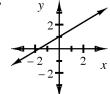
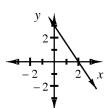
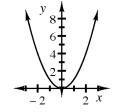

Lesson 1.1.1


a: $\frac{1}{2}$ 1-4.

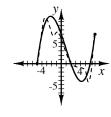

- **b:** 3
- 1-5. **a:** 16
- **b:** 9
- **c:** 478.38

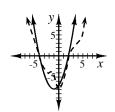
- 1-6. **a:** h(x) then g(x)
 - **b:** Yes, it is possible. Since the output of g(x) is positive, the only way to get a final negative output is if g(x) goes first. This gives g(6) = 1 and h(1) = -5.
- 1-7.



b.

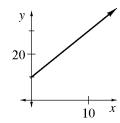
d.



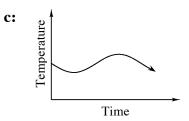

- 1-8. a: not linear
 - c: a parabola
- **b:** *x* is squared
- **d:** D: All real numbers; $R: y \ge 0$
- 1-9. **a:** x = 13
- **b:** x = 8
- **1-10. a:** $5m^2 + 9m 2$ **b:** $-x^2 + 4x + 12$

 - **c:** $25x^2 10xy + y^2$ **d:** $6x^2 15xy + 12x$

Lesson 1.1.2 Day 1


- **1-15. a:** More than one function is possible. See sample graph at right.
 - **b:** More than one function is possible. See sample graph at right.

1-16. Let y represent the amount of money (cents) in the piggy bank, and x represent the time (days). y = 2x + 10; See graph and table shown below. A discrete graph would also appropriate.

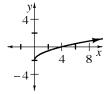


- **1-17. a:** 2
- **b:** 10
- **c:** 100
- **d:** ≈ 142.86

- **1-18. a:** 14, -4, 3x 1
- **b:** f(x) = 3x 1

1-19. a: x = 5, 3

- **b:** $x = \frac{5 \pm \sqrt{73}}{4}$ or $x \approx 3.39, -0.89$
- **1-20. a:** y depends on x; x is independent. Explanations vary.
 - **b:** Temperature is dependent; time is independent.


- **1-21. a:** (x-9)(x+8)
- **b:** 6x(x + 8)

c: $(x-4)^2$

d: (x + 7)(x - 7)

Lesson 1.1.2 Day 2

Graph shown at right. curved; increasing; intercepts: (0, -2) and (4, 0); domain: $x \ge 0$; range: $y \ge -2$; endpoint: (0, -2); continuous; function

1-23. a:
$$x = -13$$
 or 7

1-23. a:
$$x = -13$$
 or 7 **b:** $x = -\frac{3}{2}$ or $\frac{7}{3}$ **c:** $x = 0$ or 3

c:
$$x = 0$$
 or 3

d:
$$x = 0$$
 or 5

e:
$$x = 7$$
 or -3

d:
$$x = 0$$
 or 5 **e:** $x = 7$ or -5 **f:** $x = -\frac{1}{3}$ or -5

b:
$$-4$$

c:
$$\frac{1}{0}$$
 is undefined

b: -4 **c:** $\frac{1}{0}$ is undefined **d:** Justifications vary.

b:
$$x = 12$$

d: no real solution **e:**
$$x = \pm \sqrt{\frac{13}{2}} \approx \pm 2.55$$
 f: $x = \pm \sqrt{7} \approx \pm 2.65$

f:
$$x = \pm \sqrt{7} \approx \pm 2.65$$

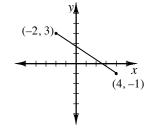
1-26.
$$f(x) = x^3$$

- **1-27. a:** The amount of money you spend is proportional to the amount of gas you buy.
 - **b:** People grow a lot in their early years and then their growing slows down.
 - c: As time goes by, the ozone concentration goes down, although the effect is slowing.
 - d: As the number of students grows, more classrooms are used and each classroom holds 30 students.
 - e: Possible inputs: any non-negative integer; Possible outputs: any non-negative integer

1-28. a:
$$x \approx -7.37$$
 b: $x = 2.8$ **c:** $x = 2$ **d:** $x = -3.25$

b:
$$x = 2.8$$

c:
$$x = 2$$


d:
$$x = -3.25$$

Lesson 1.1.3 Day 1

1-35. a: The numbers between -2 and 4 inclusive or $-2 \le x \le 4$.

b: The numbers between -1 and 3 inclusive or $-1 \le y \le 3$.

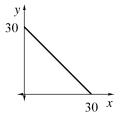
c: No. He is missing all the values between those numbers. The curve is continuous, so the description needs to include all real numbers, not just integers.

d: Sample graph shown at right.

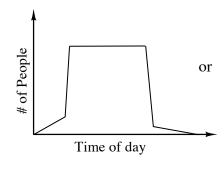
1-36. They are both wrong. The equation needs to be set equal to zero before the Zero Product Property can be applied. $2x^2 + 5x - 3 = 4$ is equivalent to (2x + 7)(x - 1) = 0. x = 1 or $x = -\frac{7}{2}$

1-37. a: $y = \frac{x-6}{3}$ **b:** $y = \frac{x+10}{5}$ **c:** $y = \pm \sqrt{x}$ **d:** $y = \pm \sqrt{\frac{x+4}{2}}$ **e:** $y = \pm \sqrt{x} + 5$

1-38. a: –7


b: 3.5

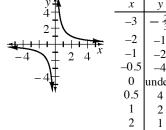
c: The *y*- and *x*-intercepts.


1-39. y = 30 - x; Graph and table shown at right. Answers vary.

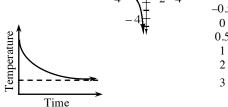
 x
 0
 1
 6
 20

 y
 30
 29
 24
 10

1-40. Sample graphs shown below.

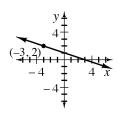


(Schools with an open campus) of People Time of day


1-41. There is an error in line 2. Both sides need to be multiplied by $x: 5 = x^2 - 4x, 0 = x^2 - 4x - 5 = (x - 5)(x + 1), x = -1, 5.$

Lesson 1.1.3 Day 2

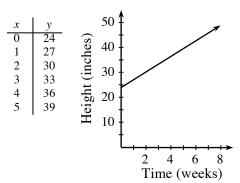
1-42. See table and graph at right. Domain: $x \ne 0$, range: $y \ne 0$, asymptotes are the x- and y-axes, non-linear, two separate curves with reflection symmetry across y = x and y = -x, or 180° rotational symmetry.



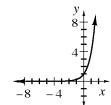
- **1-43. a:** See graph at right.
 - **b:** Yes, the pizza will never get below room temperature.

- **1-44. a:** x = 3 or -2
- **b:** x = 3 or -3
- **1-45.** Solve $x^2 + 2x + 1 = 1$; x = 0 or -2
- **1-46. a:** (0, 6)
- **b:** (0, 2)
- **c:** (0, 0)
- **d:** (0, -4)
- **e:** (0, 25)
- **f:** (0, 13)

- **1-47.** Possible answers listed below.
 - a: Factor and use the Zero Product Property (rewrite) x = -8 or 1
 - **b:** Take the square root (undo) x = -9 or 5
 - **c:** Quadratic Formula $x = \frac{1 \pm \sqrt{141}}{10} \approx -1.09$ or 1.29
 - **d:** Quadratic Formula $x = -2 \pm \sqrt{3} \approx -3.73$ or -0.27
- **1-48. a:** See answer graph at right.
 - **b:** $y = -\frac{1}{3}x + 1$



Lesson 1.1.4


- **1-56. a:** 70
- **b:** 2

c: 43

- d: undefined
- **e:** −∞ < *x* < ∞
- **f**: *x* ≥ 5
- **g:** The square root of a negative number is undefined, whereas any real number can be squared.
- **1-57.** The functions in parts (a), (b), (d), (e), (h), (i), and (j) are polynomial functions. Part (c) has an exponential term. Part (f) is not a function. If part (g) is rewritten in standard form, it will have negative exponents.
- **1-58. a:** y = 3x + 24; Table and graph shown at right.
 - **b:** At 16 weeks. You can see this in the table and graph where y = 72. You can see this growth in the equation by substituting 72 for y and solving for x.
 - c: Possible inputs: all real numbers greater than and including 0
 Possible outputs: all real numbers greater than and including 24

- **1-59.** The error is in line 3. It should be: 0 = 5.4x + 23.7, $x \approx -4.39$
- **1-60.** See graph at right. Exponential function (increasing), horizontal asymptote y = 0, y-intercept (0, 1), D: all real numbers, R: y > 0, continuous function.

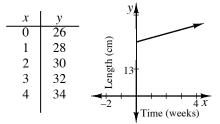
- **1-61. a:** D: x = -1, 1, 2; R: y = -2, 1, 2
 - **b:** D: $-1 \le x < 1$; R: $-1 \le y < 2$
 - **c:** D: $x \ge -1$; R: $y \ge -1$
 - **d:** D: $-\infty < x < \infty$; R: $y \ge -2$
- **1-62.** $x = 70^{\circ}$; straight \angle s are supplementary and ext. \angle .

Lesson 1.2.1

1-67. a: 3

b: $\frac{y^2}{25x^{14}}$

c: 18*x*


1-68.
$$x = 2.5$$

1-69. a: $\sqrt{34} \approx 5.83$ units

b: $\frac{3}{5}$

1-70. a: Table and graph shown at right. y = 2x + 26

b: 37 weeks after Carlo's birthday. In the table and the graph, the point (37, 100). Using the equation, the value of x for which 100 = 2x + 26.

1-71.
$$y = 0$$

a: (-2, 0)

b: (-10,0)

c:(0,0)

d: $(\pm\sqrt{2} \approx \pm 1.41, 0)$ **e:** (5, 0)

f: $(\sqrt[3]{13} \approx 2.35, 0)$

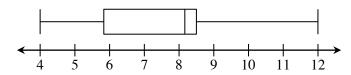
1-72. a:
$$x = \frac{5(y-1)}{3}$$

b:
$$x = \frac{-2y+6}{3}$$

c:
$$x = \pm \sqrt{y}$$

c:
$$x = \pm \sqrt{y}$$
 d: $x = \pm \sqrt{y + 100}$

Lesson 1.2.2 Day 1

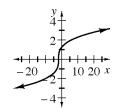

1-80. a:
$$(-1, 9)$$
 and $(5, 21)$

b:
$$x^2 + 17$$

c:
$$x^2 - 4x - 5$$

1-81. a:
$$8.4 - 5.8 = 2.6$$
 cm

b: See boxplot at right.



b:
$$x^2y^2\sqrt{x}$$

c:
$$\frac{x^2}{y}$$

1-83. See graph at right.

Domain: all real numbers Range: all real numbers

1-84. a: D:
$$-2$$
, -1 , 2; R: -1 , 0, 1

b: D:
$$-1 < x \le 1$$
; R: $-1 \le y < 2$

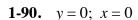
c: D:
$$x > -1$$
; R: $y > -1$

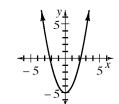
d: D:
$$-\infty < x < \infty$$
; R: $-\infty < y < \infty$

1-85.
$$l = 4w$$
 and $l + w = 22$ or $w + 4w = 22$; The length is 17.6 cm, and the width is 4.4 cm.

1-86.
$$2x - \frac{7}{6} = 3 - 3x$$
; $x = \frac{5}{6}$, $y = \frac{1}{2}$; $(\frac{5}{6}, \frac{1}{2})$

Lesson 1.2.2 Day 2

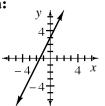

1-87. a:
$$w = 0$$
 or $w = -4$

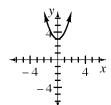

b:
$$w = 0$$
 or $w = \frac{2}{5}$

c:
$$w = 0$$
 or $w = 6$

1-88. Mean: 7.6 g; Sample standard deviation: $\sqrt{\frac{2.56+0.16+0.16+1.96+0.36}{5-1}} = \sqrt{1.3} \approx 1.14 \text{ g}$

1-89. $(\pm\sqrt{5}, 0)$; See graph at right.


1-91. a:
$$x^2 - 1$$


b:
$$2x^3 + 4x^2 + 2x$$

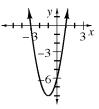
c:
$$x^3 - 2x^2 - x + 2$$

c:
$$x^3 - 2x^2 - x + 2$$
 d: $y: (0, 2); x: (1, 0), (-1, 0), (2, 0)$

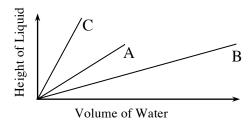
1-92. a:

c: y-intercept (0, 3) for both, x-intercept $\left(-\frac{3}{2}, 0\right)$ for part (a) and none for part (b)

d: (0, 3) and (2, 7), solve $2x + 3 = x^2 + 3$ to get x = 0 or x = 2


1-93. They are similar by $AA \sim$.

a:
$$\frac{n}{m}$$


b:
$$\frac{m}{x}$$

Lesson 1.2.2 Day 3

- **1-94.** Mean: 52 g; sample standard deviation is $\sqrt{\frac{64+64+4+144+4}{5-1}} = \sqrt{70} \approx 8.4 \text{ g}$
- **1-95. a:** x = -6 **b:** $x = \frac{38}{13} \approx 2.92$
- 1-96. a: $\frac{1}{12}$
- **b:** $\sqrt{580} = 2\sqrt{145} \approx 24.08$ **c:** (-9, 1)
- **d:** $y = \frac{1}{12} x + \frac{7}{4}$
- **1-97.** See graph shown at right. Parabola with vertex/minimum (-1, -8); increasing for x > -1; decreasing for x < -1; intercepts (-3, 0), (1, 0),and (0, -6). Line of symmetry at x = -1, domain: $-\infty < x < \infty$; range: $y \ge -8$

- **1-98. a:** D: $-3 \le x < 3$; R: y = -2, 1, 3
 - **b:** D: x = 2; R: $-\infty < y < \infty$
 - **c:** D: $x \ge -2$; R: -∞ < y < ∞
- 1-99. a: $\frac{1}{25}$
- **b:** $\frac{x}{v^2}$ **c:** $\frac{1}{x^2y^2}$
- **d:** $\frac{b^{10}}{a}$
- **1-100.** The independent variable is the volume of water; the dependent variable is the height of the liquid. The graph is three line segments starting at the origin. C is the steepest, and B is the least steep.

Lesson 1.2.3

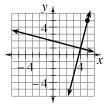
1-103. a: The five-number summary is (1, 19.5, 29, 40.5, 76) cups of coffee per hour.

b: The typical number of cups sold in an hour is 29 as determined by the median. Looking at the shape of the distribution, we see that the median is a satisfactory representation of the distribution. The distribution has a skew. There is a gap between 60 and 70 cups. The IQR is 21 cups. 76 cups of coffee in one hour is an apparent outlier.

1-104. a: $x = \frac{-3 \pm \sqrt{21}}{2} = -3.79, 0.79$

b:	x =	$\frac{7\pm\sqrt{193}}{6}\approx$	3.48, -1.15
		6	,

1-105. Diagrams vary. See graph and table at right. y = 3x

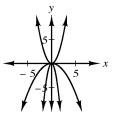

	ı					y	1	ķ.
X	у		E			4		F
1	3		E					/
2	6	•	E	F	4		/	-
3	9	•				f	Ę	-

1-106. See graph at right.

a: See graph at right.

b:
$$y = 4x - 15$$

c: (4, 1)



1-107. a: D: all real numbers except $x \neq 0$; R: all real numbers except $y \neq 0$

b: D: $-5 \le x \le 6$; R: $-4 \le y \le 2$

c: D: all real numbers; R: $y \le 1$

1-108. The negative coefficient causes parabolas to open downward, without changing the vertex. See graph at right.

1-109. (1, 3) and (7, 81)