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a b  s  t  r a  c t

When  do short  lead times warrant  a cost  premium?  Decision  makers  generally  agree that  short lead
times enhance  competitiveness,  but  have  struggled  to  quantify  their  benefits.  Blackburn  (2012)  argued
that  the  marginal  value  of  time  is low when demand  is  predictable and  salvage values  are  high.  de  Treville
et  al. (2014) used real-options  theory  to  quantify the  relationship  between mismatch  cost  and  demand
volatility,  demonstrating that  the  marginal  value  of time increases  with  demand  volatility,  and with
the  volatility  of demand volatility. We use  the de  Treville  et al.  model  to explore  the  marginal  value  of
time  in  three industrial  supply chains  facing relatively  low  demand  volatility,  extending the  model  to
incorporate  factors  such as  tender-loss risk, demand clustering  in an order-up-to  model,  and use of a
target  fill rate  that exceeded  the  newsvendor profit-maximizing  order quantity.  Each of these  factors
substantially  increases  the  marginal  value  of time. In  all of  the  companies under  study,  managers  had
underestimated the mismatch  costs arising from  lead time,  so had  underinvested  in cutting lead  times.

© 2014  Elsevier B.V.  All  rights  reserved.

1. Introduction

The widespread belief that  time-based manufacturing offsets
cost advantages from low-cost producers with longer lead times
was dashed by the massive wave of offshoring from developed
countries that began in  the 1980s. Blackburn (2012, p. 397), an
initial proponent of time-based competition (Blackburn, 1991),
observed that over the past decades supply chains have gotten
longer instead of shorter, and the flow of goods through the chains
has become slower rather than faster. He asked, “Supply chains
pose the following conundrum for time-based competition: if time
is  so valuable, then why are supply chains so long?” Provocatively,
Blackburn demonstrated that the marginal value of time is low
for a wide class of product demand structures, and challenged
researchers to identify the elements that make short lead times
valuable. The demand structure modeled by Blackburn (2012)
entailed the following assumptions:
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1.  The forecast is  not expected to evolve over time: the forecast
distribution for demand over a  given time period in the near
future is  the same as that at a more distant point in time.

2. The cost of overstocking is  limited to the inventory-holding cost,
with no obsolescence or perishability.

3. Demand, although potentially highly variable, is predictable.

In  the early years of time-based competition it was taken for
granted that lead-time reduction always provided value. This belief
was challenged by Fisher (1997), who  categorized products as func-
tional or innovative depending on the predictability of  demand, and
proposed that  supply chains for functional products should empha-
size efficiency over flexibility. The demand characteristics assumed
by Blackburn (2012) correspond to functional products, and the low
marginal value of time predicted by Blackburn’s model is  consis-
tent with Fisher’s recommendation that paying a  cost premium for
flexibility is not  warranted for such products.

The Fisher framework, in  contrast, proposes that innovative
products stand to benefit from flexible supply chains: When
demand is  unpredictable, we can expect a higher marginal value of
time. Fisher observed, however, that  it is  often difficult to determine
whether a product is innovative or functional, as many products
that appear at first glance to be functional incur high market medi-
ation (mismatch) costs and thus qualify as innovative. He listed
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product characteristics that can be helpful in  designating a  prod-
uct as functional or innovative (e.g., contribution margin, margin
of forecast error, product variety). Tools that allow a manager to
quantify demand predictability have not been available, however,
so such designation has remained largely qualitative.

de Treville et al. (2014) proposed a  model that uses quantitative
finance tools to optimize sourcing decisions in  the face of evolution-
ary demand risk. The authors demonstrate that when the forecast
evolves over time and demand volatility is high or stochastic, the
marginal value of time is high and investment in lead-time reduc-
tion is warranted.1 The de Treville et al. (2014) model provides
a useful foundation for quantifying demand unpredictability. We
apply this model to  products in three industrial settings – which
products are difficult to classify as functional or innovative at first
glance – to explore how the marginal value of time changes with
demand characteristics.

The marginal value of time is  captured in  the de Treville et al.
(2014) model as an indifference frontier between make-to-order
and long-lead-time production. This cost-differential frontier com-
pares production at a  given non-zero lead time to  make-to-order
production, showing the cost reduction required to  compensate
for the resulting demand-volatility exposure. Savings that match
the cost-differential-frontier value should render decision makers
indifferent between the two alternatives in the absence of other
forms of supply risk. If a long-lead-time producer offers the product
at a cost that is cheaper than the make-to-order cost by a  per-
centage that exceeds the required cost differential, then the cost
differential covers the supply–demand mismatch cost for that lead
time. If, however, the offered cost differential lies below the cost-
differential frontier, the supply–demand mismatch cost is  greater
than the cost reduction offered by the long-lead-time supplier. The
cost-differential frontier is  based on the assumption that  the order
quantity at a given lead time is  that which maximizes profit, corre-
sponding to that obtained under the standard newsvendor model.

In each of the three supply chains that we  analyzed, managers
underestimated the cost of long lead times. They did not consider
forecast evolution in  supply-chain planning, and underestimated
volatility by considering sales rather than demand data. Tender-
loss risk and demand clustering that occurred from promotional
campaigns and order batching were addressed through forecast-
ing, rather than considered as sources of demand unpredictability.
In two of the companies, the order quantity was based on a tar-
get fill rate rather than the newsvendor profit-maximizing service
level. We  extended the de Treville et al. (2014) model to  quantify
the impact of these increases in demand unpredictability on the
marginal value of time, showing that the increase was  high enough
to warrant lead-time reduction.

Our results do not consider additional supply risk that  arises
from long lead times due, for example, to  lead-time variability, or to
quality or logistics problems. We  also do not consider supply-chain
coordination or pipeline-inventory costs that  arise from extending
the supply chain. These results should thus be considered as a lower
bound on the marginal value of time.

After a review of the literature in Section 2 and of forecast evolu-
tion in Section 3,  Section 4 describes an application of the model to
the Nissan Europe supply chain. In Section 5 we add the possibility
that demand would suddenly fall  to zero to demand volatility, and
apply the model to the GSK Vaccines supply chain. In Section 6 we
consider the impact of clustered demand volatility on the marginal
value of time, applying the model to the supply chain of a Nestlé
Switzerland product. In Section 7 we summarize and conclude.

1 Lead time refers to  the elapsed time between committing production and deliv-
ery:  a firm that holds inventory to offer a short delivery lead time will be subject to
supply–demand mismatch costs from holding that inventory.

2. Literature review

That short lead times can be a source of competitiveness is
well established in  the literature. Suri (1998) provides an in-depth
review of how to reduce manufacturing lead times (see also Hopp
and Spearman, 1996), and how to use short lead times to  gain
competitive advantage. Fisher et al. (1997),  however, observed that
companies struggle to reduce their lead times, and to quantify the
impact of lead-time reduction on profit.

For  short-life-cycle products, short lead times represent one
element of the Quick Response approach that aims to reduce
demand-risk exposure (e.g., Iyer and Bergen, 1997). Quick Response
calls for partial lead-time reduction in  combination with informa-
tion management to bring supply closer to demand (Abernathy
et al., 1999). Fisher and Raman (1996) describe a representative
implementation of Quick Response at an apparel manufacturer that
combined estimation of the coefficient of variation of demand from
the distribution of forecast estimates, observation of early sales,
and access to  short-lead-time “reactive” capacity. Quick Response
achieves much of its reduction in  supply–demand mismatch costs
with quite limited lead-time reduction: much sourcing is done from
long-lead-time suppliers, and reactive suppliers have lead times
that, while reduced by about half of that of the “speculative” capac-
ity,  remain too long to permit production to order (Iyer and Bergen,
1997). Many of the benefits of lead-time reduction can be achieved
through techniques such as postponement (Lee and Billington,
1995)  without actually shortening the supply chain. Thus, even for
fashion (innovative) products, the result from Blackburn (2012)
that lead-time reduction cannot be assumed to  always provide
value is  upheld. Allon and Van Mieghem (2010) considered dual
sourcing between a  low-cost, long-lead-time supplier and a  higher-
cost, reactive supplier. They showed that  allocating a  small portion
of demand to  the reactive supplier sufficed to  minimize total cost,
although the allocation to  the reactive supplier increased when
positive demand autocorrelation increased the variance of demand.

Lead-time reductions allow the order decision to be made
based on an updated demand forecast. Thus, the forecast evolu-
tion process affects the marginal value of time. Milner and Kouvelis
(2005) consider a  product whose demand evolves over time fol-
lowing the martingale model of forecast evolution (Graves et al.,
1986; Heath and Jackson, 1994),  showing the reduction in mis-
match cost obtained from an ability to place a second order closer
to the delivery date. Gallego and Özer (2001) present a model
that quantifies the value of receiving demand information further
in advance of the delivery date, showing that the performance
of the system improves as order information is  received earlier.
Thus, the value of lead-time reduction decreases when firms have
other alternatives to obtain demand information. Wang and Tomlin
(2009) captured the impact of forecast updating on lead-time pol-
icy, assuming a  multiplicative Markovian forecast-update process
(Hausman, 1969). These authors consider lead-time stochasticity as
a type of supply risk, showing that as lead-time reliability decreases,
firms facing demand volatility either order earlier (increasing the
full lead-time period) or pay a  premium to increase lead-time reli-
ability.

As mentioned in Section 1, real-options theoretic models can
be used to calculate the impact of demand volatility on the cost-
differential frontier. de Treville et al. (2014) showed that when the
demand forecast evolves at a constant rate, and the order quan-
tity used is that which maximizes profit (corresponding to the
newsvendor critical fractile), the cost-differential frontier increases
in demand volatility at a decreasing rate, with incremental lead
time reduction of little value. This functional form explains some
of the offshoring that has occurred over the past couple of decades.
A local producer that can produce based on accurate demand infor-
mation because of short lead times may  be well positioned to
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compete against an offshore supplier with long lead times. This
may  not be the case, however, for a local producer with lead times
that are long enough to cause demand-volatility exposure. Sup-
pose, for example, that a  local supplier has a  relative lead time of
0.5. Under constant volatility, the cost differential required to com-
pensate for the offshore supplier’s lead time may  well not be much
greater than that for the local supplier. Being located close to the
market facilitates but does not guarantee short lead times.

The assumption of constant demand volatility does not hold
when the forecast evolves with clustered information arrival, such
as occurs when promotional campaigns shift demand forward or
backward in time. de Treville et al. (2014) used the cost-differential
frontier to illustrate two key managerial insights under stochastic
demand volatility. First, the frontier is increasing in the volatil-
ity of volatility. Second, stochastic volatility increases the marginal
value of incremental lead time. Whereas under constant volatility
increasing relative lead time from 0.7 to  1 might require a low cost
differential, under stochastic volatility a similar increase in lead
time might require a much higher cost differential.

3. Modeling forecast evolution

The forecast-evolution process has a  major impact on how
lead time affects supply–demand mismatch costs. Suppose that a
retailer can place an order at any time between t =  0 (the long-lead-
time option) and t =  T (make to order), and that at each time t ∈ [0,
T] the retailer has access to  a forecast Ft of the eventual demand D.
Following the martingale model of forecast evolution (Hausman,
1969; Graves et al., 1986; Heath and Jackson, 1994), we assume
that the forecast process is  rational in the following sense:

1. The forecast will eventually converge to the correct answer, such
that FT = D. This is equivalent to  assuming that a make-to-order
producer produces the right amount of goods.

2. The forecast updates are  unbiased, such that for any subsequent
times 0 ≤ t  ≤ t′ ≤  T,  the expected value of the forecast update is
zero: E[Ft′ − Ft |Ft] = 0.

These assumptions do not specify the forecast process Ft;  rather
they only place weak constraints on what constitutes an acceptable
forecast model. In particular, this framework can support a  wide
variety of forecast processes with, for example, jumps or stochastic
volatility.

In the following sections, we  examine three industrial cases,
and show how different models for Ft are appropriate for each of
them. Choosing a  good model for Ft is crucial, as it will substan-
tially impact the shape of the cost-differential frontier. Following
de Treville et  al. (2014),  we  first consider a  baseline case where we
assume that the forecast process Ft follows a geometric Brownian
motion with a constant instantaneous volatility �.  We parametrize
our analysis in terms of the relative lead time RLT = t/T.

To give a better idea of what a  constant-volatility forecast pro-
cess looks like, we show some sample paths of the geometric
Brownian motion in  Fig. 1.  The relative lead time between forecast
and delivery increases along the horizontal axis from left to right,
with the forecast being drawn from a lognormal marginal density
with a marginal variance that increases linearly in lead time. The
volatility parameter thus increases with the square root of time,
yielding the “square-root-of-time” rule well known in both finance
and inventory theory. For a  given volatility parameter, the demand
density becomes wider as relative lead time increases. Densities
for  relative lead times of 0.05  (solid line), 0.1 (dashed line), and 1
(line with dashes and dots) are shown in Fig. 2.  The coefficient of
variation � of the demand density for the full lead time determines
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Fig. 1.  Three possible forecast-evolution paths under geometric Brownian motion
for a  given demand process. The  relative lead time refers to the  time remaining
when  the forecast is  made. A relative lead time of 0  refers to  a  forecast made on the
delivery date, so all  three paths depart from an actual-to-forecast ratio of 1 at the
left of the graph.

the constant instantaneous volatility parameter �  via the following

formula �  =
√

log(�2 + 1).
The Black–Scholes model – considered as the workhorse of

financial engineering – assumes that the behavior of  securities
prices is described by a  constant-volatility process. Even though
true volatility is  often stochastic and securities prices may  expe-
rience jumps, the Black–Scholes model is  generally considered to
give a reasonable first idea of option value (e.g., Hull, 1996). The
same holds with demand forecast-evolution processes. The cost-
differential frontier rises with the volatility of demand volatility
(de Treville et al., 2014), and with jumps (Bicer et al., 2013), thus
the constant-volatility assumption provides a  lower bound on the
marginal value of time. The more complicated models considered
in Sections 5 and 6 are refinements of this constant-volatility base-
line: From the baseline we quantify the increase in the marginal
value of time from tender-loss risk and the stochastic volatility that
arises from demand-information clustering.

Inventory-theory models typically specify a  demand density –
normal, uniform, or empirical, for example – rather than a  demand
forecast-evolution process. When we make the forecast-evolution
process our focus, the appropriate marginal density for a  given
lead time emerges. In the absence of information to  the contrary,
it is reasonable to  begin by assuming constant volatility, hence
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wider,  increasing the  expected mismatch cost for a  given target quantile.
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lognormal demand with a known marginal density. Let us note
in passing that the lognormal density eliminates the problem of
negative demand incurred with the normal distribution for  higher
coefficients of variation. If the forecast evolves based on a  stochas-
tic instantaneous volatility, the marginal density for a  given lead
time remains lognormal.

When the ratio between actual and median demand follows a
lognormal density, managers are  often able to estimate distribution
parameters using their intuition, specifying (1) a  demand peak that
they would expect to  encounter as a  multiple of median demand,
(2) how often such a  demand peak would be expected to  occur,
and (3) whether the forecast lies at the median of the actual-to-
forecast ratio. Suppose that managers’ intuition is  that  demand can
be expected to double median weekly demand 2 weeks per 50-
week year. An actual-to-median ratio of 2 is  thus estimated to lie at
the 96th percentile, or �−1(1 −  2/50) =  1.75 multiplicative standard
deviations above the median (i.e., the geometric mean.2 Then
2 = ez� = e�−1(1−2/50)� ,  and �  =  log(2)/�−1(1 − 2/50) ≈ 0.4. When
empirical demand data does not fit a  lognormal density, it is  likely
that the forecast evolution includes jumps. The empirical density
can be decomposed into a  lognormal component and adjustments
to its skewness and kurtosis. Bicer et al. (2013) used an Edgeworth-
series expansion to  calculate the change in mismatch cost that
results from these new values of skewness and kurtosis, noting as
well that the changes to skewness and kurtosis can be used to get
an idea of the magnitude and direction of jumps. To summarize, the
forecast-evolution process is  described by an instantaneous volatil-
ity that is either constant or stochastic, as well as by the intensity of
any jumps that might occur. Jumps result in a  marginal density that
differs from the lognormal. Our experience has been that managers
are better able to share their intuition about the forecast-evolution
process than about the parameters of an empirical marginal density
for a given lead time (corresponding to the results by Schweitzer
and Cachon, 2000), and our  approach estimates the value of lead
time directly from this process. If,  however, the available demand
data takes the form of an empirical marginal density for a given
lead time, one can use that empirical density to get an understand-
ing of the forecast-evolution process by first determining whether
it corresponds to a lognormal, and if not, what kinds of jumps are
suggested by the differences in  skewness and kurtosis relative to
the lognormal.

4. Constant volatility: Nissan Europe

Nissan Europe has historically frozen production schedules 8
weeks in advance in order to  permit production rationalization,
estimated to reduce the assembly cost between 1% and 2%. This
baseline Black–Scholes form of the cost-differential frontier, dis-
cussed above, allows us to estimate the cost of demand-volatility
exposure as lead time increases from 1 week (allowing Nissan
Europe to assemble cars to order) to 8 weeks.

Although lean production emphasizes producing what the cus-
tomer wants, a common practice in the Toyota Production System
– carried over to lean production – is  to aggregate orders over
6–8 weeks and then schedule production and material orders as
evenly as possible over that period (Womack et al., 1990). Liker
(2004) quotes Fujio Cho, who was then president of Toyota Motor
Corporation, arguing that leveling the production schedule plays a
fundamental role in  effective lean production. Liker argues that the
cost of the customer waiting a  few weeks to receive an order is more
than made up by the benefit of eliminating variability from the

2 For a full description of use of the multiplicative standard deviation, see Limpert
et  al. (2001).

production schedule. This level-scheduling approach is currently
followed by Nissan Europe plants.

The cost-differential frontier allows Nissan Europe to explore
this trade-off in finer detail. A  simplified version of the trade-off is
as follows: a  car’s profit depends on whether it is sold immediately
after production. Holding costs combine with “incentives” (con-
cessions made to sell cars when supply is  higher than demand) to
eliminate the profit if not sold immediately. The production sched-
ule is  fixed 8 weeks in  advance, with the resulting cost savings
estimated by Nissan Europe to  be between 1% and 2%. In weeks
where demand exceeds the production quantity, the sales oppor-
tunity is  lost because the customer chooses an alternative brand in
the same price class. The trade-off that we explored was  how  the
mismatch cost from waiting to finalize the production schedule
until demand was observed compares to the efficiency gain  from
freezing the production schedule.

We normalized the 8-week lead time to  1.  Because of the sched-
ule freeze, production is  currently committed at time t =  0 for
delivery at t = 1. Not freezing the production schedule implies a
production commitment at t =  1 for immediate delivery. It  is  also
possible to weigh the advantages and disadvantages of reducing
but not eliminating the lead time: A production commitment made
at t = 0.5 drops the lead time to 1 − 0.5  =  0.5 =  4 weeks.

Following discussions with Nissan managers, we normalized the
price for the higher-margin vehicle to 100 and the cost if  produced
after observing actual demand (thus not freezing the production
schedule) to  50. If the car is not sold immediately, its value is
reduced by a combination of the inventory holding cost and the
expected incentive value required to  move cars that do not immedi-
ately sell. This was estimated by management to amount to around
20% of production cost, leaving a  residual value normalized to 40.
The resulting profit-maximizing critical fractile is  0.83 for the short
lead time. Our initial assumption is that the order quantity is that
which maximizes profit for all lead times, with the critical fractile
increasing to reflect the lower cost incurred at longer lead times.
A cost differential of 8%, for example, increases the critical fractile
from 0.83 to 0.9.

Time-series data for demand was not  available. Historical sales
data gave a truncated picture of demand, as it eliminated stockouts
and did not indicate what part of sales occurred after incentives. We
considered demand peaks that were 1.2, 1.6, and 2 times median
demand 1 week out of 100, so at the 99th percentile. This implied
constant instantaneous volatility parameters of �  =  0.07, 0.2, and
0.3, respectively. The marginal density of the actual-to-median
ratio for a  lead time RLT = 1 − t is logNormal(0, �2 × RLT). Results
from computing the cost-differential frontier with these choices
for �  are shown in Fig. 3.  Manual calculation of the cost differential
for a  given lead time and volatility is described in  Appendix A.  At 7%
volatility, the 1–2% savings from freezing the production schedule
approximately compensate for demand-volatility exposure, with
supply–demand mismatch costs that are about the same as the ben-
efits of rationalization. As  demand volatility increases to 20% (30%),
the required cost reduction increases to over 5% (7%), indicating that
the mismatch costs are  likely to exceed the benefits of freezing the
production schedule by a  considerable margin. Prior to this analy-
sis freezing the production schedule was  not questioned. Managers’
intuition was that  demand volatility was  more likely to  be in  the
20–30% range than at the 7% maximum in  order for the advantages
of the schedule freeze to outweight the resulting mismatch cost.
Thus these cost-differential frontier results – even though based on
managerial intuition about the volatility level rather than historical
demand data – put the topic on the table for discussion.

Extension: reduction in residual value. The Nissan Europe analy-
sis  presented above is based on a  relatively high residual value. If
market conditions reduce this residual value, the marginal value of
time increases. In Fig. 4, we begin with the curve from Fig. 3 where
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Fig. 3. The cost-differential frontier is  increasing in volatility: At a  constant instanta-
neous volatility of 7%, the  cost of demand-volatility exposure for the full lead time is
approximately the same as the 1–2% benefit from  freezing the production schedule.
As  the volatility increases to  30%, the cost of demand-volatility exposure exceeds
the  expected benefit.

the demand volatility is  low enough that the gains from freezing
the production schedule compensate for the increase in demand-
volatility exposure (constant volatility = 7%) at a  residual value of
40 (80% of production cost), then reduce the residual value to  0 and
20 (0–40% of production cost). As  the residual value approaches 0,
the  required cost differential increases to 5.5%.

Now suppose that the average residual value is 80% of pro-
duction cost, calculated by averaging a  high revenue for the first
few units with much lower revenue for lower units. In follow-on
research, Wager and de Treville (2013) showed that the cost-
differential frontier increases not only in the average salvage loss,
but also in its stochasticity. Assuming a  constant salvage-value
heuristic will lead a firm to  systematically undervalue the marginal
value of time even if the constant value assumed is equal to the
expected salvage value.

Extension: increase in target fill rate. Until now, we have assumed
that the order quantity maximized profit. The algorithm under-
lying the cost-differential frontier begins with the make-to-order
cost and the resulting newsvendor critical fractile. As lead time
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increases, the required cost differential increases, which then
increases the critical fractile for given price and salvage value. In
Figs. 3 and 4,  we used this evolving critical fractile to determine the
order quantity.

As we apply the cost-differential frontier in practice, however,
we are often informed that the company bases its order quantity on
a  target fill rate that  tends to be higher than what would maximize
profit. For example, suppose that Nissan were to target a 99.4% fill
rate, which corresponds to  a  99.1% service level for �  =  0.3. Referring
back to  Fig. 3,  we observe that the long-lead-time cost differen-
tial with �  =  0.3 is 7%. The profit-maximizing service level for a 7%
cost differential is  100 − 50(1 − 0.07)/100 − 40 =  0.89, for a fill rate
of 93.5%, lower than the 99.4% target.

In  Fig. 5 we  show how the Nissan Europe cost-differential fron-
tier at 30% volatility increases when we increase the target fill rate
to 99.4% (i.e., a  service level of 99.1% at 30% volatility). We  hold con-
stant price, make-to-order cost, and residual value. As expected,
the cost differential is minimized when the order quantity cor-
responds to the newsvendor critical fractile: Deviations from the
critical fractile increase the marginal value of time.

5. Risk of losing a tender: GSK vaccines

Heath and Jackson’s martingale model of forecast evolution fol-
lows Black–Scholes option pricing in  assuming that the increase
in volatility added from a  one-instant increase in lead time – the
instantaneous volatility – is constant. As we described in  Section 3,
under a constant instantaneous volatility the marginal demand
density for any lead time follows a lognormal distribution whose
variance parameter increases linearly with lead time. The assump-
tion that information arrives in  a  steady flow, formalized in  the
martingale model of forecast evolution as a  constant instantaneous
volatility, is, however, often violated in practice.

Let us now consider what happens to the marginal value of time
when the possibility exists that demand would drop to  zero. GSK
Vaccines faces such a risk due to  the tender structure that applies
too much of the company’s business. The GSK Vaccines supply chain
is extended across several countries and runs at a  high utiliza-
tion, resulting in a  10-month average lead time. The company bids
on an order, and learns as late as 2 months before the delivery
date whether the tender was won  or lost. If the tender is  lost, the
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demand forecast drops to zero and remains there. GSK thus faces
two sources of demand uncertainty: volatility and tender risk.

Senior management estimates the long-term average probabil-
ity of winning a tender to be around 50%. Because the company has
a long lead time that forces it to begin production well before know-
ing  whether the tender was  won, then it will end up discarding all
advance production 50% of the time. Ten months before delivery,
management begins production with no information except this
average probability. If management could reduce the lead time to
9  months, they would either have learned that they had already
lost the tender and could use production capacity otherwise, or
would begin production with a  slightly higher estimated probabil-
ity of winning. If  lead time is reduced to  3 months before delivery,
management’s estimate of the probability of winning given that the
tender has not yet been lost begins to  approach 1.  Shortening lead
times to allow the company to delay beginning production until
the estimated probability of winning the tender has risen to, say,
75% avoids much unnecessary production.3

We  structure the problem using the distribution of the actual-to-
median ratio of demand independent of whether the tender is won.
This makes it easy to see the difference between demand volatility
and tender-loss risk. Price is normalized to 100, the make-to-order
cost is 70, and salvage value is  0. Vaccines produced for one market
cannot be sold elsewhere because of testing and packaging restric-
tions, and shelf life is  short enough that vaccines cannot be held
over until a future tender. We assume a  constant instantaneous
volatility of 20%.

Adding the risk of losing a  tender to  normal volatility exposure is
analogous to asset-default risk, addressed in the finance literature
through the “jump-to-default” model (described in Gatheral, 2006).
The risk of losing the tender is  captured via a  Markov jump term
that reduces demand to zero if a  jump occurs. With this model, the
probability of winning a  tender decays as e−�×RLT for some “default
intensity” � ≥ 0 that  describes the probability of losing the tender
in any given instant, and for a relative lead time RLT = 1 − t.

The current lead time is  around 10 months. The company
informed us that they definitely know whether or not they have
won the tender by  2 months before delivery at the latest (rela-
tive lead time RLT =  0.2).  Thus, we set the default intensity to  0 for
RLT ≤ 0.2. Writing � for the default intensity for lead times longer
than 2 months, the probability of losing the tender at RLT  > 0.2
conditional on not yet having lost it is 1 −  e−�×(RLT−0.2). Given man-
agement’s estimate that 10 months before delivery the probability
of winning a given tender is  around 50%, we  first consider a  default
intensity of � = 0.8. At a  lead time of 5 months (relative lead time of
0.5), the probability e−0.8×(0.5−0.2) of winning the tender increases
to 79%. In Fig. 6 we  vary � from 0 (no tender-loss risk) to 0.8.
With � = 0.8, beginning production 10 months in  advance (a rel-
ative lead time of 1 in the figure) requires a cost differential of over
70%. More generally, we observe that  even modest tender-loss risk
dramatically increases the required cost differential.

These results have led GSK Vaccines to begin a  company-wide
investment in lead-time reduction. Management had previously
assumed lead-time reduction to  be expensive, and the marginal
value of time to be relatively low and avoidable through forecast-
ing. Also, management faced temptation to  consider incremental
lead-time reduction. Incorporating forecast evolution into decision

3 In both cases, GSK wins the same number of tenders on average. In the first case,
the company begins production before all possible tenders, and then wins half of
the competitions it participates in. With the shorter lead time example, it would
only  start manufacturing in  anticipation of 2/3 of tender competitions but win  75%
of  those in which it  participates. The key idea is  that because the company starts
producing later, it can avoid wasting effort on tenders that have been awarded to
someone else.
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Fig. 6. The  required cost differential increases in tender-loss risk. The probability of
losing the tender given that we  have not lost it  so far is 1 − e−�×(RLT−0.2) for RLT ≥ 0.2.
We  vary � from 0  (no tender-loss risk)  to  0.8. The tender-loss risk is eliminated for
relative lead times below 0.2. Volatility is  20%.

making has made the marginal value of time obvious, and has
clearly demonstrated that lead-time reduction activities must tar-
get reducing lead time enough to eliminate tender-loss risk.

This led to another important observation. As soon as decision
makers began to explore why  lead times were long, they immedi-
ately found ways to reduce them at a  cost that is justified many
times over by avoiding demand-volatility exposure. Much of the
lead time  turns out to be caused by a  small number of bottlenecks.
The company is now in  the process of adding capacity to these
process steps, which is  expected to reduce lead times dramati-
cally. Long lead times have also resulted from the supply-chain
tactic of moving production between factories in  search of the
highest capacity utilization. It  is  recognized that the cost savings
from such high utilization are completely dominated by  the cost of
supply–demand mismatch risk. Lead times can be radically reduced
by avoiding such supply-chain extensions.

6.  Stochastic volatility: Nestlé Switzerland

Managers from the Demand and Supply Planning Department
at Nestlé Switzerland observed a  conundrum. A long-shelf-life
product believed to  have low underlying demand volatility – the
archetypal functional product (Fisher, 1997) – had exceptionally
high salvage losses. Around half of what was  produced had to  be
salvaged. The long shelf life  and low demand volatility at the end-
consumer level would normally protect against salvage losses. In
this case, however, product demand was characterized by  clus-
tered information arrivals arising from promotional campaigns and
order batching. The marginal demand density at a given lead time
thus depended not only on  the time until the delivery date, but
also on whether demand was  being shifted forward or backward
in response to promotions and batching. As we will show, this
volatility clustering increased the demand-volatility exposure for
the product to a  level that – in  combination with a high required
fill rate – led to high enough product inventory that even the long
shelf life did not  protect against salvage losses.

One way  to account for such volatility clustering is to use a
stochastic volatility model. Heston (1993) proposed that the impact
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Table  1

Parameter values under constant volatility.

Make to order Full lead time

Price 100 100
Cost 44 39.6
Residual value N/A 36.5
Service level 100% 96%
Fill rate at 20% constant volatility 100% 99.4%
Fill rate at 53% constant volatility 100% 98.7%

of stochastic volatility on the price of an option could be  mod-
eled through the volatility of volatility and the rate at which
instantaneous volatility reverts to  the long-run average volatil-
ity. de Treville et al. (2014) showed how to  incorporate Heston’s
(1993) stochastic volatility model into the cost-differential fron-
tier.

The company had 113 weeks of demand data available. The aver-
age volatility of the weekly log returns was 151%. We  used a thought
experiment to get a  rough estimate of what the volatility of demand
for the product would be without amplification. If the very high
and very low values of weekly demand result from demand that
is moved forward or backward as a  result of promotional cam-
paigns, the middle area should show demand under unamplified
volatility. We  sorted the data and identified a middle range around
a  median of 20  cases where weekly demand varies from 11 to 36
cases, representing the 18th to the 62nd quantile. The ratio of the
upper value to the median (or the median to the lower value) is  1.8.
If the upper and lower values represent three standard deviations
from the median, then � = log(1.8/3) = 0.2. In what follows, we thus
use a constant volatility of 20% to represent the no-amplification
case.

For  this product Nestlé used an order-up-to model with a  weekly
review period and a  delivery lead time that averaged 3 weeks.
Each week Nestlé compared the inventory that was  in  stock, in
the pipeline, and back ordered to  the demand that was  expected to
occur over the next 4 weeks; placing an order that would bring total
inventory to the target service level. Under these conditions the
service level that maximizes profit remains the newsvendor criti-
cal fractile, with the cost of overage a weighted average of inventory
holding and spoilage costs. The average volatility of log returns over
the  110 4-week demand periods was 53%, quite high for a  functional
product whose demand volatility would normally be expected to
be  relatively low.

The price was normalized to 100, and the make-to-order pro-
duction cost to 44. We assumed a  long-lead-time cost of 39.6,
yielding a 10% long-lead-time cost differential. Because the prod-
uct is functional, product not sold during the demand period can
be carried over to  the following period as long as it does not hit its
expiration date. In this case, the newsvendor model is  again carried
out based on the residual value rather than the salvage value, with
the inventory value carried forward decreased by  the inventory
holding cost and the increased risk of obsolescence.

We  can enrich the example by focusing on the case in which
Nestlé’s usual target fill rate of 99.4% corresponds to the service
level that maximizes profit in  the absence of volatility amplifica-
tion. A target fill rate of 99.4% corresponds to a service level of 96%
at a constant volatility of 20%. We  can estimate the residual value
to be 36.5 under these conditions (96 % = 100 − 39.6/100 − 36.5). It
is interesting to note in  passing that an increase in constant volatil-
ity from 20% to 53% reduces the fill rate corresponding to  this
96% service level to 98.7%: a first casualty of increased volatility
even before adding in  stochasticity. For  the make-to-order case, the
service level and fill rate are 100%. Table 1 summarizes the above
parameter values.

Stochastic volatility in the Heston model is operationalized
via four parameters: (1) the long-run average volatility, (2) the

volatility of volatility, (3) how quickly volatility reverts to  the
long-run average after a  shock, and (4) the correlation between
increments of demand and increments of volatility (whether
increases in  demand are expected to be accompanied by  increases
or decreases in volatility).

We  estimated the volatility of volatility and the mean-reversion
rate from the time-series demand data using the square-root
GARCH model proposed by Heston and Nandi (2000) that converges
to  the Heston (1993) closed-form model. We  used a percentile
parametric bootstrap method to derive confidence intervals for
the volatility of volatility and the mean-reversion rate. The deriva-
tion of parameter values is described in  Appendix A. The volatility
of volatility was  estimated (based on 199 bootstrap replications)
to  be 1.41 (141%) with 95% confidence interval [1.35; 1.47]. The
mean-reversion rate was estimated to  be 0.74 with 95% confidence
interval [0.53; 0.99]. The volatility of the log returns unconditioned
on time was 1.51, rising to 2.00  when conditioned on time with 95%
confidence interval [0.055; 2.23].

Much of the above volatility was  eliminated because demand
was pooled over 4 weeks through its order-up-to process. As men-
tioned above, for weeks 4 through 113 we  aggregated data from
that week and the previous 3 weeks to  capture the volatility of 4-
week demand faced by the company when placing a given week’s
order.

A moving sum is  not a  memoryless process, so the Heston
and Nandi (2000) model does not  provide an unbiased estimate
of the volatility of volatility for aggregated data. To resolve this
issue, we cleaned the residuals from autocorrelation (the process
is described in  Appendix A), then applied the Heston and Nandi
(2000) model to the residuals to obtain the volatility of volatility
and mean-reversion rate for the aggregated demand. The volatility
of volatility was 1.16 with 95% confidence interval [1.11;  1.20]. The
mean-reversion rate was estimated to  be 0.95 with 95% confidence
interval [0.45 ; 0.99]. The long-run volatility conditioned on time
was 1.34, with 95% confidence interval [0.043 ; 1.42]. In computing
the cost-differential frontier we used the more conservative 0.53
average volatility estimated from the log returns (not conditioned
on time) rather than the higher Heston–Nandi estimate of 1.34. The
unconditioned estimate lay in the confidence interval and was  more
conservative, so that the cost-differential frontier as calculated can
be  understood as a  lower bound.

The cost-differential frontier is shown in  Fig.  7.  Under constant
and unamplified volatility, the marginal value of the 4-week hori-
zon is less than 5%. Promotional campaigns and other sources of
volatility amplification raise the average volatility to 53%, which
increases the required cost differential to around 9%. Let us now
incorporate the fact that volatility is  stochastic. The long-run
volatility remains 53%, but information arrivals are clustered. The
stochastic volatility results are shown in the top curve in  Fig.  7.
There are two  important managerial insights from this curve. The
required cost differential approaches 30% for full lead time, and
would increase to 40% were we to use the much higher long-run
volatility estimated from the data by the Heston–Nandi model. Sec-
ond, the constant and stochastic volatility curves corresponding to
53% volatility start together at a relative lead time of 0,  but  the
stochastic volatility frontier increases at a  faster rate.

Nestlé has been committed to making production both lean and
responsive, balancing the objective of flexibility against the reality
of the need to fully deploy capital investments. Our results demon-
strate how demand volatility amplification increases the challenge
of achieving such a  balance. When the demand volatility of  a
functional product is not amplified it is possible to be reasonably
flexible while remaining lean. As  volatility amplification increases
mismatch costs – especially in  combination with ambitious fill-
rate goals – there is an increasing trade-off between leanness and
flexibility.
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Fig. 7. The bottom curve shows the  cost of demand-volatility exposure under 20% constant volatility, typical of a  functional product without volatility amplication. The middle
curve  from the bottom assumes constant volatility of 53%. The top curve assumes an average long-run volatility of 53%, a  volatility of volatility of 1.16, and a  mean-reversion
rate  of 0.95. The assumed service level is  96%, corresponding to  the  99.4% Nestlé target fill rate at a 20% constant volatility.

7. Summary and conclusions

Blackburn (2012) argued for the importance of incorporating
the  marginal value of time in  supply-chain decision making. The
model proposed by Blackburn (2012) estimated the marginal value
of time under predictable demand with a  forecast distribution that
did not evolve in time. We capture the marginal value of time by the
cost differential required to compensate for lead time under var-
ious forecast-evolution regimes. The projects described here have
allowed us to work through the implementation of the theoretical
results proposed by de Treville et al. (2014), Bicer et al. (2013),  and
Wager and de Treville (2013).  Application of the cost-differential
frontier to three very different supply chains that cover the gamut
of demand forecast evolution types has allowed us to respond to
Blackburn’s call for better understanding of the marginal value of
time for products that are neither purely functional nor purely
innovative.

We first described the cost-differential frontier to  estimate the
marginal value of time for a Nissan Europe production line. Lack-
ing historical demand data we were able to obtain a  good enough
estimate of demand volatility from managers’ intuition to estab-
lish that the marginal value of time was higher than the benefits
of freezing the production schedule 8 weeks in advance. Work-
ing on this project brought home to us the benefits of working
with demand forecast evolution rather than trying to estimate the
marginal demand density for a  given lead time. Our results from
Nissan Europe provided an intriguing new perspective on standard
lean production theory concerning demand smoothing through
techniques such as heijunka.

The Blackburn model estimated the marginal value of time in
the absence of perishability or obsolescence. We used the cost-
differential frontier to gain insight into how increases in per-unit
overstock costs (salvage or  residual value decreases) affect the
marginal value of time. Inventory theory is built around the con-
cept  of salvage value, where a  product that does not sell during the
demand period is  sold below cost. In  the companies that we  studied,
overstock costs were more likely to  appear as reductions in resid-
ual value, with the value of the item held in  inventory decreasing
according to the inventory holding cost and increased risk of

obsolescence. As expected, reductions in salvage or  resideual value
increased the required cost differential. This exploration aided in
fleshing out the middle ground described by Fisher (1997) con-
cerning products that appear to be functional yet generate high
mismatch costs. As lead times increase, higher volatility expo-
sure may  increase left-over inventory enough to dramatically
reduce residual value, causing a  previously functional product to
experience the mismatches expected from an innovative prod-
uct.

Bicer et al. (2013) extended the cost-differential frontier to  cover
jumps. We applied this extension to GSK’s order structure based on
tenders to show that a  firm required to  commit production before
knowing whether the tender was  won  because of long production
lead times may  face a  high marginal value of time. This tender struc-
ture required that we  consider demand forecast evolution along
two dimensions: volatility and jumps. Again we observed that we
could transform managers’ intuition about demand forecast evo-
lution into parameter values that gave a  good enough picture of
the marginal value of time to  convince managers to give serious
thought to cutting lead times.

The cost-differential frontier assumes a  profit-maximizing
service level. As we worked with companies, we were informed
that the service level prescribed by the newsvendor model was
insufficient, and that the companies set a  higher fill rate. We used
the properties of the lognormal distribution to  calculate the service
level corresponding to a target fill rate at a  given volatility. This
allowed us to estimate the increase in the marginal value of time
from setting a  higher service level than that specified by a  newsven-
dor analysis.

The cost-differential frontier begins with an ideal world where
the order quantity maximizes profit, and the only source of supply-
chain risk is  demand volatility. This means, for example, that lead
times are constant and known, there is no supply risk, loss of
innovation, or  loss of intellectual property. In each of the projects,
the required cost differential exceeded the cost of reducing lead
time. We  were informed of many other sources of supply risk. The
cost-differential frontier thus has served as a  lower bound for the
marginal value of time, with other supply risks making the marginal
value of time even higher.
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Appendix A. Manual calculation of the cost differential
under constant volatility

In this section, we demonstrate how to calculate the cost dif-
ferential for the Nissan constant-volatility example. To make the
results as universally applicable as possible, we will work with the
actual-to-forecast ratio distribution, which is assumed to  follow
a lognormal distribution with parameters � and �2(T  − t) for a
production commitment made at time t for a  delivery date T.  For
simplicity, let us consider the case where the forecast corresponds
to the median of the demand distribution, so that � = 0.  In other
words, we normalize demand by its median. The volatility for the
full lead time T − t =  1 is �.  We  here reproduce the value for �  =  0.3
shown in Fig. 3.  Price is  normalized to 100 and the residual value
is 40% of the price. The short-lead-time cost is  50% of the price. The
cost differential required to  compensate for the volatility is derived
in  the following steps:

1. Estimate the expected profit for the make-to-order case: The
expected value of the actual-to-forecast ratio will be  e�+�2/2 =
e0.09/2 = 1.05. Each unit will make a  profit of 100 − 50 = 50, so
the expected profit per unit forecast will be 50 *  1.05 =  52.

2.  Unless a fill rate is targeted that exceeds the profit-maximizing
critical fractile the order quantity is set using the newsvendor
critical fractile 100 − cL/100 −  40. Let’s begin by  setting cL = 49 to
correspond to the case where freezing the production schedule
by 8  weeks yields a  2% cost reduction as estimated by senior
management. This yields a  critical fractile of 0.85, which is 1.04
geometric standard deviations above the median, yielding an
order quantity of e�+�z =  e0.3×1.04 = 1.36 times the forecast.

3. The fill rate for the lognormal distribution for z standard devi-
ations is calculated using the formula fill rate = �(z −  �) +
ez�−�2/2(1 −  �(z)) =  96%. (The derivation of the fill rate for
the lognormal distribution is  given in a later section of the
Appendix A.)

4. We  apply the fill rate to  expected demand as calculated in  the
first step to  determine expected sales of 1.01 times the forecast.

5. The expected left-over inventory is  the difference between
the order quantity and the expected sales, so 1.36 −  1.01 =  0.36
times the forecast.

6. The expected profit per unit forecast is 100 −  49 =  51 for each
unit of expected sales, less a  49 − 40 =  9 loss for each unit of
leftover inventory =  1.01 ×  51 −  0.36 × 9 =48 per unit forecast.
We  observe that this is  lower than the 52 per unit forecast for
the make-to-order case, so that  at a 30% volatility and full lead
time a 2% cost differential does not suffice to cover the demand-
volatility exposure.

7. By binary search we obtain the long-lead-time cost that yields
the same per unit of forecast profit. This value is  46.5, rep-
resenting a  7% cost differential relative to  the make-to-order
cost.

8. For lead times less than 1, the analysis is repeated, adjusting
volatility from � to �

√
T − t.

Table A.2

Calculation of the required cost differential for the Nissan-Europe case with 30%
volatility.

Nissan calculations for 30%  volatility

Make-to-
order

Full lead
time

Expected demand per unit forecast 1.05 1.05
Profit-maximizing service level 100% 85%
Order quantity per  unit forecast 1.05 1.4
Fill  rate 100% 96.5%
Expected sales per unit forecast 1.05 1.01
Expected left-over inventory per  unit

forecast
0  0.36

Expected profit per  unit forecast with 2% cost
differential

52 48

Required cost differential 0% 7%
Required cost differential if fill rate 99.6%

(service level 98%)
0%  9%

Required cost differential if service level 50% 0% 10%

9. The same analysis can be done beginning with a fixed long-
lead-time cost to determine the maximum cost premium

justified by elimination of costs related to  demand volatility
exposure. In this case, if we start with a  long-lead-time cost
of 49, these calculations establish that a  10% cost premium is
justified by the elimination of demand-volatility exposure.

10. Use of the actual-to-forecast ratio allows us to  separately incor-
porate changes in the forecast such as occur with the tender
losses experienced by GSK Vaccines, or after observing early
sales.

11. We can test the impact of requiring a  service level that exceeds
the newsvendor critical fractile of 85%. If company policy is to
maintain a  fill rate of 99.6% (which corresponds to a service
level of 98%), the required cost differential increases to 9%.

12. We have not  encountered companies that target a  service level
that is  less than the newsvendor critical fractile. Were a com-
pany to  reduce the target service level from 85% to 70%, the
required cost differential would rise to 10%.

Table A.2 summarizes the results of these calculations.

Appendix B. Capturing stochastic volatility parameters
from time-series data

We  use the square-root GARCH model proposed by  Heston and
Nandi (2000) to  estimate parameter values, assuming the following
demand process D(t) over time steps of length �:

log D(t) = log D(t −  �)  + r  + �h(t) +
√

h(t)z(t) (B.1)

where r is  the continuously compounded rate for the time inter-
val �,  z(t)  is a standard normal disturbance, and the conditional
variance h(t) is  explained by

h(t) =  ω  +  ˇh(t − �) + ˛

[

z(t −  �) −  

√

h(t −  �)
]2

(B.2)

If  ̨ and ˇ  are  zero, the process coincides with the discrete-time
geometric Brownian motion found in  the constant volatility model.
The long-run variance can be evaluated as

E[h(t)] =
˛  +  ω

1 − ˇ  − ˛
2

The mean reversion rate is  equal to   ̌ +  ˛
2.
The Nestlé data consists of 113 weeks of demand data aggre-

gated over 4 weeks. The log returns demonstrate autocorrelation,
which we removed using a  moving average model with order 4
(MA(4)). We  then applied the Heston–Nandi model to  the residu-
als. Classical ARMA (autoregressive moving average) processes are
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Fig. 8. Estimated conditional standard deviation ĥ(t)  over time.

constructed from white noise. Let (εt)t∈Z be a white noise process
with mean zero and finite variance �2

ε .  The (εt) form the innova-

tions that drive the ARMA process. A MA(q) process is defined as
the linear sum of the noise (εt),  with (Xt) following a  MA(q) process
if

Xt =
q

∑

i=1

�iεt−i + εt .

Fig. 8 shows the estimated conditional standard deviation ĥ(t)
that nicely imitates the volatility behavior of the underlying pro-
cess.

Appendix C. Calculating the fill rate under lognormal
demand

Demand D is a  lognormal random variable with parameters
(�,�2), with E(D) = e�+�2/2.  Let Q  =  e�+z� denote the order quantity
that is z  geometric standard deviations above the median, corre-
sponding to an in-stock probability of �(z).

An order quantity Q = e�+z� yields expected sales S(z):

S(z) = E[min(Q, D)] =
∫ Q

0

Df (D)dD + (1  − F(Q ))Q

= e�+�2/2�

(

log(Q ) − �

�
− �

)

+  e�+z�
(

1 − �

(

log(Q ) − �

�

))

= E(D)�
(

log(Q ) − �

�
− �

)

+ E(D)ez�−�2/2
(

1 −  �

(

log(Q ) − �

�

))

= E(D)�

(

log(e�+z�)  − � −  �2

�

)

+  E(D)ez�−�2/2

(

1 −  �

(

log(e�+z�)  − �

�

))

= E(D)(�(z − �) + ez�−�2/2(1 − �(z))).  (C.1)

The fill rate �(z) is the ratio of expected sales to expected demand:

�(z) =
S(z)
E(D)

= �(z  − �) +  ez�−�2/2(1 − �(z)).  (C.2)
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