shall be not dip galvanized according to AASHTO M111 unless otherwise noted.

Two hardened washers are required for each set of oversized holes.

All holes shall be 15 ₁₆ $^{\prime\prime}$ ϕ unless otherwise noted. 5 ₁₆ $^{\prime\prime}$ x 3 $^{\prime\prime}$ x 3 $^{\prime\prime}$ plate washers are required over all slotted holes.

All bolts shall be galvanized according to AASHTO M232. Bracing shall be installed as beams are erected and tightened as soon as possible during erection.


Permanent bracing shall not be paid for separately, but shall be included in the cost of Furnishing and Erecting Precast Prestressed Concrete Beams,

Beam	Α	В
IL27	11/4′′	1'-3 ³ 4''
IL 36	1'-14''	1'-10 ³ 4''

- * Fabricator shall locate to miss strands within permissible tolerances.
- ** Alternate MC6x18 channels are permitted to facilitate material acquisition.
- *** Place pads as necessary to provide a flat mounting surface between the steel and concrete.

PERMANENT BRACING DETAILS FOR
IL27 AND IL36 BEAMS

Descrip: Permanent bracing details for IL45 & IL54 beams

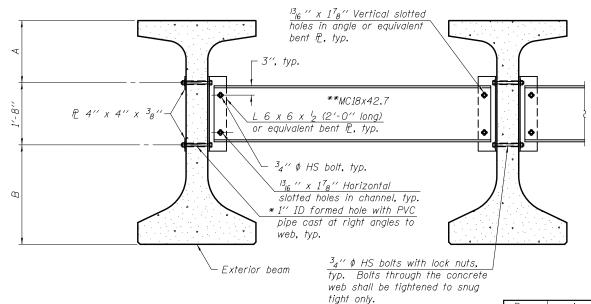
Notes:

All material for bracing shall be hot dip galvanized according to AASHTO M111 unless otherwise noted.

Two hardened washers are required for each set of oversized holes.

All holes shall be 15 ₁₆ $^{\prime\prime}$ ϕ unless otherwise noted. 5 ₁₆ $^{\prime\prime}$ \times 3 $^{\prime\prime}$ \times 3 $^{\prime\prime}$ plate washers are required over all slotted holes.

All bolts shall be galvanized according to AASHTO M232. Bracing shall be installed as beams are erected and tightened as soon as possible during erection.


Permanent bracing shall not be paid for separately, but shall be included in the cost of Furnishing and Erecting Precast Prestressed Concrete Beams.

Beam	Α	В
IL45	1'-3''	2'-0''
IL54	1'-7''	2'-5"

- * Fabricator shall locate to miss strands within permissible tolerances.
- ** Alternate MC12x35 channels are permitted to facilitate material acquisition.

<u>PERMANENT BRACING DETAILS FOR</u>
IL45 AND IL54 BEAMS

Descrip: Permanent bracing details for IL63 & IL72 beams

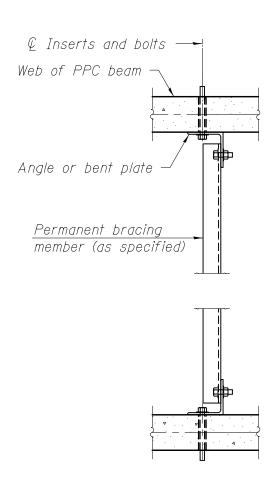
Notes:

All material for bracing shall be hot dip galvanized according to AASHTO M111 unless otherwise noted.

Two hardened washers are required for each set of oversized holes.

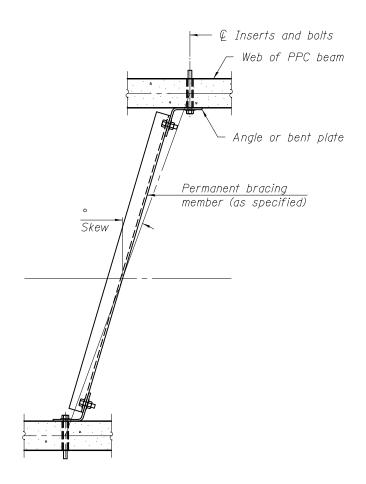
All holes shall be 15 ₁₆ $^{\prime\prime}$ $^{\prime\prime}$ unless otherwise noted. 5 ₁₆ $^{\prime\prime}$ x $^{3\prime\prime}$ x $^{3\prime\prime}$ plate washers are required over all slotted holes.

All bolts shall be galvanized according to AASHTO M232. Bracing shall be installed as beams are erected and tightened as soon as possible during erection.

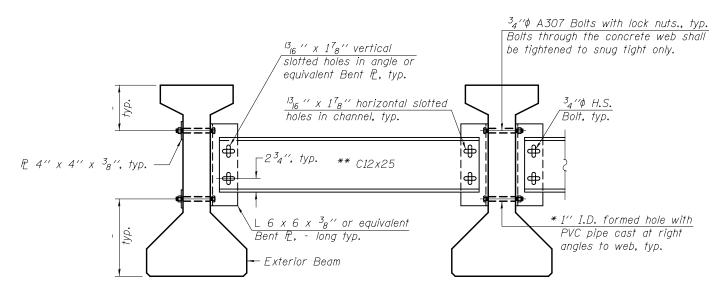

Permanent bracing shall not be paid for separately, but shall be included in the cost of Furnishing and Erecting Precast Prestressed Concrete Beams.

Beam A B IL63 1'-4" 2'-3" IL72 1'-8" 2'-8"

- * Fabricator shall locate to miss strands within permissible tolerances.
- ** Alternate MC18x45.8 channels are permitted to facilitate material acquisition.


PERMANENT BRACING DETAILS FOR IL63 AND IL72 BEAMS

Descrip: Permanent bracing detail - No skew


PLAN (When 90° bracing is specified)

Descrip: Permanent bracing detail - Skewed

<u>PLAN</u> (When skewed bracing is specified)

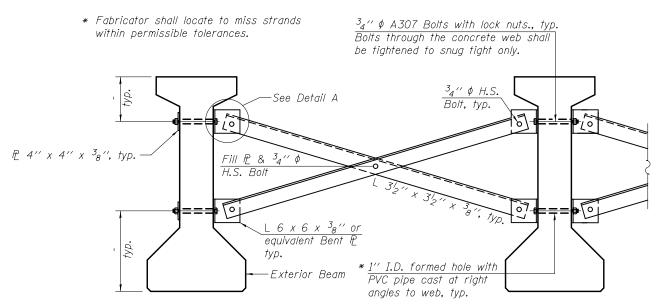
Descrip: Permanent bracing details for 36" & 42" PPC I beams

Notes:

All material for bracing shall be hot dip galvanized according to AASHTO M111 unless otherwise noted.

Two hardened washers are required for each set of oversized holes.

All holes shall be 15 16 '' ϕ unless otherwise noted. 5 16'' x 3'' x 3'' plate washers are required over all slotted holes.


All bolts shall be galvanized according to AASHTO M232. Bracing shall be installed as beams are erected and tightened as soon as possible during erection.

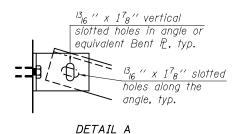
Permanent bracing shall not be paid for separately, but shall be included in the cost of Furnishing and Erecting Precast Prestressed Concrete I-Beams.

- * Fabricator shall locate to miss strands within permissible tolerances.
- ** Alternate C12x30 channels are permitted to facilitate material acquisition.

PERMANENT BRACING DETAILS FOR 36" AND 42" PPC I-BEAMS

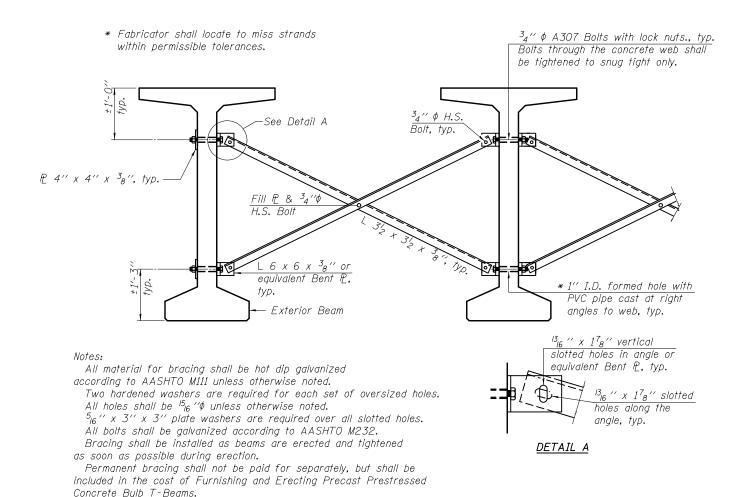
Descrip: Permanent bracing details for 48" & 54" PPC I beams

Notes:


All material for bracing shall be hot dip galvanized according to AASHTO M111 unless otherwise noted.

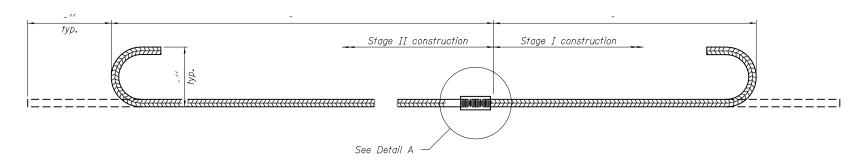
Two hardened washers are required for each set of oversized holes.

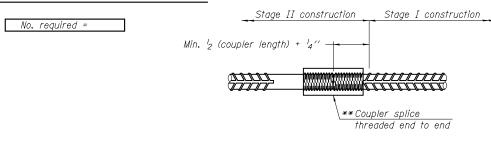
All holes shall be $^{15}\!_{16}$ '' ϕ unless otherwise noted. $^{5}\!_{16}$ '' x 3'' x 3'' plate washers are required over all slotted holes.


All bolts shall be galvanized according to AASHTO M232. Bracing shall be installed as beams are erected and tightened as soon as possible during erection.

Permanent bracing shall not be paid for separately, but shall be included in the cost of Furnishing and Erecting Precast Prestressed Concrete I-Beams.

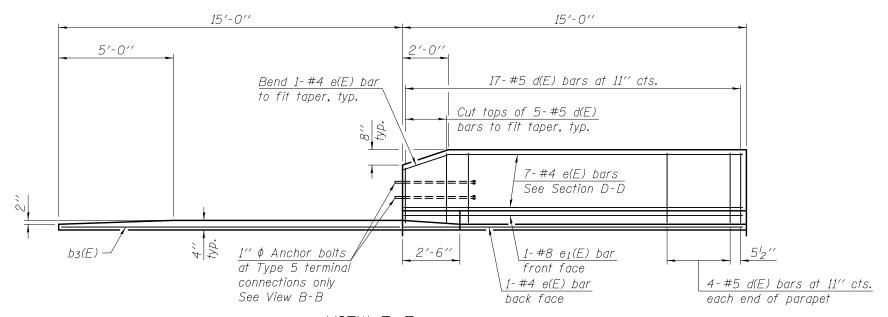
PERMANENT BRACING DETAILS FOR 48" AND 54" PPC I-BEAMS


Descrip: Permanent bracing details for Bulb T beams

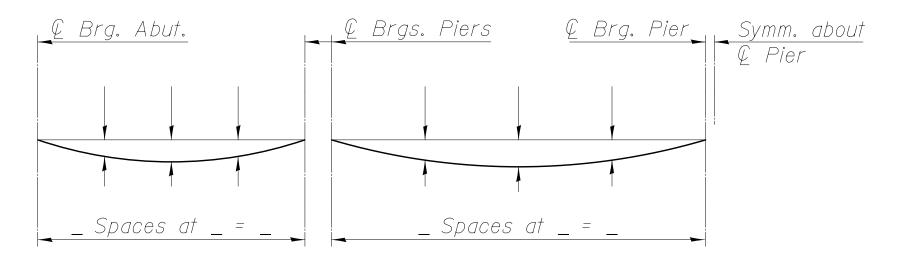

PERMANENT BRACING DETAILS
FOR BULB-T BEAMS

Descrip: Bar splicer assembly for edge beams at stage construction joint

** The bar splicer assembly shall allow completion of the splice without turning of the hook bars. The stage II splice bar shall be threaded such that the entire coupler can be threaded onto the splice bar.



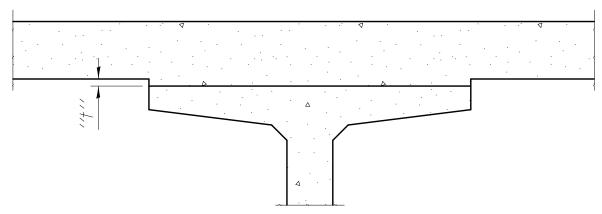
#- a-(E) BAR SPLICER ASSEMBLY FOR EDGE BEAMS AT STAGE CONSTRUCTION JOINT


DETAIL A

Descrip: View E-E for Bridge approach slabs with 42" parapets

VIEW E-E

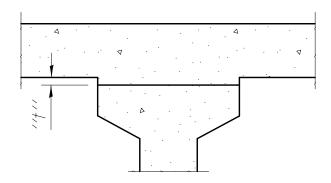
Descrip: Dead load deflection diagram for top of slab elevations


<u>DEAD LOAD DEFLECTION DIAGRAM</u>

(Includes weight of concrete, excluding beams).

Note:

The above deflections are not to be used in the field if the engineer is working from the grade elevations adjusted for dead load deflections as shown below.


Descrip: PPC Bulb T-beam fillet height detail for top of slab elevations

To determine ''t': After all precast prestressed beams have been erected, elevations of the top flanges of the beams shall be taken at intervals shown below. These elevations subtracted from the 'Theoretical Grade Elevations Adjusted for Dead Load Deflections' shown below, minus slab thickness, equals the fillet heights 't' above top flanges of beams.

FILLET HEIGHTS

Descrip: PPC I-beam fillet height detail for top of slab elevations

To determine ''t': After all precast prestressed beams have been erected, elevations of the top flanges of the beams shall be taken at intervals shown below. These elevations subtracted from the 'Theoretical Grade Elevations Adjusted for Dead Load Deflections' shown below, minus slab thickness, equals the fillet heights ''t' above top flanges of beams.

FILLET HEIGHTS