Type 2 Diabetes and Chronic Kidney Disease

CKD is an eGFR <60ml/min **or** kidney damage for 3 months or more (e.g. urine sediment, abnormal imaging, or albuminuria (UACR <30mg/g = nl, 30-300 = micro, >300 = macro).

Table 1 Stages of Chronic Kidney Disease (CKD) and Diagnostic Levels

	1	2	3	4	5
eGFR*	> 60ml/min	> 60ml/min	3 to 59	15 to 29	<15ml/min
			ml/min	ml/min	
Proteinuria	microalbuminuria	macroalbuminuria			

^{*}estimated Glomerular Filtration Rate

Markers of progression: decreasing eGFR, increasing albuminuria and poor BP control.

Workup of CKD and to r/o non-diabetes causes

CMP, UA, UACR, Uric Acid, Phos, CBC, ANA, RF, C3, C4, HepB sAg, HepC Ab, dilated retinal exam, and renal U/S. If pt >40 yrs & UACR is positive, then check SPEP and UPEP.

Referrals

Nephrololgist: Make a referral when the eGFR <30ml/min or sooner if unsure of etiology of renal disease or problems occur.

Nutrition: Make a referral to a Registered Dietitian (RD) for consult on protein, Na⁺, K⁺, PO₄, fluids and saturated fat.

Managing Complications of CKD in Stages 3 to 5

Acidosis

If the serum CO2 <2mmol/L, start sodium bicarbonate 325 to 650mg; give 1to 2 tablets TID or QID. Goal is $CO_2 > 2mmol/L$.

Anemia

Check hemoglobin (Hb) at least yearly: Anemia is a HB <13.5 g/dL in adult men and <12 g/dL in adult woman. R/o other causes of anemia such as B12 and folate deficiency, GI blood loss and other causes.

Baseline Labs: Ferritin, transferrin, % Sat, iron studies (Fe, % Sat, TIBC), and CBC + differential.

Start oral iron therapy if ferritin and/or iron studies find low values.

- Ferrous Sulfate (FeSO₄) 325mg daily to TID. Consider docusate 100mg TID to reduce constipation. **Monitor ferritin levels to avoid iron overload.**
- Consider IV iron or blood transfusion if needed.
- Safety of erythorpoiesis stimulating agents (ESA) IS unclear; reserve for pt on dialysis, pending renal transplant, or Hb less than 9 with symptoms unresponsive to treatment above.

Blood Pressure

Most effective CKD intervention: BP goal <130/80; continue ACEI/ARB (watch K+)

Cardiovascular Disease (CVD)

CKD increases CVD risk; patients should take aspirin if no contraindications exist. Achieve lipid targets and encourage tobacco cessation.

Diabetes

Blood sugar control—as renal function declines, a pts blood glucose often improve; titrate medications down as needed. Caution should be used in setting an A1c target <7% if advanced CKD or CVD is present.

D/C metformin when Creatinine is >1.5mg./dL in men or >1.4 mg/dL in women.

Peripheral Neuropathy: Foot ulcers are common. Check pts feet each visit and refer to a shoe clinic.

Retinopathy: Schedule Ophthalmology visits regularly to check for retinal damage.

Autonomic Neuropathy: Frequent blood pressure fluctuations, including orthostatic symptoms.

Edema/Fluid Overload

Establish pts dry weight.

Titrate furosemide as needed 20-240mg BID. Diuresis lasts 6 hour so give in the morning and at mid-day.

Metabolic Bone Disease

Evidence Based: Phosphorus (PO₄): if >4.6 mg/dL, start binder (calcium); Refer to RD for dietary PO₄ restriction.

Calcium (Ca): target: 8.4 to 9.5 mg/dL

If < 8.4, start or increase calcium supplementation

If > 10.2, correct causes (often secondary to medications; need to hold Ca and/or

Vitamin D or calcitriol

Consensus Opinion: If iPTH is elevated, measure 25(OH)D (Vitamin D).

If 25(OH)D >= 30mg/mL, start calcitriol

If 25(OH)D < 30mg/mL, start ergocalciferol (Vit D2)

Follow Ca, PO4, iPTH, and 25(OH)D; if Ca or PO₄ is above target or if iPTH below target, hold calcitriol and/or calcium.

Table 2. Stage of CKD and Metabolic Monitoring Goals

CKD Stage	eGFR	iPTH goal	PO₄ goal	Ca goal	Ca X PO₄
3	30-59	35-70	2.7-4.6	8.4-9.5	<55
4	15-29	70-110	2.7-4.6	8.4-9.5	<55
5	< 15	150-300	3.5-5.4	8.4-9.5	<55

Table 2. Phosphate Binders*: Dose and Effect on Metabolic Status

Medication	Dose	iPTH effect	PO₄ effect	Ca effect	Comments
**CaCO ₃ (Oyst- Cal or TUMS)	500-2000mg with meals	No change	Decrease	Increase	Use if Ca <8.4; no more than 7g/day
**Ca Acetate	1334- 2868mg with meals	No change	Significant decrease	Increase	Use if Ca < 8.4 and PO ₄ > 5
**Sevelamer (Renagel)	800-1600mg TID	No change	Significant decrease		Decrease PO ₄ , no effect on Ca; cost
**Lanthanum	1500- 3750mg/day with meals	No change	Significant decrease	Decrease	Decrease PO ₄ and Ca ⁷ cost
**Aluminum	600-1200mg TID between meals & HS	No change	Significant decrease	No change	ONLY if PO ₄ > 7 and Ca x PO ₄ > 55; not more than 30 days due to toxicity

^{*}Always include dietary phosphorous restriction

Table 3. Vitamin D and Analogs; Dose and Effect on Metabolic Status

		iPTH			
Medication	Dose	effect	PO ₄ effect	Ca effect	Comments
*Vit D ₂	1.25-5mg	Decrease	No change	Significant	Use if Vit D <30mg/mL
(Ergocalciferol)	daily			increase	
*Calcitriol	0.25-1mcg	Decrease	No change	Significant	Use only if Ca & PO ₄ in
	daily or 0.5-			increase	normal range.
	3mcg TIW				Hold if Ca x PO ₄ >55
*Doxercalciferol	1-3mcg daily	Decrease	No change	Increase	Use only if Ca & PO ₄
	or 10-20mcg				in normal range.
	TIW				Hold if Ca x PO ₄ >55

^{*}Drugs are not on the IHS National Core Formulary

Table 4. Other Medication

Medication	Dose	iPTH effect	PO₄ effect	Ca effect	Comments
*Cinacalcet	30-180mg	Decrease	Decrease	Significant	Do not use if Ca
	daily			decrease	<8.4

^{*}Always include dietary phosphorous restriction

Drugs in italics are not on the IHS National Core Formulary

^{**} Drugs are not on the IHS National Core Formulary

Table 5. Lab Monitoring for CKD

Parameter	GFR >	GFR 30-59	GFR 15-29	GFR < 15 not on
	60			dialysis
Creatinine	Annual	Each visit	Each visit	Each visit
eGFR	Annual	Each visit	Each visit	Each visit
UACR	Annual	Every 3 to 6 months*	Each Visit*	Each Visit*
Hb	Annual	Every 3 months	Every 3months	Every 3 months
Serum iron		Every 3 months	Every 3 months	Every 3 months
Transferrin		Every 3 months	Every 3 months	Every 3 months
Saturation		-		-
Ferritin		Every 3 months	Every 3 months	Every 3 months
iPTH		At least annually	Every 3 months	Every 3 months
Ca & PO ₄		At least annually	Every 3 months	Every 3 month

Monitor more often if values are worsening or on medications that affect these labs

Reference: KDOQI/NKF and UK Renal Assoc 4th Ed. Clinical Practice Guidelines for Complications of CKD.

ADA Clinical Practice Recommendations 2010.

J Am Soc Nephrol 2010; 21:2-6.

^{*}Frequency of checking depends on rate of rise of urine albumin