Monatomic Ions

lons are atoms that have either lost or gained electrons. While atoms are neutral, ions are charged particles.

A loss of electrons results in a positive ion or cation (pronounced "cat-eye-on").
$>$ A gain of electrons results in a negative ion or anion (pronounced "an-eye-on").
Although ions and elements have similar chemical symbols, they are entirely different substances with different physical properties.

A. Monatomic lons

In order to determine the charge of monatomic ions, you can use the periodic table as a guide:

$\begin{aligned} & \text { Group \# } \\ & \text { (Column) } \\ & \hline \end{aligned}$	Ion Charge	Examples
1	These elements lose one electron to form +1 ions.	$\mathrm{Na}^{+}, \mathrm{Li}^{+}, \mathrm{K}^{+}$
2	These elements lose two electrons to form +2 ions.	$\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}$
Groups 312	The elements in groups 3-12 are called transition metals. These elements always lose electrons to form positive ions (cations) but their charges vary. For example, iron can form a +2 or $a+3$ ion. In cases like these, you must be told which ion to use.	$\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$
13	These elements lose three electrons to form +3 ion.	Al^{3+}
14	The charges on these ions vary. Carbon and silicon do not form ions. For the rest of the group, you must be given the charge.	$\mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}$
15	These elements gain three electrons and form - 3 ions.	$\mathrm{N}^{3-}, \mathrm{P}^{3-}$
16	These elements gain two electrons to form -2 ions.	$\mathrm{O}^{2-}, \mathrm{S}^{2-}$
17	These elements gain one electron to form -1 ions.	$\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
18	These atoms do NOT form ions. Their charge is always zero.	$\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$

Naming lons (Nomenclature):

Simple cations are named by saying the element and adding the word "ion."
Na^{+}is called "sodium ion"
Mg^{2+} is called "magnesium ion"
Simple anions are named by dropping the ending off the element name and adding "ide."
F^{-}is called "fluoride"
O^{2-} is called "oxide"
N^{3-} is called "nitride"
Note: the charge of a monatomic anion is equal to the group number minus 18.

Nomenclature Worksheet 1 :

Monatomic Ions

Use a periodic table to complete the table below:

Element Name	Element Symbol	Ion Name	lon Formula
1. sodium			
2. bromine			
3. magnesium			
4. chlorine			
5. oxygen			
6. boron			
7. lithium			
8. neon			
9. phosphorus			
10. aluminum			
11. calcium			
12. iodine			
13. nitrogen			
14. cesium			
15. sulfur			
16.fluorine			
17. potassium			
18. barium			
19.hydrogen			
20.helium			

Simple Binary lonic Compounds

Ionic compounds are compounds formed by the combination of a cation and a anion. (Think: "metal plus nonmetal"). lonic compounds are more commonly known as "salts." Binary ionic compounds are compounds containing only two elements, as demonstrated in the examples below.

When writing formulas for ionic compounds, we use subscripts to indicate how many of each atom is contained in the compound. Remember that even though ions have charges, ionic compounds must be neutral. Therefore, the charges on the cation and the anion must cancel each other out. In other words, the net charge of an ionic compound equals zero.

Example 1:

For a salt containing sodium ion, Na^{+}, and chloride, Cl^{-}, the ratio is one to one. The positive charge on the sodium ion cancels out the negative charge on the chloride.

$$
(+1)+(-1)=0
$$

Therefore, the formula for the salt is $\mathbf{N a C l}$. (The actual formula is $\mathrm{Na}_{1} \mathrm{Cl}_{1}$, but chemists omit subscripts of 1).

Example 2:

For a salt containing calcium ion, Ca^{2+}, and chloride, Cl^{-}, the ratio can't be one to one .

$$
(+2)+(-1)=+1
$$

Remember that ionic compounds must be neutral. In order to yield a neutral compound, two chlorides must bond to the calcium ion:

$$
(+2)+2(-1)=0
$$

So, the formula for this salt is $\mathbf{C a C l}_{\mathbf{2}}$.

Nomenclature:

When naming ionic compounds, simply write the element name of the metal followed by the ion name of the nonmetal. (Remember: the metal ion (cation) is always written first!)

NaCl is called "sodium chloride," and CaCl_{2} is called "calcium chloride."

Nomenclature Worksheet 2:
Simple Binary Ionic Compounds
Please complete the following table:

Name of Ionic Compound	Formula of Ionic Compound
1. Sodium bromide	
2. Calcium chloride	
3. Magnesium sulfide	
4. Aluminum oxide	
5. Lithium phosphide	
6. Cesium nitride	
7. Potassium iodide	
8. Barium fluoride	
9. Rubidium nitride	
10. Barium oxide	
11.	$\mathrm{K}_{2} \mathrm{O}$
12.	$\mathrm{Mg} l_{2}$
13.	AlCl_{3}
14.	CaBr_{2}
15.	$\mathrm{Na}_{3} \mathrm{~N}$
16.	LiF
17.	$\mathrm{Ba}_{3} \mathrm{P}_{2}$
18.	$\mathrm{Cs}_{2} \mathrm{~S}$
19.	SrF_{2}
20.	NaCl

Polyatomic lons

Polyatomic ions contain two or more different atoms (polyatomic means "many atoms"). Here are some common examples:
a. ammonium ion, $\mathrm{NH}_{4}{ }^{+}$(the only positive polyatomic ion you need to know)
b. "ATE" ions: contain an atom bonded to several oxygen atoms:
Nitrate $=\mathrm{NO}_{3}{ }^{-}$
Phosphate $=\mathrm{PO}_{4}{ }^{3-}$
Sulfate $=\mathrm{SO}_{4}{ }^{2-}$
Carbonate $=\mathrm{CO}_{3}{ }^{2-}$
Acetate $=\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
Chlorate $=\mathrm{ClO}_{3}{ }^{-}$
c. "ITE" ions: remove one oxygen from the "ATE" ion and keep the same charge:
Nitrite $=\mathrm{NO}_{2}^{-}$
Phosphite $=\mathrm{PO}_{3}{ }^{3-}$
Sulfite $=\mathrm{SO}_{3}{ }^{2-}$
Chlorite $=\mathrm{ClO}_{2}^{-}$
d. Other common complex ions:

Hydroxide $=\mathrm{OH}^{-} \quad$ Cyanide $=\mathrm{CN}$

Ionic Compounds Containing Polyatomic Ions

As you've already learned, ionic compounds are formed by the combination of a positive ion (cation) and a negative ion (anion). This is the same when dealing simple ions or complex ions. Be careful to note, however, that complex ions are grouped together and should not be separated. In other words, don't ever separate the sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$ into sulfur and oxygen. If it's written as a group, keep it as a group!

Since complex ions come in groups, things can get tricky when using subscripts. As a result, we use parentheses to separate the ion from the subscript:

If we need two sulfates in a compound, we write: $\left(\mathrm{SO}_{4}\right)_{2}$.
If we need three nitrates in a compound, we write: $\left(\mathrm{NO}_{3}\right)_{3}$.
And, just as before, the net charge of the compound must be zero. For a salt containing sodium ion, Na^{+}, and nitrate, NO_{3}^{-}, the ratio would be $1: 1$ since the positive and negative charges cancel out. Therefore, the formula is NaNO_{3} and is called sodium nitrate. (Note: no parentheses are necessary here).

For a salt containing calcium ion, Ca^{2+}, and nitrate, $\mathrm{NO}_{3}{ }^{-}$, the ratio must be 1:2 (one calcium ion for every two nitrates). So, the formula would be $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.

Please complete the following table:

Name of lonic Compound	Formula of lonic Compound
1. Sodium chromate	
2. Calcium carbonate	
3. Magnesium nitrate	
4. Aluminum sulfate	
5. Lithium phosphate	
6. Ammonium chloride	
7. Cesium chlorate	
8. Potassium sulfate	$\mathrm{KCH}_{3} \mathrm{CO}_{2}$
9. Barium acetate	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
10. Rubidium cyanide	$\mathrm{Al}_{\left(\mathrm{ClO}_{3}\right)_{3}}$
11.	CaSO_{4}
12.	$\mathrm{Sr}_{\left(\mathrm{HCO}_{3}\right)_{2}}$
13.	NaNO_{3}
14.	$\mathrm{Li}_{2} \mathrm{CO}_{3}$
15.	$\left.\mathrm{Ca}_{2} \mathrm{NOO}_{3}\right)_{2}$
16.	$\mathrm{NH}_{4} \mathrm{OH}_{4}$
17.	
18.	
19.	
20.	

Ionic Compounds Containing Transition Metals

The transition metals are the elements located in the middle of the periodic table (in groups 312. Unlike the group 1A and 2A metal ions, the charges of transition metal ions are not easily determined by their location on the periodic table. Many of them have more than one charge (also known as an oxidation state). There are eight transition metals that you should highlight on your periodic table:

$$
\mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Hg}, \mathrm{Sn} \text {, and } \mathrm{Pb}
$$

Each of these elements form more than one ion and therefore must be labeled accordingly. For example, iron forms two ions: Fe^{2+} and Fe^{3+}. We call these ions "iron (II) ion" and "iron (III) ion" respectively. (See "Table of Transition Metal lons").

When naming any ion from the elements listed above, you MUST include a Roman numeral in parentheses following the name of the ion. The this roman numeral is equal to the charge on the ion. We don't include the " + " because all metal ions are positive. Here are two more examples:

$$
\mathrm{Pb}^{4+}=\text { "lead (IV) ion" } \quad \mathrm{Cr}^{3+}=\text { "chromium (III) ion }
$$

Similarly, when naming a compound containing one of these transition metals, you must include the Roman numeral as well. "Iron Chloride" isn't specific enough since the compound could contain either iron (II) or iron (III) ion. You must specify the charge on the iron.

Iron (II) chloride contains the Fe^{2+} ion. When combined with chloride, Cl , we know the formula must be FeCl_{2}.

Iron (III) chloride contains the Fe^{3+} ion. This time, three chlorides are required to form a neutral compound. Therefore, the formula is FeCl_{3}.

By looking at the formula of an ionic compound, we can determine the charge (oxidation state) of the metal.

Example: Write the name of $\mathrm{Co}_{2} \mathrm{O}_{3}$

1. Recognize that Co, cobalt, is a transition metal. This means that you must include a Roman numeral after its name. So, the basic name will be Cobalt (__) Oxide.
2. To find the charge on cobalt, use oxide as a key. Oxide has a charge of -2 so three oxides will have a charge of -6 .
3. What balances a -6 charge? A +6 charge! So, the positive half of the compound must equal +6 .
4. Since there are two cobalt ions, the charge is split between them. So, each one has a +3 charge. Therefore, we are using the Co^{3+} ion and the compound is called cobalt (III) oxide.

Remember that anions (negative ions) always have a definite charge. When dealing with compounds containing transition metals, look to the anion first. Determine the charge of the anion and then solve to figure out the charge of the cation.

When dealing with metals other than the transition metals, you don't need Roman numerals. In other words, calcium ion, Ca^{2+} is always +2 . Don't call CaCl_{2} "calcium (II) chloride." Its name is "calcium chloride."

Ionic Compounds Containing Transition Metals

Please complete the following table:

Name of lonic Compound	Formula of lonic Compound
1. Copper (II) sulfate	
2. Copper (I) oxide	
3. Chromium (III) cyanide	
4. Cobalt (II) hydroxide	
5. Silver bromide	
6. Zinc nitrate	FeCl_{2}
7. Iron (III) acetate	PbSO_{3}
8. Lead (IV) sulfate	$\mathrm{Co}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
9.	AgNO_{3}
10.	$\mathrm{Zn}_{2}\left(\mathrm{CN}_{2}\right.$
11.	CuClO_{3}
12.	$\mathrm{Cr}_{2}\left(\mathrm{OH}_{3}\right.$
13.	$\mathrm{Hg}_{2} \mathrm{O}$
14.	
15.	
16.	

Ionic Compounds Summary

Name the following compounds:

1. CaF_{2}
2. $\mathrm{Na}_{2} \mathrm{O}$
3. BaS
4. CuSO_{4}
5. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
6. HgCl_{2} \qquad
7. AgNO_{3} \qquad
8. MgCO_{3} \qquad
9. $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
10. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ \qquad
11. $\mathrm{Al}(\mathrm{OH})_{3}$ \qquad
12. PbBr_{2}
$13 . \mathrm{ZnSO}_{3}$ \qquad
$\begin{array}{ll}\text { 14. } \mathrm{NaHCO}_{3} & \\ \text { 15. } \mathrm{NH}_{4} \mathrm{Cl} & \square \\ \text { 16. } \mathrm{Li}_{3} \mathrm{PO}_{4} & \square\end{array}$
13. SnCl_{2}
14. $\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}$ \qquad
15. $\mathrm{Rb}_{2} \mathrm{CrO}_{4}$ \qquad
16. KMnO_{4} \qquad
17. CuCl
18. FeSO_{4}

Give the formula for each compound:
23.sodium fluoride
24. potassium sulfide
25.calcium carbonate
26. magnesium hydroxide
27.zinc nitrate
28.silver acetate
29. copper (II) oxide
30.iron (III) chloride
31.barium chromate
32. aluminum oxide
33.lead (II) sulfate
34.tin (IV) oxalate
35.calcium phosphate
36. lithium permanganate
37.mercury (I) nitrate
38.radium sulfite
39. chromium (III) chloride
40.ammonium sulfide
41.copper (II) acetate
42.calcium bicarbonate
43.tin (II) oxide
44.silver sulfite
\qquad

Naming Binary Covalent Compounds

Binary covalent compounds come from the combination of two nonmetals (or a nonmetal and a metalloid). These compounds do not involve ions; as a result, they have a slightly different naming system. Chemists use prefixes to indicate the number of atoms in each compound. The prefixes are listed in the table below:

\# of Atoms	Prefix
1	Mono
2	Di
3	Tri
4	Tetra
5	Penta
6	Hexa
7	Hepta
8	Octa
9	Nona
10	Deca

When naming binary covalent compounds, the first element name is given followed by the second element with an "ide" ending. The first element gets a prefix when there is more than one atom in the compound.* The second element ALWAYS gets a prefix. Here are some examples:

Compound	Name
NO^{*}	Nitrogen Monoxide
$\mathrm{N}_{2} \mathrm{O}$	Dinitrogen Monoxide
$\mathrm{NO}_{2^{*}}$	Nitrogen Dioxide
$\mathrm{N}_{2} \mathrm{O}_{3}$	Dinitrogen Trioxide
$\mathrm{N}_{2} \mathrm{O}_{4}$	Dinitrogen Tetraoxide
$\mathrm{N}_{2} \mathrm{O}_{5}$	Dinitrogen Pentaoxide

Prefixes are necessary when naming covalent compounds because the atoms can combine in any whole number ratio. $\mathrm{N}_{2} \mathrm{O}$, for example, cannot simply be called "nitrogen oxide," because there are several other compounds that contain nitrogen and oxygen. We must specify that there are two nitrogen atoms bonded to a single oxygen atom.

When dealing with ionic compounds, there is only one way for a cation and a nion to combine to form a neutral compound. As a result, there is no need to use prefixes. This is why CaCl_{2} is called "calcium chloride," rather than "calcium dichloride."

Nomenclature Worksheet 6:
Binary Covalent Compounds
Please complete the following table:

Name of Covalent Compound	Formula of Covalent Compound
1. carbon dioxide	
2. phosphorus triiodide	
3. sulfur dichloride	
4. nitrogen trifluoride	
5. dioxygen difluoride	6. $\mathrm{N}_{2} \mathrm{~F}_{4}$
	7. SCl_{4}
	$8 . \mathrm{ClF}_{3}$
	$9 . \mathrm{SiO}_{2}$
	$10 . \mathrm{P}_{4} \mathrm{O}_{10}$

Determine whether the following compounds are covalent or ionic and give them their proper names.

1. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
2. CO
3. PCl_{3}
4. KI
5. CF_{4}
6. MgO
7. $\mathrm{Cu}_{2} \mathrm{~S}$
8. SO_{2}
9. NCl_{3}
10. XeF_{6}

Use the following method when asked to determine the formula of an ionic compound:

1. Write the two ions with their charges (metal first).
2. Ignoring the + or - charges, "crisscross" the numbers and make them subscripts.
3. Then, rewrite the formula, dropping the charges.
(See Examples Below)

Example 1:

Write the formula for calcium chloride:

1. Write the two ions with their charges (metal first).

$$
\mathrm{Ca}^{2+} \mathrm{Cl}^{-}
$$

2. Ignoring the + or - charges, "crisscross" the numbers and make them subscripts:

$$
\mathrm{Ca}^{2+} \quad \mathrm{Cl}^{-}
$$

3. Then, rewrite the formula, dropping the charges. In this case, the formula is: $\mathbf{C a C l}_{2}$.

Example 2:

Write the formula for magnesium oxide:

1. Write the two ions with their charges (metal first).

$$
\mathrm{Mg}^{2+} \quad \mathrm{O}^{2-}
$$

2. Ignoring the + or - charges, "crisscross" the numbers and make them subscripts:

$$
\mathrm{Mg}^{2+} \quad \mathrm{O}^{2-}
$$

3. Then, rewrite the formula, dropping the charges. The rewritten formula is: $\mathrm{Mg}_{2} \mathrm{O}_{2}$. Note: Since the subscripts for the anion and cation are the same, the formula reduces to $\mathrm{Mg}_{1} \mathrm{O}_{1}$.

Therefore, the correct formula is written as: $\mathbf{M g O}$.

