

Energy Improvements in Pittsfield

Energy Management Roundtable for Water and Wastewater Utilities Neil Kulikauskas, Kleinfelder/SEA Doug Gove, AECOM

Acknowledgements

- City of Pittsfield, Massachusetts
 - Bruce Collingwood, P.E. Commissioner of Public Utilities
 - Thomas Landry Wastewater Treatment Plant
 Superintendent
- MassDEP
- Western Mass. Electric Co. (WMECO)

Agenda

- Wastewater Treatment Plant Energy Projects
 - CHP Installation (Generation)
 - Aeration Upgrade (Efficiency)
 - PV Installation (Generation)
- Water Turbine Projects
 - Coltsville Flow Control Station Project
 - Ashley WTP Hydropower Feasibility Study

Pittsfield WWTP History

- 1890 Filtration Beds
- 1937 Trickling Filter/ Settling Tanks
- 1960 Primary Treatment
- 1976 Secondary Treatment
- 1986 Sludge Handling

WWTP Energy Audit

WWTP Project #1 – CHP Installation

- Combined Heat and Power (CHP)
 - "Co-generation", "the production of two forms of useful energy from a single fuel source"
 - Increases energy utilization from 35% to 85%
 - Microturbines
- Digester Gas Good Biogas 65% Methane

CHP - Old Digestion Process

Fuel Oil

CHP - Process Optimization

- Sludge Feeding
- Temperature
- Mixing
- Gas Pre-treatment

CHP - New Process

CHP - Summary

- \$2.5 M Construction Contract
- Three 65-kW Microturbine Configuration
- 30% Reduction in Electric Bill
- Net Savings \$230,000/year
- Payback period of 5 to 8 years (pre-ARRA)
- Other Potential Revenue Streams (REC's incentives, etc.)

Project #2 – Aeration Upgrade

- Old Mechanical Aerators
 - Reliable
 - Inefficient Technology
 - Largest Power Demand at WWTP
 - 39% of Total Power Demand
 - \$250,000/year Electrical
- Convert to Fine-bubble,
 Turbo-blower system

Aeration – Turbo Blowers

- High-speed (to 40,000 RPMs)
- Jet Technology
- Airfoil and Magnetic Bearings Developed Overseas
- Fully integrated VFDs, Controls

Aeration – Turbo Blowers

Advantages

- Small footprint
- Light-weight
- Good turndown
- No bearing lubrication
- Self contained units
- Quiet, low vibration
- 15% 20% more efficient than conventional blowers

Concerns

- New Technology, Less than 10 years
- Limited Number of US Installations
- US Service Network Limited
- Emerging Market

Aeration – Summary

- \$2.5 M Construction Contract
- Three (3) 150-hp Turbo Blowers
- 919,000 KWhr/yr power reduction
- ~20% reduction in overall WWTP demand
- ~\$130,000/year savings
- Flexible Design

Project #3 – PV Installation

- 5 acres
- 2 MW system
- 1,500 MW-hr/yr
- 30% of WWTP
- \$220,000/yr savings
- \$450,000/yr RECs !

PV – **Overview**

- \$7.3 M Contract
- Site Work
- Panel Installation
- Inverters
- Connection to Grid

Summary

	MWh/yr
Historic Demand	4,446
CHP	(-1,572)
Aeration	(-919)
PV	(-1,500)
	(-3991)
Projected Net Demand	455
Overall Reduction	90%

Coltsville Flow Control Station Project

- Project to replace old flow control station
- 2 to 14 mgd flows w/ ~60 psi pressure reduction
- \$3 million construction
- 62 kW Cornell hydro turbine
- Revenue generated:
 - ~\$14,000 sale of power
 - ~10,000 Class I REC's

Coltsville Flow Control Station Project

Ashley WTP Hydro Facility

- Existing hydro turbine at Ashley WTP (1985)
- Byron Jackson vertical 2 stage Francis type turbine
- 2.1 mgd flow with 130 psi available head
- 38 kW avg production
- Supplies 58% of WTP power needs
- ~\$50,000 in annual savings

Ashley WTP Hydro Feasibility Study

- \$35,000 MCEC Grant to look at improving turbine efficiency
- Evaluated:
 - Increasing flow through turbine
 - Parallel turbine for smaller flows
 - Replacement turbine for smaller flows
- Recommendations:
 - Repair existing
 - Apply for Class II REC's: ~\$7,000

Hydro Power Selection Curve

Thank You