IDENTIFY, MEASURE, CALCULATE ANGLES
Program Task: Diagnose cylinder head and valve train problems.

Program Associated Vocabulary:

DEGREES, DURATION, LIFT OVERLAP, TDC

Program Formulas and Procedures:

When diagnosing cylinder head and valve train problems, the technician must determine: degrees, duration (time, measured in degrees a valve is open), lift (the maximum amount, measured in thousands of an inch a valve opens), and overlap (time measured in degrees of crankshaft rotation both intake \& exhaust valves are open)

Remember, in Automotive Technology, the top of a circle (TDC) is 0° whereas the top of a protractor is 90°.

Example: Using the following specs, for a stock cam with smooth idle and good lower RPM torque, determine valve duration, and valve overlap.

Cam Timing: Tappet @.020		
Valve	Open	Close
Intake	$21^{\circ} \mathrm{BTDC}$	$59^{\circ} \mathrm{ABDC}$
Exhaust	$61^{\circ} \mathrm{BBDC}$	$19^{\circ} \mathrm{ATDC}$

1. Intake valve duration: $21^{\circ}+90^{\circ}+90^{\circ}+59^{\circ}=260^{\circ}$
2. Exhaust valve rotation: $61^{\circ}+90^{\circ}+90^{\circ}+19^{\circ}=260^{\circ}$
3. Valve overlap: $21^{\circ}+19^{\circ}=40^{\circ}$

Apply geometric concepts to model and solve real-world

 problemsPA Core Standard: CC.2.3.HS.A. 14
Description: Apply geometric concepts to model and solve real-world problems.
Math Associated Vocabulary:
ANGLE, DEGREES, INTERIOR ANGLES, EXTERIOR ANGLES, VERTICAL ANGLES, CORRESPONDING ANGLES, PARALLEL, TRANSVERSAL

Formulas and Procedures:

Read angle measurement here. Make sure you read the number that started from zero where the angle begins.

Two parallel lines cut by a transversal:

Angles $1 \& 4,2 \& 3,5 \& 8,6 \& 7$ are vertical angles.
Angles $1 \& 5,2 \& 6,3 \& 7,4 \& 8$ are corresponding angles.
If lines m and n are parallel then corresponding angles are congruent, Alternate Interior angles are congruent, and Alternate Exterior angles are congruent.
Vertical angles are always congruent.

Examples:

1. If angle $1=40^{\circ}$, what is the measure of angle 8? Angle 8 must measure 40°, since $\angle 1$ and $\angle 8$ are alternate exterior angles.
2. If $\mathrm{m} \angle 2=3 \mathrm{x}+4$, and $\mathrm{m} \angle 3=\mathrm{x}+8$, solve for x . (Vertical angles are equal.)
$3 x+4=x+8 \quad$ (subtract x from both sides)
$2 x+4=8 \quad$ (subtract 4 from both sides)
$2 \mathrm{x}=4 \quad$ (divide both sides by 2)
$\mathrm{x}=2$

Instructor's Script - Comparing and Contrasting

Most technical applications do not lend themselves to using a protractor. However, protractors can be used to explore, understand or even create technical scale drawings or models such as the valve charts above.

Alternatively, understanding the relative sizes of angles is certainly something students must understand if they are to clearly communicate what they have observed when troubleshooting or analyzing a situation. Protractors can be very useful when preparing students to understand the difference between very small angles $\left(10^{\circ}\right)$, medium angles $\left(45^{\circ}, 60^{\circ}\right)$, acute angles (less than 90°), right angles $\left(90^{\circ}\right)$, or obtuse angles (larger than 90°).

In valve charts, you will notice the free use of TDC (top dead center) and BDC (bottom dead center) when referring to the angles. It is important to realize that when communicating sizes of angles, it is important to include such reference or orientation points which indicate where an angle starts and the direction to measure.

Common Mistakes Made By Students

- Not aligning the index line (line along the bottom of the protractor) with one side of the angle in question.
- Not placing the vertex of the angle at the hole or point at the bottom-center of the protractor.
- Not clearly specifying a reference or starting point for an angle.
- Reading the wrong indicator on the protractor (bottom number versus top number, or vice-versa).

CTE Instructor's Extended Discussion

Technical tasks are usually not presented using this model. Therefore, it is important that technical instructors demonstrate to students how these math concepts link to and are relevant in their technical training and that the math is presented in a way which shows a relationship to the math which CTE students use in their academic school settings.

This T-Chart focuses on valve timing calculations as an example of formulas used by automotive technology professionals especially in speed shops and custom engine builders.

ITEMS NEEDED FOR PAGE \#3:

a. 3-ring piston

b. 4-ring piston

\# 5 \& 6

