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Eratosthenes, the third librarian of the Great Library of Alexandria, measured the 

circumference of Earth around 240 B.C.E.  Having learned that the Sun passed through 

the zenith
1
 on the summer solstice

2
 as seen in modern day Aswan, he measured the length 

of a shadow on the solstice in Alexandria.  By converting the measurement to an angle he 

determined the difference in latitude – what fraction of a circle spanned the separation – 

between Aswan and Alexandria. Knowing the physical distance between Aswan and 

Alexandria allowed him to determine the circumference of Earth.   

 

Cooperating schools can duplicate Eratosthenes’ measurements without the use of present 

day technology, if desired. Sharing their data permits students to calculate the 

circumference and the radius of Earth. The measurements do not require a site on the 

Tropic of Cancer (or the Tropic of Capricorn) but they must be made at local solar noon 

on the same date.  The schools’ separation must be known and the other school should be 

as close as possible to due north or south of your campus.  (If the schools are at 

significantly different elevations, this will produce some error; having a larger distance 

between the schools will reduce the error.) 

 

                                                
1
 The zenith is the point in the sky directly overhead.  Most people assume it is lower in the sky than it 

actually is.  Looking up, slowly spin your body in place:  the axis of rotation of the sky marks the zenith. 
2
 The summer solstice marks the maximum points above and below the equator in the Sun’s annual journey 

through the sky.  Summer is defined to begin in the northern and southern hemispheres, respectively, when 

it reaches those maximum points.  The latitudes of these maxima, approximately 23.5° North and South, 

define the parallels of latitude known as the Tropic of Cancer in the north and the Tropic of Capricorn in 

the south. 



OBJECTIVE: Make measurements of the lengths of shadows on the same date at local 

noon
3
.  From these measurements, determine the circumference and radius of Earth. 

 

APPARATUS: (1) Build and install, or find on campus, a gnomon (pronounced noh-

mun) to cast the shadow whose length will be measured.  Your gnomon may be 

as simple as a dowel, flagpole, volleyball net support, or fence post.  It is 

important that it be truly vertical.  A circular cross-section is desirable so the 

end of the shadow is easily interpreted.  Make sure the gnomon is positioned on 

a flat, truly horizontal surface large enough for the gnomon’s noontime shadow 

to fall on it during all seasons (the shadow will be longest at the winter solstice).  

There should be an unobstructed view of the Sun at local noon (which can be 

different by more than an hour from clock [Standard Time] noon).  Higher 

gnomons are more impressive but also have “fuzzier,” less distinct shadows at 

their ends, making the length measurement more ambiguous. Use a carpenter’s 

level to make measurements of 90° at two positions separated by about 90° 

around the gnomon to verify the gnomon is truly along a radius from Earth’s 

center (i.e., vertical, perpendicular to the ground).  The carpenter’s level can 

also confirm that the surface around the gnomon is flat and level (thus the 

gnomon perpendicular [normal] to the surface). 

(2) A tape measure will be used to measure the height of the gnomon and the 

length of its shadow on the same plane as its base. 

(3) A scientific calculator (or spreadsheet) for each student or group of students. 

(4) If desired:  A sundial
4
 will provide local solar noon for any date during the 

day(light).  The gnomon itself serves as a sun dial if time marks are made on the 

ground.  

(5) Alternate approach to calculate the clock time of noon:  Map or a Global 

Positioning System (GPS) unit (or cellular telephone with the appropriate app) 

is used to determine your school’s latitude and longitude and azimuth to the 

collaborating school.  See THE UNDERLYING PRINCIPLES below for the 

calculation. 

 

PROCEDURE:   

 

For a measurement of Earth’s circumference, same-day local solar noon measurements of 

the length of the gnomon’s shadow must be made at two locations with a known 

difference in latitude.  A greater latitude difference and a lesser longitude difference will 

improve the accuracy of the final result.  The following steps need to be followed at both 

collaborating schools. 

                                                
3
 Local noon is measured with a sundial, not a clock face.  Given a school’s longitude, the clock time of 

local noon is easily computed or it can be determined by observation. 
4
 A sundial is a calibrated device whose gnomon casts a shadow on numerals indicating time of day.  Often 

the gnomon is tilted to the latitude of the sundial’s position on Earth.  If the sundial’s design includes a 

tilted gnomon, the sundial must be aligned so the gnomon parallels the local north-south meridian.  In other 

words, the gnomon points north.  More generally, the tilted gnomon of a sundial should point toward the 

celestial pole of the hemisphere, north or south, in which it is sited.   



 

Establish the gnomon, in place and vertical.  Measure the height of the gnomon.   

 

Determine the clock time of local noon if a sundial is not being used.  This can be 

accomplished mathematically with GPS or map coordinates and the formulas in THE 

UNDERLYING PRINCIPLES or by observation.   

 

To do this by observation, in advance of the coordinated observation date calibrate the 

gnomon by observing the clock time when the gnomon’s shadow is shortest. Observe the 

gnomon’s shadow for a span of about two hours, marking the ground with chalk or tape 

every 10 minutes, to confirm the clock time when its shadow is shortest.  When daylight 

saving time is in use, the time of local noon can be over an hour later than clock-noon.  

(Note: The standard clock time of local noon changes significantly over monthly intervals 

due to the shape of Earth’s orbit around the Sun.  Measure your local noon on a date as 

close as possible to the day of coordinated observation.)  Alternatively, the clock time of 

local noon can be calculated, as mentioned above, and then confirmed during the 

observations of the gnomon’s shadow length. 

 

Confirm the date when shadow measurements will be made with the partnering school, 

including alternate dates if weather or other events interfere on the primary date.  The 

partner school will need to have made the same preparations as described for your school.   

 

At local noon on the selected date, measure the length of the shadow of the gnomon. 

 

Now the calculations begin.  The length of the shadow (indicated with s in Figure 1) and 

the height of the gnomon (h in Fig. 1) form two sides of a right triangle. The angle at the 

top, ψ (psi), between the hypotenuse and the gnomon, is the one of interest (Fig. 1).   

 

 

 
 

 

Fig. 1.  The tangent of angle ψ is, by definition, the (opposite 

side)/(adjacent side) = (shadow’s length)/(gnomon’s height):   

tan ψ = s/h.   

 

 

 

 

 

Using the inverse tangent function, calculate ψ.   

 

ψ = arctan (s/h)                                                        (1) 

 



(Be sure your calculator is giving the arctan result in degrees rather than radians and uses 

degrees for inputs in other calculations. Some spreadsheets use radians for inputs/outputs, 

and each must be converted from/to degrees.)   

 

Determine the absolute value of the difference in the angles ψ1	  &	  ψ2	  for the two schools, 	  

	  

Δψ	  =	  |ψ1	  –	  ψ2|                                                         (2) 

 

which is the difference in latitude between the two schools if we assume that the sun 

beams are parallel to each other (Figure 2).  

 

 
 

Fig. 2.  In this cross-section of Earth, the latitudes of the collaborating 

schools, φ1	  and	  φ2, are measured relative to Earth’s equator from its 

center.  Dashed line segments are tangent to Earth’s surface at each 

latitude, and represent the local horizontal surface where s is measured 

in Fig. 1. Solid line segments paralleling the Sun’s rays represent the 

edge of a gnomon’s shadow from the top of the gnomon to the ground 

surface.  The gnomons are bold segments extending along the radial 

lines from Earth’s center and have height h in Fig. 1. The small 

triangles that include ψ1	  and	  ψ2 are tilted, miniature versions of Fig. 1.  

Notice that angles ψ1	  and	  ψ2 are different at each school site because of 

their different latitudes. The difference in latitudes,  

Δφ	  =	  |φ1	  -‐	  φ2|	  = Δψ	  =	  |ψ1	  –	  ψ2|. 

 

The fraction of the circumference (F) of Earth spanned by the latitudes of the two schools 

is  

 

F = Δψ/360                                                           (3) 

 



If the schools are directly north/south of each other, the flight distance (D[km]) between 

them (in kilometers or miles) multiplied by 1/F gives the circumference of Earth (C). 

 

C[km] = D[km]/F                                                       (4)   

 

Finding Earth’s radius (R) is easily accomplished by dividing the circumference (C) by 

2π: 

 

R[km] = C[km]/2π                                                      (5) 

 

If the schools do not fall directly along a north-south meridian, more calculation is 

necessary.  The physical distance between schools, the flight distance D[km], is known, 

measured from a map, for instance.  By calculating the angular distance between the 

schools (Equations 6 and 7) the SCALE in [km/degree] can be calculated (Equation 8).  

Then, knowing the schools’ latitudes, the difference in their (angular) latitudes can be 

converted to the physical separation of their latitudes L[km] (Equation 9).  Use L in 

equation (4) in place of D and compute the Earth’s circumference, as before.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  On this stylized globe, two sites and their separation are 

indicated.  Each site is on a meridian of longitude (a great circle), with 

its longitude (λ) and latitude (φ) indicated.  Δ is an arc of a great circle 

as well and is the minimum angular and physical distance between the 

two sites.  The two arcs (90 – λ1,2) and Ω are a spherical triangle that 

can be solved for the angular length of Ω[°].     

 

To determine L, the angular separation of the schools, omega = Ω[°], can be calculated 

using spherical trigonometry’s Law of Cosines:   

 

cos(Ω[°]) = sin(φ
2
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where:   

φ	  = latitude [in decimal degrees, +dd.mm.ss] 

Latitudes in the northern hemisphere are positive; in the southern hemisphere they are 

negative. 

 

λ	  =	  longitude [in decimal degrees, +dd.mm.ss] 

Use the same algebraic sign for the longitudes as long as they don’t straddle the Prime 

Meridian at 0° longitude or the anti-meridian at 180° longitude.  If Ω crosses either of 

these meridians, assign + to one side and - to the other and proceed, taking into account 

the signs algebraically.	  

  

Take the inverse cosine of the solution to (6) to get the angular separation Ω[°]. 

 

Ω[°] = arccos[sin(φ
2
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The scale determined from the angular and physical separations, 

 

SCALE = D[km]/Ω[°]     (8) 

 

can be applied to the difference in the schools’ latitudes.  As noted in Figure 2’s caption 

Δφ	   =	   |φ1	   -‐	   φ2|	   (and	   =	   Δψ	   =	   |ψ1	   –	  ψ2|;	   the EXTENSION gives hints for a geometric 

proof), so  

 

L[km] = Δφ x SCALE    (9) 

 

Of course, having the physical distance and the angular separation of sites on a great 

circle can immediately be turned into Earth’s circumference.  Eratosthenes did not have 

the use of spherical triangle calculations (the rudiments of spherical trigonometry were 

still about two centuries in his future). It’s not known how he determined the physical 

distance between Alexandria and Aswan.  Since using a surveyor’s chain is very time 

consuming and not very practical for actual distance measurements between schools, we 

use more modern mathematics to determine a scale and permit the schools to have 

somewhat different longitudes (as well as different latitudes) for the shadow 

measurements and make the observations to demonstrate the validity of Eratosthenes’ 

method. 

 

THE UNDERLYING PRINCIPLES:   

 

Eratosthenes may have been inspired by the fact that on the summer solstice in Aswan, 

Egypt, a viewer’s shadow obscured the reflection of the Sun going down a well at local 

noon.  There on the Tropic of Cancer, a gnomon would exhibit no shadow whereas 

further north in Alexandria a measurement of the shadow would give the difference in 

latitude between Aswan and Alexandria immediately because ψ2	  in	  Eq. 2 is equal to zero.  



It would then be easy to calculate Earth’s circumference, even without knowing the 

actual latitudes of the two cities. 

 

In reality, any pair of known latitudes can be used directly with equations (2)-(5) to 

calculate Earth’s circumference and radius. 

 

Determining Local Solar Time without a sun dial: 

 

{Note: If you use the minimum length of the gnomon’s shadow to determine local solar 

noon, as described in the Procedure section above, the time difference between local solar 

noon and the local clock time is all you really need to calculate Local Solar Time.} 

 

Standard time zones are defined every 15° of longitude, counted from the Prime Meridian 

at 0° that runs through Greenwich, England
5
.  They span 7.5° both east and west of the 

zone meridian.  Determine the difference between your longitude (abbreviated “long;” 

use GPS or a map)
6
 and the nearest time zone longitude (TZlong, it will be a multiple of 

15°; see the table below).  Then calculate the difference between Standard Time and 

Local Solar Time, LSoT.  Sometimes Daylight Saving Time (called Summer Time in 

some places) must also be included in the calculation.  Confirm that longitudes are 

converted to decimal degrees. Operations using degrees-minutes-seconds instead of 

decimal degrees can be used but must be done and reduced correctly. 

 

U.S.	  &	  North	  American	  Time	  Zones	  

Zone	  Name	   Hawaii	   Alaska	   Pacific	   Mountain	   Central	   Eastern	   Atlantic	  

Central	  

Longitude	  

165°	  

West	  

150°	  

West	  

120°	  

West	  

105°	  

West	  

90°	  

West	  

75°	  

West	  

60°	  

West	  

Time	  

Difference	  

From	  	  0°	  

-‐10	  

hours	  
-‐9	  hours	   -‐8	  hours	   -‐7	  hours	   -‐6	  hours	   -‐5	  hours	   -‐4	  hours	  

Daylight	  

Saving	  Time	  

Difference	  

Not	  

adopted	  
-‐8	  hours	   -‐7	  hours	   -‐6	  hours	   -‐5	  hours	   -‐4	  hours	   -‐3	  hours	  

	  

 

ΔLong = TZlong – long    (10) 

 

The longitude difference turns into a time difference with the conversion 1° = 4 minutes.   

To demonstrate this, consider that the Sun goes from noon one day to noon the next, 

making a full 360° circle above and below the horizon over 24 hours:   

360°/24 hours can be converted as follows.   

                                                
5
 Political time zones on maps usually have more irregular boundaries and spans. 

6
 Many GPS units can be set up to provide a good value of longitude (and latitude) right on their screens.  

Smart phone apps are available for reading longitude and latitude from the phone’s built in GPS receiver.   

Alternatively, paper maps can be measured and read.  On-line maps, like those at http://www.mytopo.com/ 

and at http://www.noaa.gov/ can be used; see DATA SOURCES below for instructions. 



24 hours x [60 minutes/1 hour] = 1440 minutes  

360°/24 hours = 360°/1440 minutes 

Dividing both numerator and denominator of 360°/1440 minutes by 360 yields 

1°/4 minutes. 

   

Δt = ΔLong x 4 [min]              (11) 

 

ST = Δt + LSoT         (12) 

 

Where:  

ΔLong = Difference of the longitude of the standard time zone and the gnomon’s 

longitude
7
 

TZlong = time zone longitude 

long = gnomon longitude 

Δt = Difference from Standard Time 

LSoT = Local Solar Time 

ST = Standard Time 

 

Example A:  You plan to measure the Sun’s altitude at noon (12:00) Local Solar Time in 

February.  Your gnomon’s longitude is 78°34’ west = -78.5667° so your time zone 

longitude is -75°.   

 

ΔLong = -75°-(-78.5667°) = +3.5667°   (10a) 

 

Δt = +3.5667 x 4 = +14.2667 [min]           (11a) 

 

ST = 14.2667 [min] + 12:00 = 12:14.2667 = 12:14:16 local Standard Time     (12a) 

This is the Standard Time at which a sun dial will show 12:00 noon at this site. 

 

Example B:  You plan to measure the Sun’s altitude at noon (12:00) Local Solar Time in 

May.  Your gnomon’s longitude is 82°36’ west = -82.60° so your zone longitude is -90°. 

 

ΔLong = -90°-(-82.60°) = -7.40°          (10b) 

 

Δt = -7.40 x 4 = -29.60 [min]        (11b) 

 

ST = -29.60 [min] + 12:00 = 11:30.40 = 11:30:24 local Standard Time  (12b) 

   

This is the Standard Time at which a sun dial will show noon at this site.  But Daylight 

Saving Time is in effect:  “Spring forward, Fall back.”  Add one hour to the Standard 

Time:  The sun dial will show noon at 12:30:24 on the clock. 

 

                                                
7
 It is very easy to get snagged by this calculation.  Longitudes WEST of Greenwich are NEGATIVE and 

subtractions of negative values may occur.  The examples illustrate some variations.   



DISCUSSION:   

 

Measurements at local noon are required to separate the mixed components of shadow 

length that would occur at other times of day.  Because of the Sun’s apparent annual 

motion around the sky (a reflection of Earth’s orbital motion), shadow measurements 

need to be made the same day.  At some times of year there can be measurable changes in 

shadow length from one noon to the next. 

 

Greater latitudinal separation reduces the effects of measurement errors, be they due to 

the soft shadow edge or uncertainties in the physical distance between measurement sites.  

Lesser longitudinal separation reduces the effect on the SCALE. 

 

The SCALE calculated in equation (8) includes an inherent error (leading to an error in 

Earth’s circumference) if the longitudes of the observing sites are different.  In general, 

the SCALE will be within 10% of the true value if the schools meet the following 

criteria:  

1. The school separations are within D < 1000 km. 

2. The azimuth from the southern school to the northern school (use a map or the 

spherical trigonometry Law of Cosines) is less than 25° east or west of true north. 

 

EXTENSIONS: 

 

Latitude Determination 

 

The school’s latitude can be measured at night using a protractor, thread or fishing 

line, and a spare hexagonal nut (or a few paperclips serving as a plumb bob on the 

thread).   Be sure the thread pivots on the measuring center of the protractor, as illustrated 

in Figure 4.  Make photocopies of the protractor on card stock and distribute the parts to 

all students so they can assemble the instrument themselves.  The thread should pivot 

from the center of the protractor’s semi-circle of angles. 

 

The observer looks along the flat edge of the protractor towards a pole star (Polaris in the 

northern hemisphere, faint Sigma Octantis in the southern hemisphere).  Once the plumb 

bob has settled, a companion with a flashlight can read the angle or a thumb and finger 

can trap the thread in place and the angle can be read indoors.  Common protractor 

designs will require the observer to subtract the measured angle from 90° to give the 

observer’s latitude.  Combined with another observer’s latitude, the calculation follows 

equations (2)-(5) as above.   

 

The pole stars in both hemispheres are not exactly centered on their respective celestial 

poles (Polaris is about 1° off, Sigma Octantis is a little closer).  This will throw off the 

results.   



 

 
Fig. 4.  The addition of a weighted thread to the measuring center of a 

protractor makes a simple angle measurement device.  By looking 

along the base of the protractor at the celestial pole, the thread indicates 

the observer’s latitude.  The thread should pivot from the center of the 

protractor’s semi-circle of angles. (Note that the indicated value may 

have to be subtracted from 90° to represent latitude, depending on the 

protractor’s design.  Remember that making the protractor’s flat side 

horizontal is the equivalent of being at the equator where the latitude is 

0° and most protractors will read 90°.) 

 

Latitude Difference   

 

Have students generate a geometric proof that Δφ	  =	   |φ1	   -‐	  φ2|	   = Δψ	  =	   |ψ1	   –	  ψ2|from 

Figure 2.  Hints:  Make a sketch.  The key is to determine/compare all the angles in each 

triangle (ψ, 90, 90-	  ψ) and along a parallel ray (φ, 90, 180-[90-φ]).  Add a perpendicular 

from the parallel ray to the end of the shadow and compare the values of opposite angles. 

 

DATA SOURCES:   

 

http://www.mytopo.com/ presents topographic maps of the United States.  Pick a location 

(your city’s name and state) and search for it.  Zoom in until your school is visible.  

Center and then enlarge it further and move the cursor to the position of your gnomon 

and read its latitude and longitude just outside the lower left corner of the map.   

 

A similar, slightly clumsier procedure can be followed at http://www.noaa.gov/.  Search 

by city and state and then scroll down on the page to the map on the right side.  

Demagnify, if necessary, and drag the map area around to find your school site, magnify 

it, and then click on the gnomon position to specify the “Requested Location.”  A less 

precise position with elevation appears above the map, specified as the area of the “Point 

Forecast,” with the “Forecast Area” in a green quadrilateral.   

 



Many people know that the North Star, Polaris, can be found by using the “Pointers” on 

the Big Dipper.  One source of directions, among many, is 

 

http://earthsky.org/tonight/use-big-dipper-to-find-polaris-the-north-star.   

 

Finding Sigma Octantis, is more difficult due to its faintness.  Instructions can be found 

here (and elsewhere on the World Wide Web):  

 

http://assabfn.blogspot.com/2010/08/find-south-celestial-pole-scp.html.   

 

To find either of these pole stars, start looking after twilight is complete.  One’s eyes 

should have time to dark adapt before searching.  The sky should be cloud-free, 

transparent, and the horizon in the pole star’s direction should be free of obstructions.  

Observers at lower latitudes may have more difficulty finding these stars.   

 

A very useful discussion, with examples of spherical trigonometry including equation (6), 

can be found at http://www.krysstal.com/sphertrig.html. 
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