
Symantec White Paper Series

Volume XXXIV

Understanding
Heuristics:
Symantec’s Bloodhound

Technology

Table of Contents

Understanding Heuristics: Symantec’s Bloodhound Technology 1

Introduction 1

Englebert the Twine Salesman and Heuristics 1

Virus Detection: An Inexact Science 1

Heuristics Logic 2

How Do Heuristics Work? 3

Static and Dynamic Heuristic Scanners 5

Bloodhound: The Next Generation in Heuristics 9

Bloodhound: Detects up to 80% of New and Unknown Executable Viruses

Bloodhound-Macro: Detects and Repairs over 90% of New and Unknown Macro Viruses 10

Conclusions 13

Further Reading 14

About Symantec 14

* Portions of this white paper were first printed in Virus Bulletin.

1

Understanding Heuristics: Symantec’s Bloodhound Technology

Introduction

The word “heuristic” was initially coined by the Greeks; its original form was heuriskein, which meant

“to discover.” Today, the term is used almost exclusively in computer science to describe algorithms that

are effective at solving complex problems quickly, but yield less than optimal solutions because of the

accompanying speed improvement. To illustrate this concept, the Traveling Salesman problem is a

classic enigma in computer science for which computer scientists have devised many heuristic solutions.

Englebert the Tw ine Salesman and Heuristics

Englebert, a twine salesman, has to travel to a number of different cities, visiting each city just

once. He would like to minimize his travel time so he spends as little time as possible in airplanes.

If Englebert had to travel to Los Angeles, Oregon, Paris, and Rome, he would minimize his travel

by visiting Los Angeles first, then Oregon, followed by Paris and then Rome. If he traveled from

Los Angeles to Rome, back to Oregon and then to Paris, he would have to spend a great deal more

time in airplanes. Obviously, our first solution is better; in any case, it seems like a trivial task to

plan Englebert’s travel schedule.

What if Englebert had to travel to 500 cities? To find the absolute best solution to this problem would

take today’s fastest computers years of computational time. Obviously, spending this much time on a

computation is unfeasible, so computer scientists came up with heuristic algorithms to help solve such

problems faster. A heuristic algorithm makes certain assumptions about the problem it is trying to

solve. These assumptions allow it to cut down on computation time and still produce relatively good

results. By its very nature, a result produced by heuristic algorithm is not guaranteed to be the best

possible solution. Any time programs (or persons, for that matter) makes assumptions, they are

bound to make mistakes. In many cases a heuristic algorithm yields a solution to a problem that

is very close to the optimal solution, but there is no guarantee that this will be the case. Surely,

Englebert will be satisfied to travel 100 ,055 miles if he knows that the best he could do would be

100 ,000 miles, especially if he doesn’t have to wait several hundred years for his travel itinerary.

Why the digression into computer science theory and twine salesmen? Well, in the anti-virus field,

we have our own set of difficult problems to solve. Some of these problems are even more difficult to

solve than the Traveling Salesman problem described above. In fact, some of the problems anti-virus

researchers are tackling are considered unsolvable. In other words, it is impossible to come up with

the exact, best solution to the problem in any finite amount of time. The only way to solve such a

problem is by using heuristic algorithms.

Virus Detection: An Inexact Science

The task of determining whether a computer program is a virus is an unsolvable problem. It is

impossible to write an anti-virus program that is capable of correctly telling a user, with a 100%

success rate, whether a program is infected with a virus, for all possible viruses that have ever been

or could be written. If it were possible to solve such a problem, all of the major anti-virus vendors

and MIS personnel would be dancing through the streets with glee. It would mean the end of costly-

to-develop and difficult-to-distribute monthly virus updates and the end of troublesome false positives.

Unfortunately, the general problem of discerning between viral and non-viral programs is unsolvable.

Consequently anti-virus researchers have devised a number of innovative heuristic methods to help

detect the tens of thousands of computer viruses. The best known technique is known as signature

scanning. Most people don’t think of signature scanning as a heuristic technique, but it is.

2

An anti-virus program that performs signature scanning maintains a database of signatures and

searches for them in every program on your computer. Each signature is a short sequence of bytes

that is extracted from the body of a given virus and the anti-virus program has a different signature

for each virus it is capable of detecting.

Usually this sequence of bytes is both unique to the virus and comprises only a small percentage of

the total set of bytes that make up the virus logic. The former attribute reduces the likelihood of the

anti-virus program falsely identifying non-infected programs as infected. The later attribute is required;

otherwise anti-virus data files would be hundreds of megabytes in length (in essence, the signature

data file would have to include a full copy of every detected virus in every month’s definition updates) .

An anti-virus program that uses a signature scanning technique can identify whether a given program

contains one of its many signatures, but cannot tell you for certain that the program is actually infected

with the associated virus. Usually users trust the guess of the anti-virus program when it makes such

an assessment, since the odds are in its favor. However, the identified program could contain random

data that coincidentally looks like the virus or it could contain actual legitimate program instructions

that by chance matched those bytes in the virus signature. So, while there is an extremely high proba-

bility that an identified program is a virus, our signature scanner cannot tell us this definitively.

Consequently, signature scanning is a heuristic algorithm.

The signature scanning technique is the most widely used technology in anti-virus programs today.

While it does have its faults, it is very effective at identifying viruses for which the anti-virus program

has a signature in its data files. Unfortunately, virus writers are ever vigilant and are constantly creating

new viruses. In most cases, signatures added to the anti-virus data files to detect earlier viruses are

powerless to detect new virus strains. And with the ubiquitous nature of the Internet, these new viruses

are accessible to almost any user in minutes. These factors have created the need for anti-virus tech-

nology that is capable of detecting viruses without signatures and without the slow and expensive

process of virus analysis.

Heuristics Logic

As we have seen, even the most ubiquitous anti-virus technologies employ some form of heuristic

logic. However, in the anti-virus industry, the term “heuristics” (a noun) is invariably used to

describe a specific type of virus detection technology. Specifically, heuristics is a term coined by

anti-virus researchers to describe an anti-virus program that detects viruses by analyzing the program’s

structure, its behavior, and other attributes instead of looking for signatures. During the remainder

of this paper, the terms “heuristics” or “heuristic scanner” will be used to describe this technology.

For instance, there are two ways to catch a criminal. A police officer can go to a crime scene and dust

for fingerprints. If the officer finds a fingerprint at the scene, he can check his database of fingerprints

back at the police station. Should he find a match, he can look up the criminal’s file, then locate and

arrest him.

Unfortunately, many criminals are first-time offenders and have not yet been fingerprinted. In this case,

the police officer can try a different tactic. The officer can observe each person he comes into contact

with and make an assessment as to the likelihood of that person being a criminal. If a pedestrian

walking by the officer is wearing a bullet-proof vest and carrying a shotgun, the police officer could

make a reasonable assessment that the person was up to no good and arrest him. On the other hand,

the officer would probably only take a quick glance at a nanny carrying a bouncing baby boy before

moving on. Of course, the police officer might inadvertently arrest an innocent person and occasionally

miss some wrongdoers, but a well-trained officer will probably have a high probability of success.

3

Anti-virus programs that employ heuristics use an analogous approach to detect computer viruses.

Each time a heuristic anti-virus program scans an executable file, it scrutinizes the program’s overall

structure, its programming logic or computer instructions, any data contained in the file, and a number

of other attributes. It then makes an assessment of the likelihood that the program is infected by a virus.

Like the police officer, sometimes the heuristics will fail to detect or recognize virus-like behavior. And,

like our officer, the heuristics may inadvertently identify innocent programs as being infected with a virus.

Today’s state of the art heuristic scanners achieve a 70 to 80% detection rate of new and unknown

viruses, according to industry experts. These rates are commendable given the difficulty of the problem.

While most heuristic scanning technologies have achieved similar virus detection rates, their propensity

to falsely identify clean programs varies widely. Some popular anti-virus products regularly falsely

identify clean programs with their heuristic scanner, which has given heuristics a bad reputation that

is not necessarily deserved. Later, we’ll see why some heuristic anti-virus programs have a penchant

for crying wolf.

A big plus for heuristics is the ability to detect viruses in files and boot records before they have a

chance to run and infect your computer. Just like a standard signature scanner, the user can initiate

an on-demand heuristic scan of a new program or diskette before it is used. Likewise, users who

run an on-access anti-virus program with heuristic scanning technology can detect a high percentage

of new viruses as they are downloaded from the Internet or saved from an email attachment.

Other anti-virus technologies, such as behavior blocking or integrity checking, actually require the

virus to execute on the host computer and exhibit suspicious and potentially harmful behavior before

the virus can be detected and stopped. Both heuristics and signature scanning get a positive check-

mark in their ability to stop a virus before it has a chance to wreak havoc on your computer.

To date, most of the research done on heuristics has concentrated on the detection of DOS executable

viruses. Consequently, this paper covers the underlying concepts of heuristics by examining how anti-

virus researchers have attacked the DOS virus heuristics problem. However, the techniques described

below have also been used to detect boot viruses and, as we’ll see, they can even be used to detect the

new generation of macro viruses that are wreaking havoc in the enterprise.

How Do Heuristics Work?

Anti-virus researchers have investigated two competing heuristic scanning architectures: static heuristics

and dynamic heuristics. The primary difference between these two schemes is whether the heuristic

scanner employs CPU emulation to search for virus-like behavior. For now, let’s ignore the differences

and discuss those attributes that are common to both architectures.

The typical heuristic scanner has at least two phases of operation when scanning an executable file

for viruses. In the first phase, the goal of the heuristic scanner is to catalog what behaviors the pro-

gram is capable of exhibiting. The heuristic scanner starts by determining the most likely location

where a virus would attach itself to the executable file, if the file were infected. This is an important

step because some executable files are many hundreds of kilobytes or even megabytes in length.

Performing detailed heuristic analysis on such a large program would be excruciatingly slow. Given

most DOS-based computer viruses are only a few kilobytes in length, a well designed heuristic scanner

can significantly limit those regions of the file to be scrutinized. Most often, this region will be the first

and last few kilobytes of the file.

Figure 1. DOS file viruses typica lly append them selves on the end o f DOS .EXE files. DOS file

viruses prepend and append them selves onto DOS .COM files. Other infection techniques are

a lso possible but less com m on.

Once the heuristic scanner has identified the likely area of viral infection, it analyzes the program logic

contained in this region in an attempt to determine what its computer instructions are capable of doing.

This is itself an extremely difficult problem since there are so many different ways to write a given

computer program. For instance, consider the following two sequences of instructions:

Example 1

M ACHINE LANGUAGE BYTES (IN HEXADECIM AL) USER-READABLE INSTRUCTIONS

B8 00 4C MOV AX, 4C00

CD 21 INT 21

Example 2

M ACHINE LANGUAGE BYTES (IN HEXADECIM AL) USER-READABLE INSTRUCTIONS

B4 3C MOV AH, 3C

BB 00 00 MOV BX, 0000

88 D8 MOV AL, BL

80 C4 10 ADD AH, 10

8E C3 MOV ES, BX

9C PUSHF

26 ES:

FF 1E 84 00 CALL FAR [0084]

Figure2.

Two examples of how to write program logic on the PC to terminate a program and return to the DOS

prompt. The left side shows the hexadecimal machine language bytes that the computer’s microprocessor

understands. The right side shows how a programmer would type the instructions into a computer.

Both of the examples above perform the same function: They cause a program to terminate itself and

return to the DOS prompt. However, if we look at the sequence of machine code bytes that make up

each set of instructions, they look entirely different. The first code sequence calls upon the operating

system using a simple, common technique. The second sequence uses a much more round-about

approach to make the same request to the operating system.

4

targeted viral
region to scan.

HO ST
.EXE
FILE

VIRUS
BO DY

VIRUS
BO DY

VIRUS
BO DYHO ST

.CO M
FILE

HO ST
.CO M

FILE

targeted viral
region to scan.

targeted viral
region to scan.

Machine language bytes for example 1 : B8 00 4C CD 21

Machine language bytes for example 2 : B4 3C BB 00 00 88 D8 80 C4 10 8E

C3 9C 26 FF 1E 84 00

Figure 3.

Two examples of machine language bytes that instruct the computer to terminate a program. Even

though the two sequences of bytes tell the computer to do the same task, they look entirely different.

Given there are practically an infinite number of ways that one can write code, it would seem to be

almost impossible for a computer program to examine the sequence of bytes that make up a program

and glean any information at all. Luckily, most DOS viruses actually use straightforward techniques like

the first one shown above to accomplish most of their tasks. In any case, how is a heuristic scanner

supposed to detect this type of behavior? Static and dynamic heuristic implementations accomplish

this task using markedly different techniques.

Static and Dynamic Heuristic Scanners

The static heuristic scanner recognizes various program behaviors using a handful of methods. First,

the static heuristic scanner can maintain a large database of byte sequences (signatures) like the

ones above; it associates each sequence of bytes in this database with its functional behavior. The

scanner can use simple wildcards to help match information that may change from virus to virus:

BYTE SEQUENCE ASSOCIATED BEHAVIOR

1 . B8 ? ? 4C CD 21 Terminate program (permutation 1)

2 . B4 4C CD 21 Terminate program (permutation 2)

3 . B4 4C B0 ? ? CD 21 Terminate program (permutation 3)

4 . B0 ? ? B4 4C CD 21 Terminate program (permutation 4)

Ö

100 . B8 02 3D BA ? ? ? ? CD 21 Open file (permutation 1)

101 . BA ? ? ? ? B8 02 3D CD 21 Open file (permutation 2)

Ö

Figure 4.

The heuristic scanner has a database of behavior signatures. If one of the above byte sequences is

found inside of a program, it indicates the program is probably capable of exhibiting the associated

behavior. The “??” shown above are called “wildcards,” and will match any byte value.

Program bytes: B4 09 BA 20 01 CD 21 B8 0 2 3 D BA 1 2 3 4 CD 2 1 CC B8 FF 4 C CD 2 1

Signature 100 Signature 1

Matching signatures: 100 . B8 02 3D BA ?? ?? CD 21 This program opens a file

1 . B8 ?? 4C CD 21 This program terminates itself

Figure 5.

The program bytes shown above represent a simple program that could be a virus. If a heuristic

scanner were to search for all of the signatures shown in Figure 4 , it would find signatures 1 and

100 in the program. Notice signature number 100 uses wildcards to match byte values of 12 and

34 in the program.

5

These strings look strikingly familiar to the standard virus signatures used by anti-virus products for

many years, and for good reason. They are! However, standard virus signatures such as those used

by traditional anti-virus scanners are used to definitively identify a specific virus strain. The signatures

shown above are used to identify whether or not a given program contains the program logic to exhibit

a given behavior, which may or may not be viral in its own right. If our heuristic scanner locates such

a string in the program, it does not necessarily mean that the program is viral. All it indicates is that

the program may be capable of exhibiting a given behavior.

Traditional virus signatures (found in Virus Bulletin magazine) :

Paulus.1 8 0 4 : B9 D5 00 8B DE ?? ?? 27 06 53 ?? ?? 07 86 CA ?? ?? 86 CA 2E 88 07 4A ??

V.974: 9C 80 FC AA 75 04 B4 BB 9D CF 80 FC 4B 74 0B 80 FC AB 74 06 9D 2E FF 2E

Figure 6.

The above virus signatures detect specific computer virus strains instead of an isolated behavior such

as opening a file or formatting the hard drive.

In addition to this simple database of behavior signatures, the static heuristic scanner may also use more

elaborate, hard-coded programs (written by an anti-virus researcher in programming languages such

as C+ + or assembly language) to seek out and recognize more complex virus behaviors. For instance,

encrypted and polymorphic DOS viruses often have computer instructions to unscramble (decrypt)

themselves when an infected program is launched. The bytes that comprise these computer instruc -

tions can vary widely in appearance; even so, it is possible for the anti-virus researcher to write fairly

simple subroutines to recognize a large percentage of virus decryption routines. If the heuristic scanner’s

detection subroutine happens to locate what it believes is a decryption routine, it will also catalog

this behavior.

While the static heuristic scanner relies on simple signatures and code analysis subroutines to catalog

a program’s behavior, the dynamic heuristic scanner uses CPU emulation to gather its information.

After some initial sanity checks, the dynamic heuristic scanner loads the suspect executable file into

a virtual computer and emulates its execution. The program being emulated has no idea it is running

inside of a simulated computer; it believes it’s running on a real system. As the program runs within

the virtual computer, it exhibits behaviors that are cataloged by the dynamic scanner.

While the program is running within the virtual computer, the dynamic heuristic scanner can monitor

all requests (interrupt calls) it makes to the operating system. Any time the virtual operating system is

called on by the emulated program, the scanner records the behavior and then allows the emulated

program to continue executing. Since the vast majority of DOS viruses rely heavily on the operating

system to infect new programs, this monitoring is a robust way to determine virus behavior and gives

the dynamic scanner an advantage over the static heuristic scanner.

The following analogy illustrates the difference between the static and dynamic heuristic scanners. Let’s

assume I’m the ambassador (and a crafty spy) at the U.S. embassy in Votslovia. If I want to spy on the

top Votslovian nuclear scientist who works four blocks away, I can take many different paths to reach

him. I could go north one block, east two blocks, and north again one block. Alternatively, I could go

west one block, north two blocks, and east three blocks. Both paths would take me to the scientist’s

laboratory. There are many such paths I can take to reach his laboratory, just as there are many possible

sequences of computer instructions that will achieve the same goal.

6

A Votslovian intelligence official could determine that I was spying in several different ways. First, he

could choose to monitor a likely route between the embassy and the scientist’s lab. If he observed me

walking down this route, he could report this information to authorities. However, what if I took an

alternate route? In this case, he would probably miss me. Of course, he could choose to recruit an

additional agent to monitor another route. But, there are many, many possible routes that I could take.

Alternatively, the intelligence officer could stake-out the scientist’s laboratory. If he does this, he doesn’t

need to concern himself with how I got to the nuclear lab. Instead, he just snaps a picture showing

that somehow I arrived there.

The former strategy is analogous to that used by static heuristic scanners during the program analysis

phase. The static heuristic scanner looks for different behavior and its success is highly dependent

on how the suspected program implements its logic. If the program being analyzed uses an obfuscat-

ed method of calling the operating system, the static scanner may fail to detect this behavior, just as

the intelligence officer would fail to detect my prying if he monitored only one or a small number

of routes to the scientist’s lab.

The later strategy is analogous to that used by the dynamic scanner. The dynamic scanner lets the

program run freely within the virtual machine. The program can use any logic it likes to get its job

done, but eventually it will call on the operating system and when it does so, the end result of all its

computations and machinations will be made clear.

It would seem as though the dynamic heuristic scanner would be much more effective at analyzing and

identifying the behaviors of a program. In many cases, it is. However, dynamic heuristics can also be

much slower than their static counterpart. CPU emulation is a relatively slow process, and is usually

much slower than scanning for strings in a limited region of memory. Furthermore, CPU emulation

is susceptible to the logic and whims of the program being emulated. For instance, what if we wanted

to detect the following virus using the dynamic technique:

Virus in pseudo-code:

1 . If the current hour is even, skip to instruction 3 .

2 . Go to step 2 .

3 . Infect a new program using simple, identifiable computer instructions.

4 . …

Figure 7.

A computer virus that uses a logic trick to hide its infection instructions from a dynamic heuristic

scanner. The virus only infects a new program under very specific circumstances. When such a virus

is emulated in a virtual computer, the logic trick may cause the dynamic heuristic scanner to miss the

infection logic.

The dynamic heuristic would emulate the above program within its virtual computer. Immediately, it

would stumble on the first instruction which would check the current time. If the current hour during

the emulation session happened to be odd (1 p.m., 3 p.m., and so on) , the emulated program would

execute instruction 2 indefinitely and the dynamic heuristic scanner would fail to observe any of the

virus’ additional behaviors (on lines 3 and beyond) . In general, if the CPU emulator fails to provide

the virus with what it wants, the virus’ logic may prevent it from executing its tell-tale behaviors and

giving the virus away. Unfortunately, the CPU emulator is not a fortune teller.

7

On the other hand, our static heuristic scanner would detect all the behaviors in the above program

since it is not constrained by the program’s logic. The static scanner looks throughout the virus’ body

for behaviors, regardless of whether they would be reached during a typical execution of the virus. As

you can see, both approaches have their benefits and drawbacks.

After analyzing the program’s logic and instructions (using either static or dynamic techniques) , the

heuristic scanner also searches for any strings of bytes or suspicious data stored within the likely

viral region. Virus writers often include expletives or the word “virus” in their viruses. Since most

programs don’t normally have this type of data, the presence of a text string is often a strong indicator

that the program may be infected. The heuristic scanner logs these strings and other tell-tale signs of

infection for use during the second phase of the heuristics process.

Once a set of possible behaviors and attributes has been obtained, the second phase begins: analysis

of the observed behaviors. In general, the second phase is the same for both dynamic and static

heuristic scanners. The heuristic scanner now has a list of all behaviors, virus-like attributes, and

other information that it was able to glean from the target program. At this point, it must make an

assessment as to whether the set of behaviors that was detected looks virus-like or not.

The heuristic scanner must know, for instance, that appending .COM viruses may use the following

behaviors when infecting a new executable file.

Ask the operating system to:

1 . Locate the first COM file in the current directory.

2 . Open the file.

3 . Seek to the end of the file.

4 . Seek to the top of the file.

5 . Write out 3 or 4 bytes to the top of the file.

6 . Seek to the end of the file.

7 . Write out several hundred bytes at the end of the file.

8 . Close the file.

Figure 8.

If a heuristic scanner observed all of the above behaviors during the first phase, it could report with

high confidence in the second phase that it had detected a virus. Unfortunately, the first phase rarely

obtains such a complete list of behaviors. Behavior identification and cataloging technology, be it static

or dynamic, has its flaws and occasionally fails to detect certain behaviors of the target program.

Therefore, the second phase must be able to make educated guesses as to the “virusness” of a

program based on the (possibly incomplete) observed set of behaviors.

For instance, what if only behaviors 4 through 8 above were observed during the behavior cataloging

phase? For most virus researchers, this subset of behaviors would still raise a big red flag. However,

it’s one thing for the heuristic scanner to report a possible infection to a researcher who can examine

the executable file and verify the scanner’s assessment. It’s another thing entirely for the scanner to

report this to an end-user who has no virus analysis skills.

8

Given the set of observed behaviors may be incomplete, the behavior analysis component of the

heuristic scanner must be designed with extreme care. If this component is too stringent in its

requirements, it will have difficulty detecting a significant number of viruses. On the other hand, if

the anti-virus programmer designs the analysis component to be too lenient in its behavioral require-

ments, the anti-virus product may be overly susceptible to false identifications. You can now see why

some anti-virus products with heuristics frequently cry wolf: Their designers opted for higher detection

rates with fewer behavioral requirements at the expense of occasional false identifications.

Thus far, a number of different approaches have been used to make this behavioral assessment. IBM

AntiVirus, for example, uses a neural network to analyze behavioral information in its heuristic boot

virus scanner. Another example is Symantec’s Bloodhound technology, which uses an expert system

to analyze the cataloged behaviors and assess the likelihood of viral infection. There are probably as

many different behavior analyzers as there are heuristic scanning products, and it is likely that this

technology will evolve significantly over the coming years.

Bloodhound: The Next Generation in Heuristics

All future Norton AntiVirus products will be equipped with Symantec’s patent-pending Bloodhound

technology. Researchers at the Symantec AntiVirus Research Center (SARC) have developed two types

of heuristics for the Norton AntiVirus. The first, Bloodhound, is capable of detecting upwards of 80%

of new and unknown executable file viruses. The second, Bloodhound-Macro, detects and repairs

over 90% of new and unknown macro viruses.

Bloodhound: Detects up to 80% of New and Unknow n Executable Viruses

Symantec’s Bloodhound technology represents a complete departure from traditional heuristic scan-

ners in a number of key areas. First and foremost, the Bloodhound system does not use the classical

static or dynamic behavior cataloging algorithms. Instead, it uses a hybrid technology that enjoys the

benefits of both schemes.

As we have seen, traditional heuristic systems catalog behavior using one of two different techniques.

Static cataloging algorithms have the advantage of being very quick; however, these algorithms are

poor at identifying obfuscated program logic and often completely fail to recognize even slightly non-

standard program logic. As virus writers become more savvy, static heuristic scanners will be less and

less effective at detecting new computer viruses.

On the other hand, dynamic behavior cataloging algorithms excel at identifying obfuscated program

logic, but are often slower than their static counterparts. Dynamic algorithms may also fail to catalog

behaviors due to logic tricks implemented by the virus. Virus writers may insert logic tricks into their

viruses to intentionally confound dynamic scanners (see Figure 7) ; however, in many cases ordinary

viruses that use conventional logic will also evade the dynamic scanner.

For instance, many viruses only infect programs that are within a given size range. If this type of virus

attempts to infect new programs and locates an executable file that is too big or too small, it will skip

over it and continue to search for other appropriate files. Consequently, the virus fails to exhibit the

virus-like behavior required for detection. Other viruses, for example, refuse to infect programs that

have a seconds value of 12 (each file has a time stamp indicating when they were last modified in

HR:MIN:SEC format) , since the virus uses a time stamp to indicate that it has already infected the file.

Some viruses won’t infect any files with names ending in AV, since many virus scanners such as

NAV.EXE and TBAV.EXE have filenames that end in these letters and infecting a program with AV in

the filename would alert the user to the infection. Unfortunately, each virus has its own unique set

of conditions, and each condition is a potential roadblock for the dynamic scanner.

9

Here’s a slightly unusual but accurate analogy. You might compare such a picky virus to a laboratory

frog. A scientist might want to see how far the frog could jump or measure the strength of its leg

muscles. The scientist could measure these attributes by placing the frog in an artificial habitat (an

aquarium) and watching to see how far it jumped. However, the frog might never jump or only take

small leaps. The problems experienced by the researcher are the same encountered by the dynamic

heuristic anti-virus program. It’s difficult to tell exactly what the virus is capable of doing, given that

the virus has control over its actions and may suppress some behaviors while running within its virtual

habitat (a simulated PC) .

A neurologist studying a frog would not bother to place him in a tank and wait. Instead, he would

attach electrodes to each of the different regions of the frog’s brain and stimulate each region to

force the frog to exhibit each of its behaviors whether it wanted to or not. This is like getting your

reflexes tested during a physical exam; when the doctor hits your knee with her hammer, you have

no control over the reflex action of your leg. While a brain stimulation technique is arguably cruel

and unusual when applied to frogs or other living creatures, its perfectly legal and ethical when used

with computer viruses. And its extremely effective!

Bloodhound employs artificial intelligence technology to isolate and locate the various logical regions

of each program it is told to scan. It then analyzes the program logic in each of these components for

virus-like behavior, stimulating them just as the neurologist might stimulate the regions of the frog’s

brain. It uses both static and dynamic techniques to do this analysis and stimulation, and is subsequently

capable of detecting a wider variety of behaviors than either of the traditional algorithms. Because

Bloodhound identifies and examines every logical component of the virus, it is impervious to most

logic trick attacks and general virus pickiness. And because it uses dynamic analysis techniques, it

can identify even the most convoluted and obfuscated program logic.

Once Bloodhound has stimulated the program in question and caused it to exhibit its reflex behaviors,

it uses an expert system to analyze the observed behaviors and determine whether the program is a

virus. An expert system is a program which makes intelligent inferences about a given problem when

complete information may not be available. It is called an expert system because its rules and decision

making logic is typically designed and programmed by experts in the field. Expert systems have been

successfully employed in the medical field to help doctors diagnose medical conditions. They have

also been used by credit card companies to detect suspicious buying patterns and credit card fraud.

Symantec researchers have spent many years of effort to produce an exceptionally robust virus detection

expert system for Bloodhound. In addition, Symantec engineers have designed Bloodhound’s expert

system so it can be updated on a monthly basis through standard virus definition updates. SARC engi-

neers can continue to hone and improve the Bloodhound system, delivering these improvements to

customers automatically via LiveUpdate without costly inlines or product reinstallation.

The Bloodhound system also draws extensively on the technology used by Striker, Symantec’s next-

generation polymorphic virus detection engine. Components of the Striker engine are used to de-scramble

both encrypted and polymorphic computer viruses. These viruses encrypt their computer logic in order

to hide themselves from other heuristic scanners. However, Bloodhound uses the patent pending

Striker technology to crack the viral encryption and thwart the virus’ efforts to hide itself.

While Symantec development teams have worked extensively to insure that Bloodhound will achieve

stellar detection of unknown viruses, they have also spent countless hours of research and development

effort to virtually eliminate false positives. Team members of the Symantec AntiVirus Research Center

have scoured the Internet, commercial software libraries, and software CDs to find viruses and test

Bloodhound under every possible circumstance. The team has collected gigabytes of executable files

from the United States, Europe, and as far away as Japan for testing, making Bloodhound the most

robust heuristic technology on the planet.

10

Finally, while Bloodhound is capable of detecting upwards of 80% of new and unknown computer

viruses, it does so with only minimal overhead. Bloodhound was designed to perform an in-depth

analysis of programs only if they meet stringent prerequisites. In most cases, Bloodhound can deter-

mine in microseconds that it is looking at a file that could not be infected by a virus. When it makes

such a determination, it immediately ceases analysis of the file and goes on, making it one of the

most efficient heuristic systems available.

Bloodhound-M acro: Detects and Repairs over 90% of New and Unknow n M acro Viruses

In under two years, macro viruses have become the most infectious and widespread computer viruses

in history. These electronic villains are incredibly infectious, spreading through email, the Internet, on

floppy diskettes, data compact disks, and over electronic bulletin board systems (BBSs) . Unlike pre-

vious computer viruses, macro viruses do not infect application files or floppy disks; instead, they

infect the documents and spreadsheet files that businesses and home users rely upon on a daily basis.

What is a macro virus, anyway? It is a virus that infects word processing documents or spreadsheets.

Modern word processing and spreadsheet programs such as Word for Windows or Excel allow you

to write simple programs, called macros, and then attach these macros to your document or spread-

sheet. These macros can then be used to automate repetitive tasks, make calculations in the spread-

sheet, and so on. A macro virus is merely a malicious macro program that is designed to copy itself

from document to document or spreadsheet to spreadsheet rather than serving a useful purpose. Word

for Windows documents are the most common carriers for macro viruses, with well over 1,500 distinct

macro virus strains.

Macro viruses are especially problematic for several key reasons. First, with increased use of the

Internet, email and other workgroup software, users are exchanging more information than ever

before. In the past, information exchange was not dangerous because documents and spreadsheets

could not contain macros, and therefore could not contain macro viruses. Today, however, the

documents most commonly exchanged through email can and do contain macro viruses.

Another factor that accounts for macro virus success is the availability of the popular office applications.

Applications such as Word for Windows or Excel were designed to share the same documents and

spreadsheet files regardless of where the documents originated. Therefore, a user could send a macro

virus-infected document created on a PC to a coworker that has a Macintosh. If the Macintosh user

edits or views the infected document, the virus takes up residence on that system. On the other hand,

traditional PC viruses will only work on the type of machine for which they were originally designed.

The macro virus’ success has also been fueled by their simplicity: Macro viruses are extremely easy

to construct. In the past, only programmers with low-level assembly language programming skills

could create computer viruses. With the introduction of user-friendly application macros, almost any

savvy user can spend an afternoon writing a macro virus with only a copy of Microsoft Office and a

few computer manuals. Furthermore, an unscrupulous user can easily study the programming logic

of an existing macro virus and then modify the macro virus’ logic to work in a different fashion. And

it isn’t very difficult to add a little something extra and construct macro viruses that encrypt data, format

hard drives, or even silently change the numbers in spreadsheets.

Each of the above factors has contributed, in part, to the tremendous prevalence of macro viruses in

the workplace. Yet one factor has arguably caused more problems than all the rest combined. In the

Word for Windows word processor, when a macro virus spreads from document to document, the

virus runs a small risk of having its macros (that is, its programming logic) corrupted. This corrup-

tion problem is most likely due to a software bug in Word for Windows.

11

Consequently, each time a macro virus tries to spread itself, Word for Windows may inadvertently corrupt

or mutate it. In some cases, this corruption is lethal for the new macro virus because it prevents the

macro virus from spreading to additional documents. Unfortunately, the corruption can also create

a completely new macro virus that is perfectly capable of spreading. In many ways, this corruption

is analogous to the random mutation that occurs in nature. Many mutations cause the offspring to die

immediately; however, other mutations allow some offspring to survive and flourish in the environment.

As we have seen, most anti-virus vendors maintain a database of known viral macro signatures and

regularly ship this information to customers in the form of regular virus updates. When scanning a

document, if the anti-virus program locates macros that match signatures in its database, it reports

that the document or spreadsheet is infected with a macro virus. This process is similar to that used

by an FBI agent who identifies criminals based on their fingerprints. Once a fingerprint lifted from

the scene of a crime is located in the FBI database, the perpetrator can be identified and arrested.

Unfortunately, these tactics don’t work nearly as well for macro viruses. If a macro virus’ programming

logic changes (for instance, because it has been corrupted) , the new, mutated virus effectively has a

different fingerprint than that stored in the anti-virus database, and will evade detection by the anti-virus

program. Traditional computer viruses are not affected by this sort of corruption, which means that

users are likely to encounter the same traditional viruses over and over again. It also means that

anti-virus software should be fairly effective at detecting and removing them.

Inadvertent macro corruption has created hundreds of new macro viruses without the aid of a single

virus writer In the past, only virus writers created new viruses. Now, new viruses are being created

every day on countless machines around the world. These new viruses aren’t being created in virus

research labs or in back alleys; they’re being created in the workplace and on end-user machines

where they cause the most damage.

As if this were not enough, macro viruses even mate with each other! There are many documented

cases of two or more macro viruses combining in the same document to form wholly new macro virus

strains. The new macro virus strains do not have the same fingerprint and often cannot be detected

by traditional anti-virus software. These issues have fundamentally changed the nature of the virus

problem, and made macro heuristics a necessity.

Given the large numbers of new macro viruses encountered in the workplace, traditional anti-virus

software is unable to detect and remove these new macro virus strains. Consequently, users are

encountering more viruses than ever before that can’t be detected and repaired, and they’re spending

more time waiting for fixes from their anti-virus vendor. To compound the problem, there is an

unacceptable lag between the emergence of new viruses and traditional anti-virus software’s ability

to detect and remove them.

Symantec’s Bloodhound-Macro technology addresses these fundamental detection problems. It detects

and repairs more than 90% of all new and unknown macro viruses automatically, reducing the need

for costly and repetitive interaction with the anti-virus vendor. Let’s examine how Bloodhound-Macro

is able to provide this functionality.

Bloodhound-Macro employs a patent-pending, hybrid heuristic scheme to detect and repair macro

viruses. Every time the Norton AntiVirus scans a document file, Bloodhound-Macro sets up a complete

virtual Word for Windows environment and loads the document into this simulated environment. The

macro (programs) contained in the document are then coaxed into running as if they were running

in the actual word processor.

12

Bloodhound-Macro monitors the macros as they run in the virtual Word for Windows environment

and watches for the macros to copy themselves from the host document to another virtual document.

This behavior alone is suspicious, since most macros have no need to copy themselves from one

document to another. However, this behavior by itself is not sufficient to report a virus infection.

Why? Well a number of companies have developed macro packages that install themselves into your

Word for Windows environment by having the macros copy themselves into your documents. However,

once these macros have installed themselves in the Word for Windows environment, they do not copy

themselves to other documents. However, when a macro virus copies itself into a document, it makes

sure to copy the programming logic and data required to further spread itself to other documents. This

critical detail distinguishes these macro packages from macro viruses.

Bloodhound-Macro recognizes this detail. In addition to verifying that the macros in the host document

copy themselves to other virtual documents, Bloodhound-Macro also simulates the copied macros

in the virtual environment and verifies that these second-generation macros contain the programming

logic to further propagate themselves. Once Bloodhound-Macro has seen this capacity for repeated

viral behavior, it can definitively tell users that they have a virus.

The Norton AntiVirus Bloodhound-Macro technology is the only product on the market to use hybrid

heuristics to detect macro viruses. Other current anti-virus products that claim to use heuristics actually

use simple static string scanning. String scanning can easily detect that a macro has the ability to copy

itself from document to document, but it has great difficulty distinguishing between single-installation

macros that copy themselves once and actual macro viruses. This type of heuristic technology inevitably

falsely identifies uninfected macros as viral and can cause more problems than it solves.

As Bloodhound-Macro emulates a document’s macros within its virtual environment, it remembers

which macros are involved in the replication process. This information is then used to repair the

infected document. Norton AntiVirus removes only those macros that are absolutely copied during

the repeated replication of the virus; the user’s macros are left unharmed in the document.

Once again, static heuristic scanners are at a disadvantage when attempting repair. They may be able

to identify which macros have programming logic to copy macros from document to document, but

have no way of definitively identifying other viral macros that lack this explicit copying logic. Most

macro viruses are composed of two or more macros; in many cases, only a subset of these macros

contain the programming logic to copy the macros from document to document. The other viral

macros may contain malicious logic, but are not necessarily responsible for the replication process.

Consequently, if a static heuristic scanner attempts to repair a macro virus infection, it runs the risk

of removing only the identifiable subset of macros that contain virus-like program logic (macro copy-

ing logic) , leaving potentially malicious macros within the document after it has been cleaned by the

anti-virus program. In addition, a static heuristic scanner may inadvertently identify third-party

macros as viral based on their macro copying logic, and mistakenly delete these macros as well.

In general, static heuristic implementations are more prone to false identifications. During the repair

process, these heuristic systems may incorrectly delete non-viral macros or fail to delete all viral

macros, leaving the integrity of the document and your network at risk. Symantec’s patent-pending

Bloodhound-Macro system is, therefore, the only solution when it comes to detecting new and

unknown macro viruses.

13

Conclusions

The Norton AntiVirus product line now incorporates Bloodhound and Bloodhound-Macro, the most

advanced and effective heuristic tools in the anti-virus industry. Symantec researchers have spent

many years of effort to insure that these technologies are unobtrusive, have low overhead, and are

extremely effective at detecting and repairing new and unknown computer viruses.

Bloodhound is capable of detecting upwards of 80% of new and unknown file viruses, and

Bloodhound-Macro can detect and repair more than 90% of new and unknown macro viruses

automatically. This patent-pending Bloodhound technology helps to make the Norton AntiVirus

the most effective corporate anti-virus solution on the market.

The Bloodhound system: 21st century technology brought to you by Symantec, today.

Further Reading

This document is one of a series of papers on Symantec’s software strategy and its product offerings.

Additional papers include:

• Understanding and Controlling Viruses in 32-Bit Operating Environments

• Why Norton Utilities is a Natural Complement to the Windows 95 Environment

• Managing Desktop Interfaces Across the Enterprise

• A Strategy for the Migration to Windows 95

• File Management and Windows 95

• Understanding Virus Behavior in the Windows NT Environment

• Intregrating Remote Communications into Enterprise Computing

• Using Outsourcing to Reduce IT Labor Costs

• Understanding and Managing Polymorphic Virsuses

• Using Outsourcing to Reduce IT Labor Costs

• Understanding Symantec’s Anti-virus Stratedy for Internet Gateways

For copies of these papers or information about Symantec enterprise network products, call

1 -800-453-1135 and ask for C342. Outside the United States contact the sales office nearest

you (listed on the back cover) .

About Symantec

Symantec Corporation is a leading software company with award-winning application and system

software for Windows, DOS, Macintosh, and OS/2 computer systems. Founded in 1982 , Symantec

has grown rapidly through the success of its products and a series of 16 acquisitions resulting in

a broad line of business and productivity solutions.

Symantec’s acquisitions have strongly influenced the company’s innovative organization. The company

is organized into several product groups that are devoted to product marketing, engineering, technical

support, quality assurance, and documentation. Finance, sales, and marketing are centralized at corpo-

rate headquarters in Cupertino, California.

14

Symantec, the Symantec logo, and Norton AntiVirus are U.S. registered trademarks of Symantec Corporation. LiveUpdate, Bloodhound, Striker, and SARC (Symantec AntiVirus Research Center) are trademarks of Symantec Corporation. Microsoft,

Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation. Other brands and products are trademarks of their respective holder(s) .

© 1 9 9 7 Symantec Corporation. All Rights Reserved. Printed in the U.S.A. 9 /9 7 0 9 -7 1 -0 0 2 5 4

WORLD HEADQUARTERS

1 0 2 0 1 Torre Avenue

Cupertino, CA 9 5 0 1 4 USA

1 (8 0 0) 4 4 1 -7 2 3 4

1 (5 4 1) 3 3 4 -6 0 5 4

World Wide Web site:

http://www.symantec.com

Australia (Sydney) : + 6 1 2 9 8 5 0 1 0 0 0

Australia (Melbourne) : + 6 1 3 9 8 2 3 6 2 0 4

Brazil: + 5 5 1 1 5 3 0 8 8 6 9

Canada: 1 (4 1 6) 4 4 1 -3 6 7 6

France: + 3 3 1 4 1 3 8 5 7 0 0

Germany (Munich) : + 4 9 8 9 6 4 1 9 2 2 1 2

Germany (Ratingen) : + 4 9 2 1 0 2 7 4 5 3 0

Hong Kong: + 8 5 2 2 5 2 8 6 2 0 6

Italy: + 3 9 2 6 9 5 5 2 1

Ireland: + 3 5 3 1 8 2 0 5 0 6 0

Japan: + 8 1 3 3 4 7 6 1 1 5 6

Korea: + 8 2 2 3 4 5 2 1 6 0 0

Mexico: + 5 2 5 6 6 1 7 9 7 8

New Zealand: + 6 4 9 3 0 9 5 6 2 0

Netherlands: + 3 1 7 1 5 3 5 3 1 1 1

Russia: + 7 0 9 5 2 3 8 3 8 2 2

Singapore: + 6 5 3 2 4 7 9 9 0

Sweden: + 4 6 8 4 5 7 3 4 0 0

Switzerland: + 4 1 7 1 6 2 6 2 0 4 0

Taiwan: + 8 8 6 2 7 2 9 9 5 0 6

UK: + 4 4 1 6 2 8 5 9 2 2 2 2

