Topic 7: Control Flow Instructions

CSE 30: Computer Organization and Systems Programming
Summer Session Il

Dr. Ali Irturk
Dept. of Computer Science and Engineering
University of California, San Diego

So Far...

< All 1instructions have allowed us to manipulate
data

+So we’ve built a calculator

+In order to build a computer, we need ability to
make decisions...

= UCSD

Labels

< Any 1nstruction can be associated with a label
< Example:
start ADD rO,rl,r2 ; a = b+tc
next SUB rl,rl,#1 ; b--

< In fact, every instruction has a label regardless 1f
the programmer explicitly names it

The label i1s the address of the instruction
A label 1s a pointer to the instruction in memory

Therefore, the text label doesn’t exist in binary code

= UCSD

C Decisions: if Statements

<1 statements 1in C
1f (condition) clause

1f (condition) clausel else clause?

<+Rearrange 2nd i £ into following:

if (condition) goto L1;
clause?2;
goto L2Z;

L1l: clausel;

L2:

Not as elegant as 1f-else, but same meaning

= UCSD

ARM goto Instruction

< The simplest control instruction i1s equivalent to a
C goto statement

<+ goto label (in C) is the same as:
+B label (in ARM)
<+ B 1s shorthand for “branch”. This 1s called an

unconditional branch meaning that the branch 1s
done regardless of any conditions.

< There are also conditional branches

= UCSD

ARM Decision Instructions

< ARM also has variants of the branch instruction that only
goto the label if a certain condition 1s TRUE

< Examples:

BEQ
BNE
BLE
BLT
BGE
BGT

Plus

label
label
label
label
label
label

more ...

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH

EQUAL

NOT EQUAL

LESS THAN EQUAL
LESS THAN

GREATER THAN EQUAL
GREATER THAN

< The condition 1s T/F based upon the fields in the
Program Status Register

= UCSD

Program Status Registers

31 28 27 24 23 16 15 8§ 7 6 5 4 0

Nz c Vo J nde fihed |z F[T| mode |
Iz [- . |
< Condition code ﬂags X Interrupt Disable bits.
N = Negative result from ALU I = I: Disables the IRQ.
Z = Zero result from ALU F = I: Disables the FIQ.
C = ALU operation Carried out < T Bit
V = ALU operation oVerflowed Architecture xT only
« Sticky Overflow flag - Q flag T = 0: Processor in ARM state
Architecture 5STE/J only T = 1: Processor in Thumb state
Indicates if saturation has <+ Mode bits
occurred Specify the processor mode
< J bit
Architecture STEJ only

J = 1: Processor in Jazelle state

= UCSD

Flags and Their Use

< The N flag

Set if the result 1s negative or equivalently 1f the MSB == ‘1’
< The Z flag

Set if the result 1s zero
< The C flag

Set if

« The result of an addition is greater than 232
< The result of a subtraction is positive
< Carryout from the shifter is ‘1’

<+ The V flag (oVertlow)

Set if there 1s overflow

= UCSD

Condition Codes

< The possible condition codes are listed below
Note AL 1s the default and does not need to be specitied

Suffix Description Flags tested
EQ Equal Z=1

NE Not equal Z=0
CS/HS Unsigned higher or same C=1
CC/LO Unsigned lower C=0

MI Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

VC No overflow V=0

HI Unsigned higher C=1& Z=0
LS Unsigned lower or same C=0 or Z=1
GE Greater or equal N=V

LT Less than N!=V

GT Greater than =0 & N=V
LE Less than or equal Z=1 or N=IV
AL Always

= UCSD

The ARM Register Set

Only need to worry about cpsr (current program status register)

Abort Mode

User FIQ IRQ SVC Undef

rl3 (sp)fl rl3 (sp)
rld (1lr)j rld (1lr)

cpsr

=UCSD

Compiling C if into ARM

+»Compile by hand (true) (f_a:se_)
if (i ==) f=g+h; '=] =

else f:g_h; f=g+h f=g_h

<+Use this mapping: Exit
f:r0,g:rl,h:xr2,1:xr3, 7. ré4

= UCSD

Comparison Instructions

< In order to perform branch on the “==" operation
we need a new 1nstruction
< CMP — Compare: subtracts a register or an
immediate value from a register value and
updates condition codes
<+ Examples:
CMP r3, #0 ; set Z flag 1f r3 ==
CMP r3, r4 ; set 2 flag 1f r3 == r4

All flags are set as result of this operation, not just Z.
= UCSD

Compiling C if into ARM

Compile by hand (true) e (false)
if (1 == J) f=g+h; | ==1i I!:j

else f=g-h;

f=g+h f=g-h
<Final compiled MIPS code:
CMP r3, r4 ;7 = 1 if i== EXit
BEQ True ; goto True when 1==j

SUB r0O,rl,r2 ; f=g-h(false)

B Fin ; goto Fin

True ADD rO,rl,r2 ,; f=g+h (true)

Fin

Note: Compiler automatically creates labels to handle decisions
(branches) appropriately. Generally not found in C code.

= UCSD

Loops in C/Assembly
+Simple loop in C;
do{
g-—;
i =1+ 7;}
while (1 !'= h);
<~Rewrite this as:
Loop: g——;

1f (1 !'= h) goto Loop;
<+Use this mapping:

g: rl, h: r2, 1: r3, j: r4
= UCSD

Loops in C/Assembly

<Final compiled MIPS code:

Loop SUB rl,rl, #1
ADD r3,r3,r4
CMP r3,r”

BNE Loop

= UCSD

g--

© 1=14]

cmp 1,h

goto Loop

> 1f 1!=h

Inequalities in ARM

<+Until now, we’ve only tested equalities
(== and !=1n C). General programs need to test < and

> as well.
é[keCMPandBLE, BLT, BGE, BGT

<Examples:
if (£ < 10) goto Loop; => CMP rO0O, #10
BLT Loop
i1f (£ >= 1) goto Loop; => CMP r0,r3
BGE Loop

= UCSD

Loops in C/Assembly

<+ There are three types of loops in C:
while

do...while

for

<+ Each can be rewritten as either of the other

two, so the method used 1n the previous
example can be applied to while and for

loops as well.

+Key Concept: Though there are multiple ways
of writing a loop in ARM, conditional branch is

key to decision making
=UCSD

Example: The C Switch Statement

<+Choose among four alternatives depending
on whether k has the value O, 1, 2 or 3.

Compile this C code:

switch (k) {
case 0: f=i+7j; break; /* k=0~*/
case 1: f=g+h; break; /* k=1*/
case 2: f=g-h; break; /* k=2*/
case 3: f=i-7; break; /* k=3*/
}

= UCSD

Example: The C Switch Statement

<+ This 1s complicated, so simplify.

+»Rewrite 1t as a chain of if-else statements,
which we already know how to compile:
if (k==0) f=i+7;
else 1f(k==1) f=g
else 1f (k==2) f=g—h;
else 1f(k==3) f=1
<+Use this mapping:
f: $s0, g: S$sl1, h: $s2, i: S$s3,
Jj: $Ss4, k: S$sb

= UCSD

Example: The C Switch Statement

CMP r5, #0 ; compare k, O

BNE L1 ; branch k!=0

ADD r0O,r3,rd4 ; k==0 so f=1i+j

B Exit ; end of case so Exit
L1 CMP r5,#1 ; compare k, -1

BNE L2

ADD r0O,rl, r?2 ; k==1 so f=g+h

B Exit ; end of case so Exit
L2 CMP rb5, #2 ; compare k, 2

BNE L3 ; branch k!=2

SUB r0,rl,r2 ; k==2 so f=g-h

B Ex1it ; end of case so Exit
L3 CMP r5, #3 ; compare k, 3

BNE Exi1t ; branch k!=3

SUB r0,r3,r4 ; k==3 so f=1i-j

Exit
= UCSD

Predicated Instructions

< All 1nstructions can be executed conditionally.
Simply add {EQ,NE,LT,LE,GT,GE, etc.} to end

ARM instructions

C source code

unconditional

{

}

{

}

rl

else

r2

if (xO

rl

r2

0)

+

1;

CMP r0O, #0
BNE else
ADD rl, rl, #1
B end
else
ADD r2, r2, #1
end

conditional

= UCSD

® 5 instructions
" 5 words
= 5 or 6 cycles

CMP r0O, #0
ADDEQ rl, rl, #1
ADDNE r2, r2, #1

" 3 instructions
" 3 words
" 3 cycles

Conclusions

<A Decision allows us to decide which pieces of code to
execute at run-time rather than at compile-time.

<+C Decisions are made using conditional statements
withinan 1 f, while, do while or for.

<+ CMP 1instruction sets status register bits

<+ ARM Decision making instructions are the conditional
branches: BNE, BEQ, BLE, BLT, BGE, BGT.

= UCSD

Conclusion

<Instructions so far:
Previously:
ADD, SUB, MUL, MULA, [U|S]MULL, [U|S]MLAL, RSB
AND, ORR, EOR, BIC
MOV, MVN
LSL, LSR, ASR, ROR
New:
CMP, B{EQ,NE,LT,LE,GT,GE}

= UCSD

