
Q1 

a).  

COMPARE(a,b) 

 

  if SEGMENTS-INTERSECT(x and y coordinates of end points of a and b)then 

    za, zb = z coordinates of the intersection point 

    if za > zb then 

      return ABOVE 

    else 

      return BELOW 

  else 

    return UNRELATED 

 

b). Create a directed graph with vertices corresponding to the sticks. For each stick couple (a, b), 

if a is above b add an edge from a to b, if a is below b add an edge from b to a. Check if the 

graph is cyclic. If so, we cannot pick all of the sticks. If not, pick up the sticks in topological sorted 

order. 

Q2 

A 2-CNF formula can be converted into a directed graph         as: 

 For the variables in the formula        , denote vertex    for   , denote vertex     for     

 For each clause, two edges can be constructed because the logical operation transition 

in the hints.  

We claim that this formula is satisfiable if and only if no pair of complimentary literals are in the 

same strongly connected component of G. If there are paths from u to v and vice versa, then in 

any truth assignment the corresponding literals must have the same value since a path is a chain 

of implications. 

Conversely, suppose no pair of complementary literals are in the same strongly connected 

component. Consider the DAG obtained by contracting each strongly connected component to a 

single vertex. This DAG induces a partial order, which we then extend to a total order using 

topological sort. For each   , if the component of    precedes the component of    , set      

else set     . We claim that this is a valid truth assignment, i.e. that (1) all literals in the same 

component are assigned the same values and (2) if a component B is reachable from A then A, B 

can’t be assigned 1, 0. 

We first prove (1). Assume for the contrary that two literals    and    are in the same strongly 

connected component S but the strongly connected component containing     precedes S in 

the total order and the component containing     is preceded by S. Since    and    are in the 

same component       and      . It also follows that the clauses          and          can 

be obtained. Hence, there must be a path from     to    . This contradicts the total order. 



We then prove (2). Assume for contradiction that there are two connected components A and B 

so that B is reachable from A, but our algorithm assigns 1 and 0 to A and B. Let    and    be 

literals in A and B respectively. Note that there must be a path from     to    . Let    and    be 

the component of     and    . Clearly,    has value 1 and    has value 0. In the total order B 

preceded    and    preceded A. This implies that there is a cycle in the total order.  

It is obvious that this algorithm runs in polynomial time. 

 

Q3 

a). The decision problem can be summarized as: Given a graph         and an integer K, is 

there a subset    of   with K vertices so that    is an independent set? 

To prove it is NP complete, we first show that it is in NP. The verifier function is chosen as 

checking whether        adnd     . For each edge          , it check that at most 

one of u and v is in   . This can be done by checking that there is no edge between any pair of 

vertices in   . It takes        time.  

Then we prove it is NP hard by reducing clique to this problem. Given an undirected graph        , we can define the complement of G as          , where                   . 
The following procedures are very similar to the proof of NP completeness of Vertex Cover 

problem in Theorem 34.12 of the textbook.  

b). The algorithm is straightforward: K start from    , check whether K satisfies the problem by 

calling the black box. If not, decreasing K by 1 then repeat the previous step. If yes, done. It runs 

in      time. 

c). It is easy to observe that if each vertex in G has degree 2, G is a simple cycle. Then an 

independent set of max size can be formed by selecting every other vertex along the cycle 

starting from any vertex until the next vertex to select is or is the neighbor of the start point. 

The size of this set is        . The running time is     . 
d). For the case that G is a bipartite, the independent size of max size is the set of the side with 

the larger number of vertices in the bipartite. The correctness can be easily proved by 

contradiction. The running time is     . 
Q4 

a). The decision problem of this scheduling problem is like: given an integer K, does there exist a 

scheduling of the tasks that gets profit no less than K? 

b). Firstly, we can find a verifier F(x,y) in polynomial time. Given an instance                               , and a schedule              ,where task i is 



scheduled at time     . It can be easily verified if they are not overlapping and the profit is at 

least K in       time. 

Then we can reduce Subset Sum problem to this scheduling problem. For an instance               , we construct an scheduling instance                               , 
and          . This construction procedure takes time       Suppose there is a subset of 

elements of X such that the sum is exactly K, then there is a corresponding schedule of Y. As well, 

if there is a schedule in Y, then for the subset S of tasks that meets deadline,            

because we know all tasks meets the deadlines and no tasks overlap. Then we can also have            because we have the profit limitation. Thus           . 

c). An easy solution of this problem is constructing the table in subproblem (d). Then you can 

choose the highest value in the row K.  

d). we need to figure out is what our optimal subproblems are. We do this by considering an 

optimal schedule over jobs          that runs until time t. The optimal subproblems can be 

generated as: we order the jobs by y increasing deadline. When we consider job      finishing at 

any time t (we assume these are now in sorted order so it has the ith deadline) we can simply 

look back at the optimal way to schedule the i − 1 jobs and whether or not we add       to the 

schedule. We will also make the additional assumption that we leave no time gaps between the 

jobs. It is easy to argue that if we have a schedule with time gaps between jobs, we can also do 

the jobs in the same order with no time gaps and receive the same profit and possibly more. The 
actual algorithm is as follows. We keep a grid of the n jobs versus the time, which can run up till 

d[n] (since the jobs are now sorted by deadline). Notice that since the processing times are 

integers between 1 and n, the maximum time taken to complete all the jobs is at most    . So, if 

we have any deadline which exceeds   , we can simply replace it by   . . Thus, our table is at 

most     . Each cell in the table i, j will represent the maximum profit possible for scheduling 
the first I jobs in time exactly j, assuming that we have no gaps between our jobs. 

The recursion form of the algorithm is like: 

                                                                       
And the base case(the first row of the table) is: 

                                                         
After filling the whole table, we can search through the last row for the highest profit. The 

schedule can be traced back from the cell of the last row by maintaining pointers pointing to 

predecessors. The running time of this algorithm      . 



 

Q5 

a). In order to prove NP-hardness of Bin-Packing, it is sufficient to reduce an NP-complete 

problem to Bin-Packing. Although it is hinted to reduce from subset-sum problem, it is much 

easier to reduce from Partition problem.  

Partition problem is defined as follows: Given a set of numbers A={a1, a2,…,an }. Is there a subset 

of A, B, such that the sum of elements in B is equal to the sum of elements in A-B. 

This problem can be reduced to Bin-Packing as follows:  

Let             . 

Let we have a set of numbers {s1, s2,…,sn } such that si = 2*ai/sumA for 1≤i≤n. 

Then if {s1, s2,…,sn } can be packed into 2 bins, A can be partitioned into 2. 

b). Suppose we have a solution that with k bins where       . Since each bin can hold the 

objects with a total size not greater than 1, the total size of all objects is less than or equal to k. 

This is a contradiction. Therefore, the number of bins cannot be lower than   . 
c). Suppose we have two bins with the size less than or equal to 0.5. Since first-fit puts an object 

to a bin if it fits to the remaining area of the bin, the objects of the second of these two bins 

could be put into the first bin while performing the heuristic. This is a contradiction. 

d). Let the number of bins be k. We know that at least k-1 bins filled more than half.  The last bin 

is greater than the empty space of all these k-1 bins. So if we put the last bin over one of those 

k-1 bins the total size of these two bins would be greater than 1. Therefore we have this 

equation: (k-2)*0.5 + 1 < S which yields k<2S≤    . 
e). From b and d, we have                                . Therefore first-fit 

solution cannot have 2 times more bins than the optimal solution. 

f). We can use max winner tree to find the first fit and update the tree in O(lgn) time  for each 

item. This makes the running time O(nlgn). 

 


