

MICROSOFT EXCEL

VISUAL BASIC FOR APPLICATIONS

INTERMEDIATE

Excel Level 6: VBA Intermediate) Contents

IMPORTANT NOTE

Unless otherwise stated, screenshots in this lesson were taken using Excel 2007 running

on Window XP Professional. There may be, therefore, minor differences in the

appearance and layout of dialog boxes and screens if you are using other Excel versions,

or if you are running on Windows 2000 or Windows Vista.

Concepts, discussions, procedures and functionality, however, remain unchanged.

¶

Excel Level 6: VBA Intermediate) Contents

Contents

IMPORTANT NOTE .. 2

CONTENTS ... 3

REVIEW EXERCISE ... 5
Automating a Worksheet Using VBA Basics... 5

LESSON 1 - EXPLORING THE RANGE OBJECT... 6

REFERRING TO A RANGE ... 7
COLLECTIONS ..10
THE CURRENTREGION PROPERTY ...12
THE OFFSET & RESIZE PROPERTIES ..14
EXERCISE ...18

Working with the Range Object ..18

LESSON 2 - VARIABLES, CONSTANTS AND ARRAYS ...19

DECLARING VARIABLES...20
SCOPE AND VISIBILITY ...21
CONSTANTS...22
ARRAYS ...24
DECLARING AN ARRAY ..24
ARRAY TYPES ...26
ASSIGNING VALUES TO AN ARRAY ...31
FILLING ARRAYS USING LOOPS ...33
DYNAMIC ARRAYS ...35
THE ARRAY FUNCTION ...38
EXERCISE ...41

Variables and Arrays ...41

LESSON 3 - USER DEFINED FUNCTIONS ...43

USING EXCEL WORKSHEET FUNCTIONS IN VBA ...44
VBA FUNCTIONS ...46
USER-DEFINED FUNCTIONS ...49
GETTING HELP WITH USER DEFINED FUNCTIONS ..52
DECLARING VARIABLES IN USER DEFINED FUNCTIONS ...54
USING RANGES IN USER DEFINED FUNCTIONS ..55
EXERCISES ...57

User Defined Functions ...57

LESSON 4 - ADD-IN APPLICATIONS ...59

DEFINING AN ADD-IN ...60
CREATING AN ADD-IN FOR USER DEFINED FUNCTIONS ..61
INSTALLING AN ADD-IN ..63
EDITING AN ADD-IN ...64
REMOVING AN ADD-IN ...65
EXERCISE ...67

Working with an Add-In ...67

LESSON 5 – TESTING AND DEBUGGING CODE ..68

TYPES OF ERROR AND DEBUGGING ..69
STEPPING THROUGH A PROCEDURE ..70
DISPLAYING VARIABLE VALUES ..73
BREAK MODE ..76
EXERCISE ...81

Testing and Debugging Code ...81

Excel Level 6: VBA Intermediate) Contents

LESSON 6 – ERROR HANDLING & TRAPPING ...82

ERROR HANDLING USING IF ...83
ERROR TRAPPING ..85
TRAPPING ERRORS WITH ERR NUMBERS ..90
EXERCISE ...95

Dealing with Potential Errors in Procedures ..95

LESSON 7 - BUILT-IN DIALOG BOXES AND CUSTOM USERFORMS ..97

EXCEL DIALOG BOXES ...98
USER-DEFINED FORMS ..99
INSERTING A USERFORM INTO A WORKBOOK ..99
ADDING CONTROLS TO A FORM ..99
FORM CONTROLS DESIGN TOOLS AND TECHNIQUES ... 102
CONTROL PROPERTIES ... 104
PROGRAMMING A USERFORM ... 106
FORM EVENTS ... 111
DISPLAYING A USERFORM ... 113
EXERCISE ... 114

Creating a UserForm ... 114

APPENDIX I – CREATING AN ADD-IN FOR SUB PROCEDURES .. 117

APPENDIX II – LIST OF TRAPPABLE ERRORS AND THEIR CODES ... 119

APPENDIX III – DEBUG.ASSERT... 123

APPENDIX IV – ADDING INTERACTIVITY TO A MESSAGE BOX .. 125

APPENDIX V – SOLUTIONS TO EXERCISES .. 130

INDEX ... 137

¶

Excel Level 6: VBA Intermediate) Review Exercise

REVIEW EXERCISE

AUTOMATING A WORKSHEET USING VBA BASICS

1. Open the file, Daily Profit and Loss.

2. Launch the VBA Editor and open the module sheet in the Daily Profit and Loss project

containing the CreateTable procedure.

3. Add code to the module that:

a. adds formulas in cells B4 and C4

b. formats cells B1 to C2 with a bold font

c. formats cells A2 to A4 with an italic font

d. formats cells A4 to C4 with a grey fill (Tip: ColorIndex = 15)

4. Create a button on Sheet1 of the workbook and assign the CreateTable macro to it.

5. Use this button to run the macro and check that it runs correctly. It should result in

the following.

6. Correct any errors.

7. Enter the following data into the newly created table.

 USA Europe

Sales 35,000 42,000

Costs 25,000 25,000

8. In the same module sheet there is already a procedure named TestProfit that tests

cell B4 and makes the font bold if its value is 15000 or over, and formats it red if

below 15000.

Edit the procedure with a loop so that after it tests cell B4, it also tests cell C4.

9. Assign a keystroke of your choice to this macro and run it to check that it works

correctly. The font in cell B4 should be made red and the font in cell C4 bold.

10. Put right any errors and then save and close the file.

LESSON 1 - EXPLORING THE RANGE OBJECT

In this lesson, you will learn how to:

Refer to ranges

Use collections

Manipulate ranges with the Offset and Resize functions

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

REFERRING TO A RANGE

Discussion

Procedures will almost certainly need to work with ranges; these ranges will usually

differ in size and position in a workbook and hence, there needs to be flexible ways of

identifying and selecting them.

The Range Property

As a result, there are many ways of referring to a range. The first and most commonly

seen after recording a macro is using the Range property:-

Range(reference)

eg. Range(“A1”)

 Range(“B2 : D10”)

An alternative way of selecting a range of cells that can provide more flexibility, is to

separate the first cell from the last one with a comma, eg.

Range("A1", "A10")

...refers to the range A1 : A10 and gives the same result

as using Range(“A1:A10”).

Several (non contiguous) ranges can be referred to by typing them into the Range

argument with commas separating them and quote marks (“) at the beginning and

end, eg.

Range("A1:A10, C1:C10, E1:E10")

... refers to three ranges.

Another way of using referring to a range is from a currently selected cell to another

fixed point in a worksheet, eg.

Range(ActiveCell, ActiveCell.Offset(10, 0))

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

This provides rather more flexibility because it will always refer to the range from the

active cell to the cell 10 rows below it. So, for example, if the active cell is B4, the

range B4 : B14 will be selected.

All the above methods refer to and identify a range object that can then have an

appropriate method or property applied to it, eg.

Range("A1", "A10").Interior.ColorIndex = 15

(add a light grey fill colour to the range A1 : A10)

The Cells Property

The most significant difference between using the Cells property to the Range

property, is that the Cells property identifies cells numerically (using what is called

an Index) AND it can only identify single cells, not ranges.

For example, you cannot use Cells(“A1”) to refer to cell A1 as this would return an

error.

A run-time error message

 Cells(“A1:A10”) would return the same error.

The correct way of using the Cells property is to use an Index number in the brackets.

For example, cell A1 can be referred to in two ways:

Cells(1) or Cells(1, 1)

Cells(1) identifies it as cell number 1 of the worksheet, ie. A1. The Index counts along

the row before returning to the beginning of the next row and resuming from where

it left off. B1, therefore, would be Cells(2), C1 would be Cells(3)... etc.

In Excel 2000 – 03, the last cell in row 1 (IV1) would be referred to with an index of

256 - Cells(256). A2 would then have the index 257 - Cells(257).

In Excel 2007, however, there are 16,384 columns (unless you are running it in

“ compatibility mode”). The last cell in row 1 (XFD1), therefore, would be Cells(16384)

and A2 would be Cells(16385).

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

It makes things easier, therefore, the use the cells property with TWO index numbers,

the first being the row number and the second the column number. For example, A2

can be referred to as:

Cells(1, 1) - the cell that is in row 1 and column 1 of the worksheet (A1).

Cells(2, 1) - the cell that is in row 2 and column 1 of the worksheet (A2)

Cells can also be used on its own as a collection (see page 10). It would then refer to

ALL the cells on a worksheet or a selection, eg.

ActiveSheet.Cells.Clear or just Cells.Clear

...removes formatting and contents from every cell on the

current (active) sheet

Sheets(Sheet2”).Cells.Font.Name = “Calibri”

... formats all cells on Sheet2 to the Calibri font.

numCels = Selection.Cells.Count

... returns to the variable numCels the number of cells in the

selected area

The Cells property is generally more powerful and flexible than the Range property,

although Range is still best used when referring to specific (absolute) cells or ranges.

The Cells property and the Range property can be used together as follows:

Range(Cells(1, 1),Cells(3, 3))

This refers to the range A1 : C3, Cells(1, 1) being A1 and Cells(3, 3) being C3.

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor in the procedure where you want to

write the code.

5. Type the object that you want to refer to.

6. Type a full stop.

7. Type the method or property that you want to apply to

the object.

8. Press Enter.

COLLECTIONS

Discussion

It was explained in the previous topic that Cells may be used on its own to represent

a “ collection.” Relevant methods and properties can then be applied to a whole

collection (or “ type”) of object. For example:

Cells.Select

...select ALL the cells on the active worksheet

Other collections include:

Object Refers to Example

WorkBooks All open Excel files WorkBooks.Close

(closes all open Excel files)

WorkBooks.Save

(saves all open Excel files)

WorkBooks.Add

(creates a new, blank Excel file)

Sheets

or WorkSheets

All the sheets of an

active workbook

Sheets.PrintOut

(prints all the sheets in the current

workbook)

Sheets.Select

(groups all the sheets in the current

workbook)

Sheets.Count

(returns the number of sheets in the

active workbook)

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Columns All the columns of the

current worksheet

Columns.Count

Columns.ColumnWidth = 20

Rows All the rows of the

current worksheet

Rows.Count

Rows.ColumnWidth = 20

ChartObjects All the charts on the

current sheet

ChartObjects.Count

ChartObjects.Delete

ChartObjects.Copy

To identify and refer to a single item in a collection, you normally have to refer to it

by its index number, or by its name (as a string). For example:

 WorkBooks(1) is the first workbook opened (assuming that several are open).

 WorkBooks(“Sales Data.xls”) is specifically the open file named Sales Data.

 Sheets(1) is the first sheet from the left of the workbook.

 Sheets(“January”) is specifically the sheet named January.

 Rows(1) refers to row 1 of the active worksheet.

 Columns(1) is the same as Columns(“A”) and refers to column A of the active

worksheet.

To select a range of columns, for example from B through G, would require the code

Columns(“B : G”).Select. This is the only way to specify a range of columns within a

collection, numbers (eg. Columns(2 : 7) are not allowed.

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor in the procedure where you want to

write the code.

5. Type the object that you want to refer to.

6. Type a full stop.

7. Type the method or property that you want to apply to

the object.

8. Press Enter.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

THE CURRENTREGION PROPERTY

Discussion

Referring to a range using CurrentRegion can be very useful when you do not know

what the range references are going to be, or how many rows and/ or columns it will

have.

The CurrentRegion property identifies a contiguous range on a worksheet (a range

that is bounded by a combination of a blank column and a blank row).

A contiguous range (A3 : B22)

To achieve this, CurrentRegion needs a “ starting point” (an expression that returns a

range object). The starting point can be any cell on the range. The syntax is:

<expression>.CurrentRegion.<method or property>

In the picture above, the code for selecting the contiguous range A3 to B22 might be:

Range(“A3”).CurrentRegion.Select

If a cell is already active on the range, the code could be written as follows:

ActiveCell.CurrentRegion.Select

For example:

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Range(“A1 : G200”).Select

Selection.Copy Destination:= Sheets(1).Range(“A2”)

... will always select the cells from A1 to G200, copy

them and paste them into cell A2 on the second sheet of

the workbook.

Nevertheless, if you want to run the same procedure on a different table that does not

span from cells A1 to G200, then the procedure will not work correctly. Using the

CurrentRegion property, however, it would be successful, eg.

ActiveCell.CurrentRegion.Select

Selection.Copy Destination:= Sheets(1).Range(“A2”)

The example above would require a cell to be selected on the table first, but would

succeed a table containing any number of rows and columns anywhere on the

worksheet.

Another useful way of selecting cells CurrentRegion would be to use arguments for

it. The following example would select the cell 2 Rows down and 2 Columns to the

right, from the first cell in the current region.

ActiveCell.CurrentRegion(2, 2).Select

An alternative method would be to use the activate method. This would be useful if

the current region was selected first and needed to be kept selected. Using activate

will make a cell active without removing any cell selection.

ActiveCell.CurrentRegion.Select

ActiveCell.CurrentRegion(3, 6).Activate

CurrentRegion(2, 2).Activate

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor in the procedure where you want to

write the code.

5. Type the object that you want to refer to.

6. Type a full stop.

7. Type the method or property that you want to apply to

the object.

8. Press Enter.

THE OFFSET & RESIZE PROPERTIES

Discussion

Offset

The Offset property is discussed in the Excel VBA Introduction booklet with respect

to it identifying a single cell that is “away” from another one (see Excel VBA

Introduction (Student Edition), page 63) . For example:

ActiveCell.Offset(1,0).Select

... would select the cell that is 1 row and 0 columns away

from the active cell. If the active cell was B10, therefore,

Offset(1,0) would refer to B11 (one row down, same

column).

The Offset property can also be used to offset an entire range of cells.

The following example moves a selected range 1 cell down and 1 column to the right:

Range(“A1”).CurrentRegion.Select

Selection.Offset(1,1).Select

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Range(“A1”).CurrentRegion.Select

Selection.Offset(1,1).Select

This proves useful where a table has to be selected excluding the top row and left

column.

Resize

Using the Resize function enables a selected range of cells to be made bigger or

smaller by increasing or decreasing the number of rows and columns that it contains.

The new size of the range is “measured” from its top left corner. In the example

below, a current region is selected and then resized to 15 rows and 4 columns.

ActiveCell.CurrentRegion.Select

Selection.Resize(15, 4).Select

ActiveCell.CurrentRegion.Select

Selection.Resize(15, 4).Select

The Resize property proves useful where a table has to be selected excluding the

bottom row and right column. To achieve this, VBA has to do a bit of work for you! It

has to count the number of rows and columns in the table so that a calculation can be

performed to determine how many rows and columns to resize the table to.

The example below uses variables to count the number of rows and columns in a

table (the selection), and then adds 1 to determine the resize parameters:

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

ActiveCell.CurrentRegion.Select

numRows = Selection.Rows.Count + 1

numCols = Selection.Columns.Count + 1

Selection.Resize(numRows, numCols).Select

ActiveCell.CurrentRegion.Select

numRows = Selection.Rows.Count + 1

= 20 + 1 = 21

numCols = Selection.Columns.Count + 1

= 5 + 1 = 6

Selection.Resize(numRows,numCols).Select

The example above could also be written without the use of variables, although this

may make the code more complicated to write and understand:

ActiveCell.CurrentRegion.Select

Selection.Resize(Selection.Rows.Count + 1, Selection.Columns.Count + 1).Select

The Offset and Resize properties work well together as in the following example. A

range is offset by 1 row and 1 column and then resized to 1 row and 1 column less, so

that it excludes the blank row and blank column at the bottom and right.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

ActiveCell.CurrentRegion.Select

numRows = Selection.Rows.Count -1

numCols = Selection.Columns.Count -1

Selection.Offset(1, 1).Resize(numRows, numCols).Select

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor in the procedure where you want to

write the code.

5. Type the object that you want to refer to.

6. Type a full stop.

7. Type the method or property that you want to apply to

the object.

8. Press Enter.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

EXERCISE

WORKING WITH THE RANGE OBJECT

Task - To practice range object methods and functions.

1. Insert a new module in your Personal Macro Workbook and write a sub procedure

named, LayoutTable that:

a. selects a whole table of data;

b. adjusts the width of all the columns to 12pts;

c. formats the font colour of the first column to blue;

d. aligns the text centrally in the first row.

2. Assign this macro to a custom button on your My Macros toolbar.

3. Open the file, Ranges.

4. Run and test LayoutTable on the table in Sheet1 of this workbook.

5. Write another sub procedure in your Personal Macro Workbook named,

FormatNumbers that selects a whole table excluding the top row and the left-

most column and formats it to a currency style.

6. Assign this macro to a custom button on your My Macros toolbar.

7. Run and test FormatNumbers on the table in Sheet 1 of this workbook.

8. Create a final sub procedure in your Personal Macro Workbook named, LastCell

that selects the last cell of a table (the one in the bottom right-hand corner) and:

a. makes the font size 14pts;

b. adds a yellow fill colour; and

c. autofit the column.

9. Assign this macro to a custom button on your My Macros toolbar.

10. Run and test LastCell on the table in Sheet 1 of this workbook.

11. Create a new sub procedure in your Personal Macro Workbook named,

RunAllMacros.

12. Call into this sub procedure the three macros created above.

13. Assign this macro to a custom button on your My Macros toolbar.

14. Run and test RunAllMacros on the table in Sheet2 of this workbook.

15. Save and close the file.

16. Exit Excel to ensure that the Personal Macro Workbook is saved.

17. Re-launch Excel.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

LESSON 2 -
VARIABLES, CONSTANTS AND ARRAYS

In this lesson, you will learn how to:

Declare Variables

Understand Scope and Visibility

Define Constants

Declare Arrays

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

DECLARING VARIABLES

Discussion

Variables that are to be used in a procedure are usually declared at the start of that

procedure in order to identify them and the type of data that they will hold.

In VBA, it is not necessary to declare variables, but by doing so, it is possible to speed

up the procedure, conserve memory and prevent errors from occurring.

Because variables do not have to be declared Visual Basic assumes any variable that

has not yet been used to be a new variable. This means a variable spelled incorrectly

during code writing would not be recognised by Visual Basic.

This problem can be avoided by choosing to declare explicitly every variable. This

tells Visual Basic that every variable will be declared in advance and any others used,

misspelt or not, will be incorrect. When Visual Basic encounters an undeclared

variable, the following message is displayed:

Error Message – Variable not defined

To explicitly declare variables, the following statement is required at the top of the

Visual Basic module:

Option Explicit

Variables are then declared by using the Dim Statement.

Dim variable name

The variable exists until the end of the procedure is met.

The Option Explicit Statement can be set automatically to appear in all modules.

Procedures

1. In the Visual Basic Editor, Select Tools... Options.

2. Select the Editor Tab.

3. Select Require Variable Declaration.

4. Click on the OK button.


The Option Explicit Statement is added to new

modules NOT existing modules.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

SCOPE AND VISIBILITY

Discussion

It is sometimes a necessity to “ scope” a variable correctly, when calling procedures

from within a module or indeed across several modules. The result of scoping these

variables correctly would signify whether or not the variable has maintained its data.

If the data has been lost then, this is known as lost visibility.

A “Local” variable is declared within a procedure and is only available within that

procedure.

A “Module-Level” variable is available to all procedures in the module in which it is

declared, but not to any other modules. Module-level variables are created by placing

their Dim statements at the top of the module before the first procedure.

A “Public” variable is available to every module in the workbook. Public variables

are created by using the Public statement instead of the Dim statement, and placing

the declarations at the top of a module before the first procedure.

To conserve memory, declare variables at the lowest level possible, e.g. do not

declare a variable as public or at module-level if local is sufficient.

Procedures

1. Launch or switch to the VB Editor.

2. Identify the workbook (VBA project) to which you want

to add code in the Project Explorer pane.

3. Open the module sheet containing the code or, insert a

new module.

4. To declare a variable at “module level,” position the

cursor at the very top of the module sheet and type Dim.

To declare a “public,” variable, position the cursor at the

very top of the module sheet and type Public.

5. Type a space.

6. Type the name for the variable.

7. Type a space.

8. Type As.

9. Type a space.

10. Type or select from the list and appropriate data type for

the variable.

11. Press Enter.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

CONSTANTS

Discussion

A constant is a named item that retains a constant value throughout the execution of

a program, as opposed to a variable, whose value may change during execution.

By storing a value as a constant, it indicates to anyone reading or having to edit the

procedure, that wherever you see the constant being used, its value will always be as

assigned in the Const statement. Like many things in programming, it is an example

of good practice and intended to keep the code neat, concise and easily understood.


It is usual to type your constants all UPPER CASE

to distinguish them from VBA words (mixture of

upper and lowercase) and variables (all lower case).

Constants are defined using the Const statement. Constants can be used anywhere in

a procedures in place of actual values. A constant may be a string or numeric literal,

another constant, or any combination that includes arithmetic or logical operators

except Is. For example:

 Sub Font_Colour()

 Const RED = 3

Const BLUE = 5

Const YELLOW = 6

Can then be used thus......

Selection.Font.ColorIndex = RED

Selection.Interior.ColorIndex = YELLOW

Selection.BorderAround ColorIndex:= BLUE

 End Sub

Like variables, constants should be declared in order to inform, prevent errors and

manage computer memory. Constants are not, however, "dimmed" in the same way

as variables. They are declared as type immediately after the name of the constant. In

the example below, a constant has been created to store the value of pi (π).

Const PI as Single = 3.142

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

In the example further up the page, the constants would be declared as follows:

Const RED as Byte = 3

Const BLUE as Byte = 5

Const YELLOW as Byte = 6

Or, in the single line form:

Const RED As Byte = 3, YELLOW As Byte = 6, BLUE As Byte = 5

Procedures

1. Launch or switch to the VB Editor.

2. Identify the workbook (VBA project) to which you want

to add code in the Project Explorer pane.

3. Open the module sheet containing the code or, insert a

new module.

4. Identify the procedure that you wish to declare the

constant in or, start typing a new procedure.

5. Position the cursor immediately below the Sub statement

at the top of the procedure.

6. Type Const.

7. Type a space.

8. Type a name for the constant. Tip: constant names are

normally written all UPPER CASE.

9. Type a space.

10. Type As.

11. Type or select from the list a data type for the variable.

12. Type a space.

13. Type =.

14. Type a value for the constant.

15. Press Enter.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

ARRAYS

Discussion

An array is a special type of variable that can contain many

"elements" of information simultaneously - in essence a large

variable. Think of it as a box containing many separate sections,

rather like pigeon holes in a post room.

An array stores large numbers of values more efficiently that using an equivalent

numbers of individual variables. Not only does an array make better use of computer

memory, but it can be "filled" extremely quickly and flexibly with a minimum

amount of code. Storing a column of 100 numbers in individual variables would take

100 lines of code. With an array, it can be done with just three!

DECLARING AN ARRAY

Discussion

An array must be declared before it can be used. Like a variable, it is declared with a

Dim statement, followed by the name of the array. What makes an array different is

that after the name, there are brackets containing a number (or numbers). This

number (or numbers) denote how many elements the array contains. This is referred

to as the dimension of the array. For example, the following example declares an array

containing 5 elements:

Dim arrData (4)

You may now be asking the question: "Why 4 when the array must contain 5

elements?"

The number 4 is used because it is the upper bound of the array that is used in the

brackets, NOT the number of elements required. Because the lower bound is 0, an

upper bound of 4 does, therefore, indicate that the array contains 5 elements.

Also like variables, it is good practice to declare an array as type. If an array is

declared with a specific data type (As Single, for example), then every element in the

array must be of that type. It is possible, however, to declare an array as a variant, in

which case the elements could contain different data types.

Dim variable (dimensions) as Type

arrData(0) arrData(1) arrData(2) arrData(3) arrData(4)

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Assuming the above array (arrData) will be storing large numbers involving

decimals, the array would be declared as follows:

Dim arrData(4) As Single



Earlier, it was explained that all elements in an

array must be of the same data type. You can get

around this restriction by declaring your array as a

variant. A variant array, however, will consume

more memory than other types.

The same data types as for variables can be used. These are given in the table below:

Data type Memory size Storage capability

Byte 1 byte 0 to 255

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,647

Single 4 bytes -3.402823E38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E38 for positive values

Double 8 bytes -1.79769313486231E308 to

-4.94065645841247E-324 for negative values;

4.94065645841247E-324 to 1.79769313486232E308

for positive values

Currency 8 bytes -922,337,203,685,477.5808 to

922,337,203,685,477.5807

Decimal 14 bytes +/ -79,228,162,514,264,337,593,543,950,335 with no

decimal point;

+/ -7.9228162514264337593543950335 with 28 places

to the right of the decimal; smallest non-zero

number is

+/ -0.0000000000000000000000000001

Date 8 bytes January 1, 100 to December 31, 9999

String

(variable-

length)

10 bytes +

string length

0 to approximately 2 billion

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays



Declaring an array actually reserves memory for the

entire array. VBA does not care whether you fill it

up or not, so be conservative when defining array

elements.

Procedures

1. Launch or switch to the VB Editor.

2. Identify the workbook (VBA project) to which you want

to add code in the Project Explorer pane.

3. Open the module sheet containing the code or, insert a

new module.

4. Identify the procedure that you wish to declare the array

in or, start typing a new procedure.

5. Position the cursor immediately below the Sub statement

at the top of the procedure.

6. Type Dim.

7. Type space.

8. Type a name for the array.

9. Type a space.

10. Type an opening bracket (.

11. Type the upper bound for the array, (this will be a single

number).

12. Type a closing bracket).

13. Type a space.

14. Type As.

15. Type or select from the list an appropriate data type for

the array.

16. Press Enter.

ARRAY TYPES

Discussion

Changing the lower bound

The array described above is referred to as a zero-based array because the lower bound

is 0.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

An array, however, can have ANY number as its lower bound, most usually a 1. This

makes it easier to use the array because it is more natural to the human mind to start

counting from 1 rather than 0!

To create an array with a lower bound that is NOT 0 you have to declare it as follows:

Dim arrData (1 To 5) As Type

The array above would contain 5 elements numbered from 1 to 5.

arrData(1) arraData(2) arrData(3) arrData(4) arrData(5)

If you wish ALL arrays on a module sheet to use 1 as the lower index, you can type

the words:

Option Base 1

 ...at the top of the module sheet (a module-level declaration). This

makes is more convenient because when it comes to declaring arrays in the module's

procedures, you can omit the 1 To part of the declaration. Hence, an array containing

5 elements would be declared as:

Dim arrData (5)

The Option Base 1 statement at the top of the module sheet indicates that the lower

bound is 1. The following extract from the VB Editor clarified the code.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Procedures

1. Launch or switch to the VB Editor.

2. Identify the workbook (VBA project) to which you want

to add code in the Project Explorer pane.

3. Open the module sheet containing the code or, insert a

new module.

4. Identify the procedure that you wish to declare the array

in or, start typing a new procedure.

5. Position the cursor immediately below the Sub statement

at the top of the procedure.

6. Type Dim.

7. Type space.

8. Type a name for the array.

9. Type a space.

10. Type an opening bracket (.

11. Type the lower bound (this will be a single number).

12. Type a space.

13. Type To.

14. Type the upper bound (this will be a single number)

15. Type a closing bracket).

16. Type a space.

17. Type As.

18. Type or select from the list an appropriate data type for

the array.

19. Press Enter.

Multi-dimensional arrays

The arrays described in the previous topics are one-dimensional arrays. A useful

analogy is to imagine the elements in one single row.

Arrays can have up to 60 dimensions, although 1, 2 or 3 are normally used. A 2-

dimensional array, for example, is useful for storing values from a worksheet that are

in columns and rows.

A 2-dimensional array is created by declaring it as follows:

Dim arrData (3 , 2) As Type

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Or,

Dim arrData (1 To 4 , 1 To 3) As Type

Or, if Option Base 1 is used

Dim arrData (4 , 3) As Type

Any of the above would create an array that is 4 elements tall and 3 elements wide.

The example below fills the array with values from the range A1 to C4.

Dim arrData(1 To 4, 1 To 3) As Single

arrData(1, 1) = Range("A1").Value

arrData(1, 2) = Range("B1").Value

arrData(1, 3) = Range("C1").Value

arrData(2, 1) = Range("A2").Value

arrData(2, 2) = Range("B2").Value

arrData(2, 3) = Range("C2").Value

arrData(3, 1) = Range("A3").Value

arrData(3, 2) = Range("B3").Value

arrData(3, 3) = Range("C3").Value

arrData(4, 1) = Range("A4").Value

arrData(4, 2) = Range("B4").Value

arrData(4, 3) = Range("C4").Value

A 3-Dimensional array could be declared as follows:

Dim arrData (1 To 3 , 1 To 2 , 1 To 4) As Type

Think of this array as a cube that has depth as well as height and

width.

 3 3

3

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

To use this array to store values, you would need to refer to all three dimensions, for

example:

ArrData(1 , 1 , 1) = ...

ArrData(1 , 1 , 2) = ...

ArrData(1 , 1 , 3) = ...

ArrData(1 , 1 , 4) = ...

ArrData(1 , 2 , 1) = ...

ArrData(1 , 2 , 2) = ...

ArrData(1 , 2 , 3) = ...

ArrData(1 , 2 , 4) = ...

ArrData(2, 1 , 1) = ...

ArrData(2, 1 , 2) = ...

........etc.

Procedures

1. Launch or switch to the VB Editor.

2. Identify the workbook (VBA project) to which you want

to add code in the Project Explorer pane.

3. Open the module sheet containing the code or, insert a

new module.

4. Identify the procedure that you wish to declare the

multidimensional array in or, start typing a new

procedure.

5. Position the cursor immediately below the Sub statement

at the top of the procedure.

6. Type Dim.

7. Type a space.

8. Type a name for the array.

9. Type a space.

10. Type an opening bracket (.

11. Type the upper bound of the first dimension of the array

(this will be a single number).

12. Type a comma .

13. Type the upper bound of the second dimension of the

array (this will be a single number)

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

14. Continue typing commas and the upper bound of any

additional dimensions that you want your array to have.

15. Type a closing bracket).

16. Press Enter.

17. Type a space.

18. Type As.

19. Type a space.

20. Type and appropriate data type for the array.

21. Press Enter.



Keep in mind that an array should simplify a

process, not complicate it. Arrays can become very

complex, so if the array seems to take on a life of its

own, you might want to rethink your strategy

before things get too complicated!

ASSIGNING VALUES TO AN ARRAY

Discussion

As described above, an array stores its values in elements (separate sections of the

box). Each element has a numeric "address" (Index) to identify where in the array it is

stored . A simple analogy would be to imagine a tall building (the array) where each

floor is identified by a number (the element index).

Floor (6)

Floor (5)

Floor (4)

Floor (3)

Floor (2)

Floor (1)

Floor (0)

Note that the lowest element is not referred to as floor (1) but floor (0). By default,

arrays number their elements starting with 0 NOT 1. The lowest index of an array

(usually number 0) is known as the lower bound. The highest index of the array is

known as the upper bound.

As with a variable, creating an array starts with giving it a name. The naming rules

for variables apply equally to arrays and are given below:

 Single characters (eg. a, b, c, x, y, z) should be avoided unless the array if being

used for simple counting purposes. Using this type of name can cause

ambiguity and it is better to use descriptive, but concise, names for your array,

eg: newnames, salesfigs, startdates, numcells.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

 An array name must start with a letter and not a number. Numbers can be

included within the name, but not as the first character, eg. salesfigs1 but not

1salesfigs.

 The first character of an array name should be left lowercase. Because VBA

words always start with an uppercase character (eg. ActiveCell, WorkBook,

Cells, etc), keeping the first character lowercase helps make your arrays (like

variables) stand out more clearly in the sub procedure.

 Avoid using names that conflict with VBA words such as: “activecell” ,

“ sheets” , “ font” , “ cells” , etc.

 Spaces cannot be used in array names. You can separate words by either

capitalisation, eg. newNames, or by using the underscore character, eg.

new_names.

 Most punctuation marks (eg. , . : ; ? -) and special characters (eg. $, %, ^, &, #,

}) cannot be used.

 An array name can be no longer than 250 characters.


It is common practice to commence a variable name

with the prefix – arr.

The example below shows how to create an array named arrData that stores the

values in the range B11:B16 in its elements numbered from 0 to 5.

arrData(0) = Range("B11").Value

arrData(1) = Range("B12").Value

arrData(2) = Range("B13").Value

arrData(3) = Range("B14").Value

arrData(4) = Range("B15").Value

arrData(5) = Range("B16").Value

arrData(0) through to arrData(5) can be used like normal variables. The following

example returns the contents of the above array into the range(D10:D15) of Sheet2.

Sheets("Sheet2").Range("D10").Value = arrData(0)

Sheets("Sheet2").Range("D11").Value = arrData(1)

Sheets("Sheet2").Range("D12").Value = arrData(2)

Sheets("Sheet2").Range("D13").Value = arrData(3)

Sheets("Sheet2").Range("D14").Value = arrData(4)

Sheets("Sheet2").Range("D15").Value = arrData(5)

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Procedures

1. Launch or switch to the VB Editor.

2. Identify the workbook (VBA project) to which you want

to add code in the Project Explorer pane.

3. Open the module sheet containing the code or, insert a

new module.

4. Identify the procedure that you wish to declare the

constant in or, start typing a new procedure.

5. Position the cursor in the procedure where you want to

assign values to the array.

6. Type the name of the array.

7. Type an opening bracket (.

8. Type the index number of the array element where you

want to store the value (this will be a single number).

9. Type a closing bracket).

10. Type a space.

11. Type =.

12. Type a space.

13. Type the value that you want to store.

14. Press Enter.

FILLING ARRAYS USING LOOPS

Discussion

In the examples above, the elements in the array were filled with values individually

(eg. arrData(1) = Range("A1").Value). This would be very time consuming where

many values are concerned, and lacking in flexibility.

A common method, therefore, of filling an array is by using a For... Next loop. The

example below fills an array with values from the range A1 to A10. By referring to

the range with the Cells property, and making use of the For loop variable, the array

can be loaded in a fraction of a second.

Dim arrData(1 To 10) As Integer

Dim i as Byte

For i = 1 To 10

 arrData(i) = Cells(i, 1).Value

 Next i

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

The value in each element of the array can then be manipulated as necessary.

In the example below, the array, arrData, is filled with values from range A1 to A10

of Sheet1. The values are then returned to range A1 to J1 of Sheet2 with an additional

15% added.

Dim arrData(1 To 10) As Integer

Dim i As Byte

For i = 1 To 10

 arrData(i) = Sheets("Sheet1").Cells(i, 1).Value

Next i

For i = 1 To 10

 Sheets("Sheet2").Cells(1, i).Value = arrData(i) * 1.15

Next i

The following example uses a nested For... Next loop to fill a 2-dimensional array

with values from the range A1 to C3.

Dim arrData(1 To 3, 1 To 4) As Integer

Dim i As Byte

Dim j As Byte

For i = 1 To 3

 For j = 1 To 4

 arrData(i, j) = Cells(i, j).Value

 Next j

Next i

Procedures

1. Launch or switch to the VB Editor.

2. Identify the workbook (VBA project) to which you want

to add code in the Project Explorer pane.

3. Open the module sheet containing the code or, insert a

new module.

4. Identify the procedure that you wish to declare the

constant in or, start typing a new procedure.

5. Position the cursor in the procedure where you want to

assign values to the array.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

6. Type For.

7. Type a space.

8. Type a variable name for the For loop (eg. i).

9. Type =.

10. Type the lower bound of the array that you want the loop

to fill.

11. Type a space.

12. Type To.

13. Type a space.

14. Type the upper bound of the array that you want the

loop to fill.

15. Press Enter.

16. Type the name of the array.

17. Type an opening bracket (.

18. Type the variable name that you have used for the loop.

19. Type a closing bracket).

20. Type a space.

21. Type =.

22. Type a space.

23. Type the value that you want to store.

24. Press Enter.

25. Type Next.

26. Type a space.

27. Type the variable name for the loop.

28. Press Enter.

DYNAMIC ARRAYS

Discussion

In earlier examples, we have known what size to make the array in advance, and

hence, been able to create the appropriate number of elements and/ or dimensions.

This is known as a fixed-size array.

Sometimes, you may not know how many elements you need in an array until it has

been calculated out, usually in the form on a variable. In these cases, you declare a

dynamic array by creating a name for the array, adding brackets but leaving them

empty, eg.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Dim arrData() As Type

Once the number of elements and dimensions for the array have been determined, it

can be declared again but using the Redim statement. In the following example, a

dynamic array is declared at the beginning of the sub procedure. The number of

elements required is then calculated out and the array is redimensioned to the correct

size.

Dim arrData()

(declares the dynamic array)

numCels = Selection.Cells.Count

(counts the number of cells in a selected area of the worksheet)

ReDim arrData (1 To numCels) As Integer

(creates an array with the same number of elements as there are cells in the selected

area)

A dynamic array can be redimensioned as many times as necessary, but you cannot

change its data type from how you originally declared it. For example, the code

below would give an error message:

Dim arrData() As String

(declare dynamic array)

var1 = Selection.Cells.Count

(calculate size of array)

ReDim arrData(1 To var1) as Integer

(redim array as different data type)

Error Message

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

If all the elements in a dynamic array have been filled with values, and you need to

make it bigger, you can redim it again. Beware, however, that you may lose all the

original values in it. To avoid this happening you must use the Preserve keyword

after ReDim.

In the example below, the dynamic, 1-dimensional array arrData(1 To 4) has been

already been filled with values. It is then redimmed to make it bigger by two extra

elements (1 To 5). The keyword Preserve is used in the ReDim statement so that the

values in (1 To 3) are not lost.

Dim arrData() as String

(declare dynamic array)

ReDim arrData (1 To 3)

(redimension array to contain 3 elements)

arrData(1) = "Tom"

arrData(2) = "Harry"

arrData(3) = "Joe"

(fill array)

Redim Preserve arrData (1 To 5)

(redeclare array to make it bigger but retain its existing values)

arrData(4) = "Sally"

arrData(5) = "Jane"

(fill additional elements with values)

If Preserve had not been used, arrData(4) and arrData(5) would have successfully

stored Sally and Jane, but Tom, Harry and Joe would have been lost from arrData(1),

(2) and (3).



Once you have finished using a dynamic array, you

can use a ReDim statement to reclaim the memory

your array consumed, eg ReDim arrData(0 , 0) or

Erase arrData.

Procedures

1. Launch or switch to the VB Editor.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

2. Identify the workbook (VBA project) to which you want

to add code in the Project Explorer pane.

3. Open the module sheet containing the code or, insert a

new module.

4. Identify the procedure that you wish to declare the

constant in or, start typing a new procedure.

5. Position the cursor immediately below the Sub statement

at the top of the procedure.

6. Type Dim.

7. Type a space.

8. Type a name for the array.

9. Type a space.

10. Type an opening bracket (.

11. Type a closing bracket).

12. Press Enter.

13. Position the cursor further down the code where you

want to dimension the array.

14. Type ReDim.

15. Type an opening bracket (.

16. Type the dimension(s) for the array

17. Type a closing bracket).

18. Press Enter.

THE ARRAY FUNCTION

Discussion

The Array function is an easy way to create and fill an array with values. Type all the

values that you want to store into the function argument separated by commas and it

will return a simple, 1-dimensional array that you can use in the same order as the

values were typed in.

 The first element of the Array function always has an index of 0, irrespective of

any Option Base statement.

 The Array function always returns an array of data type Variant.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

Example 1 – Create array from a list text strings

Dim arrWkDays () as Variant

arrWkDays = Array("Mon","Tue","Wed","Thu",Fri")

Example 2 – using numbers as arguments

Dim arrTens as Variant

arrTens = Array(10, 20, 30, 40, 50, 60, 70, 80, 90)

Returning values from the Array function

As for arrays in general, the name of the array followed by the required element

index number in brackets, eg.

In example 1, Range("A1").Value = arrWkDays(0) would return Mon.

In example 2, Range("A1").Value = arrTens(4) would return 50.

 Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor immediately below the Sub statement

at the top of the procedure.

5. Type Dim.

6. Type a space.

7. Type a name for the array.

8. Type a space.

9. Type As.

10. Type a space.

11. Type Variant.

12. Press Enter.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

13. Position the cursor where you want to assign values to

the array function.

14. Type the name of the array as previously declared.

15. Type =.

16. Type Array.

17. Type an opening bracket (.

18. Type the value(s) that you want the array to store,

separating each one with a comma.

19. Type a closing bracket).

20. Press Enter.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

EXERCISE

VARIABLES AND ARRAYS

Task 1: Write a procedure that prompts the user to enter data, using variables and arrays.

1. Open the file Forecast. This workbook already contains a macro named

CreateNewForecast that makes a copy of the sheet - Template - at the end

of the workbook.

2. Add to this sub procedure, VBA code that:

a. prompts the user by means of an Input Box, for a month name to give

to the sheet. This value must be stored in a locally declared variable,

and then used to rename the sheet.

b. prompts the user by means of four Input Boxes, for some values to

enter into cells B2, C2, D2 and E2. These values should be stored in a

locally declared, 1-dimensional array and then entered into the

appropriate cells.

(Tip: Try using FOR NEXT loops for this purpose)

3. Assign the sub procedure to a worksheet button on the Template sheet and

then run and test it using some made-up data of your own. Correct code if

necessary.

4. Save and close the file.

Task 2: Use constants for storing data.

1. Insert a new module sheet into your Personal Macro Workbook.

2. Declare at module level, a constant named, PURPLE and assign to it the

value, 29.

3. Declare at module level, a constant named, ORANGE and assign to it the

value, 45.

4. Declare at module level, a constant named, ROSE and assign to it the

value, 38.

5. Declare at module level, a constant named, BLUE and assign to it the

value, 5.

6. Using the above constants, write a procedure named, ApplyColours that

formats:

a. the first row of a table with a purple background and a rose font;

b. the first column of a table with an orange background and blue

font.

Excel Level 6: VBA Intermediate) Variables, Constants and Arrays

7. Open the file, Sales Analysis.

8. Assign the macro created above to a custom button on your My Macros

Toolbar.

9. Run and test the sub procedure on the first two sheets of this workbook.

Correct code if necessary.

10. Save and close the file.

Task 3: Use a 2-dimensional array for storing data.

1. Open the file, Sales Analysis.

2. Switch to the VB Editor and insert a module sheet into this workbook.

3. Write a sub procedure named, TransferData that uses a 2-dimensional

array to store the data in range B2 to E7 of the sheet named Gross.

4. Add to the procedure additional code that returns the data discounted by

20% to the same range on the sheet named Net.

5. Assign this macro to a worksheet button on the Gross sheet.

6. Run and test the macro again. Correct any errors.

7. Save and close the file.

LESSON 3 - USER DEFINED FUNCTIONS

In this lesson, you will learn how to:

Use built-in Excel functions in a sub procedure

Use VBA functions in a procedure

Create and use custom function procedures

Excel Level 6: VBA Intermediate) Function Procedures

USING EXCEL WORKSHEET FUNCTIONS IN VBA

Discussion

Excel comes with many built-in functions as standard. In Excel 2007, the number is

approximately 350, although in previous versions it was significantly less. Each

function is designed to carry out a calculation by being given just a few pieces of

information. In some cases, the calculation performed is difficult to do by other

methods, but in many cases, the calculation performs a very simple or menial task,

but with greater ease and economy of time for the user.

Probably the best know Excel function is the “SUM” function. The sum function is

designed to add up numerical values in cells. All functions come in two parts, a name

and argument(s), for example:

= SUM (Range)

= IF (Logical Test, Value if True, Value if False)

You can use many built-in Excel functions in sub procedures. In Excel 2007, the

number is approximately 280, but earlier versions had significantly less. The syntax is

as follows:

Application.WorkSheetFunction.<function name> (< argument(s)>)

To help you indentify available functions, the Auto Members List displays a list of

them after typing the dot (.) following WorksheetFunction.

Members list of Excel worksheet functions

The following statement returns into cell G10, the sum of the values in cells G2 to G9.

Range(“G10”).Value = Application.WorkSheetFunction.Sum(Range(“G2:G9”))

Name Argument

Name Arguments

1 , 2 , 3

Excel Level 6: VBA Intermediate) Function Procedures

Note that the argument for the Sum function is not expressed in the usual Excel way,

(eg. G2:G9), but as a valid VBA reference to G2:G9, ie. Range(“G2:G9”).

Alternatively, Selection can be used as the argument. The following example selects

the range G2:G9 and returns the SUM result of the selection into cell G10.

Range(“G2:G9”).Select

Range(“G10”).Value = Application.WorkSheetFunction.Sum(Selection)

The statement can be shortened by omitting WorksheetFunction. This is fine if you

know the name of the function that you wish to use, because it will not produce the

relevant Auto Members List to help you.

Range(“G10”).Formula = Application.Sum(Range(“G2:G9”))

Note that both examples above do NOT write the actual formula into the cell. The

calculation is performed in the sub procedure, and the result only is returned to the

cell.

To show the SUM function in the cell, the following code has to be used:

Range(“G10”).Formula = “=Sum(G2:G9)”

This literally writes the formula into the cell as a string. Excel then takes over and

carries out the calculation.

For a full list of VBA functions (Excel 2003 but valid for other versions too) can be

found at the following Web address:

http:/ / msdn.microsoft.com/ en-us/ library/ aa221655(office.11).aspx

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor in the procedure where you want to

use the workbook function.

5. Type the object to which you want the worksheet

function to refer to, eg. ActiveCell

6. Type a full stop.

7. Type Value.

Excel Level 6: VBA Intermediate) Function Procedures

8. Type =.

9. Type Application

10. Type a full stop.

11. Type WorkSheetFunction.

12. Type a full stop.

13. Type the name of the function that you want to use or,

select it from the list.

14. Type an opening bracket (.

15. Type the argument(s) for the function (this has to be in a

VBA form, eg. Range(“A1:A5”) NOT A1:A5).

16. Type a closing bracket).

17. Press Enter.

VBA FUNCTIONS

Discussion

In addition to the Excel worksheet functions, there are approximately 92 VBA

functions (in Excel 2007) that can be used in sub procedures. In many cases, they

perform equivalent calculations to the Excel worksheet functions, but in some cases

augment them.

In some cases, where there is a VBA function to carry out a calculation, the equivalent

Excel worksheet function cannot be used, and will not appear in the Auto Members

List following WorksheetFunction..

Examples of VBA functions that have equivalent Excel worksheet functions, but

which are not written the same are:

VBA Function Excel Worksheet

Equivalent

Description

Date =TODAY() Returns the current system date.

Rnd =RAND() Returns a random number greater

than or equal to 0 and less than 1.

UCase(string) =UPPER(text) Converts text to upper case.

LCase(string) =LOWER(text) Converts text to lower case.

IsNumeric(expression) =ISNUMBER(value) Checks whether a value is a number

and return TRUE or FALSE

Examples of VBA functions that have equivalent Excel worksheet functions, and

which are written the same are:

Excel Level 6: VBA Intermediate) Function Procedures

VBA Function Excel Worksheet

Equivalent

Description

Round(expression,digits) =ROUND(number,digits) Rounds a number to the closest

number of digits, eg.

=ROUND(34.567,1) displays

34.6. =ROUND(34567,-3)

displays 35000.

Int(expression) =INT(number) Returns the whole part of a

number only, eg. =INT(34.567)

displays 34 and discards the

decimals.

Abs(number) =ABS(number) Returns a number without its

sign (ie. a negative becomes a

positive; a positive remains a

positive).

Day(date) =DAY(serial number) Returns the day that a date

falls on.

Month(date) =MONTH(serial

number)

Returns the month that a date

falls on.

Year (date) =YEAR(serial number) Returns the year that a date

falls on.

Now =NOW() Return the current system date

AND time.

Pmt(rate,periods,pv) =PMT(rate,nper,pv) Calculates the repayments for

a loan.

Fv(rate,periods,payment) =FV(rate,nper,pmt) Calculates the future value of

an investment.

There follow some examples of how some of these VBA functions might be used:

Range(“A1”).Value = Date

(Displays the current date in cell A1. The date is linked to the system clock so will be

updated automatically.)

ActiveCell.Value = Int(Rnd * 50)

(Displays in the currently selected cell a random whole number between 0 and 49 (inclusive))

Cells(2 , 2).Value = UCase(“vba is great fun”)

(Displays VBA IS GREAT FUN in cell B2)

Excel Level 6: VBA Intermediate) Function Procedures

ActiveCell.Offset(0 , 1).Value = Year(ActiveCell.Value)

(Assuming the active cell contains the date 15/05/2009, the cell immediately to its right will

display 2009)

If IsNumeric(ActiveCell.Value) Then ActiveCell.Clear

(Deletes the content of an active cell if it is a number)

Note that functions existing in VBA only, can only be used to return a value in the

sub procedure that that they are used in. For example, if you type directly into the

cell of a worksheet:

Range(“E2”).Value = “=UCASE(D2)” (where cell D2 contains the text, hello world)

...... you would get the #NAME? error. This is because although UCase works in a

VBA sub procedure, it is not recognised by Excel as a valid worksheet function. The

correct worksheet function to use is: = UPPER(text).

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor in the procedure where you want to

use the VBA function.

5. Type the object to which you want the function to refer,

eg. ActiveCell

6. Type a full stop.

7. Type Value.

8. Type =.

9. Type the VBA function name.

10. Type an opening bracket (.

11. Type the argument(s) for the function.

12. Type a closing bracket).

13. Press Enter.

Excel Level 6: VBA Intermediate) Function Procedures

USER-DEFINED FUNCTIONS

Discussion

It was described above how built-in worksheet or VBA functions can be used in sub

procedures. There may be times, however, when none these functions meet your

needs or meet then just partly. This is when a user-defined function procedure may

have to be created.

Unlike a sub procedure, a function procedure only returns a value. It does NOT

move around a workbook selecting worksheets and cells, changing their properties

and applying methods to objects. Like the dozens of built-in Excel and VBA functions

(eg. SUM, COUNT, LOOKUP, IF, PMT, DATE, etc...), they merely carry out a

calculation and return the result, either into the cell that they have been typed into or

to the sub procedure that they are being used in.

A function procedure is enclosed by, Function and End Function statements.

The function procedure must have a name that is (usually) followed by arguments

inside brackets. The arguments are the variables (pieces of information) that the

function needs in order to calculate out and return a value.

The following example shows a function procedure that is designed to calculate out

Value Added Tax (at the time of writing this was 15%).

Function VAT(amount)

 VAT = amount * 0.15

End Function

The function procedure name is VAT and it requires a single piece of information

(variable) to calculate out a value: amount.

The calculation that the function needs to perform to return a value for VAT is

expressed in the statement: VAT = amount * 0.15.

This function could be used directly in a cell on a worksheet or it could be used in a

sub procedure. The example below shows it being used on a worksheet. By typing in

=VAT followed by an opening bracket, the “amount” that you want to carry out the

VAT calculation on (in this case, cell D6) and a closing bracket, the result will be

returned to the cell that the function is being typed into upon pressing Enter.

Excel Level 6: VBA Intermediate) Function Procedures

The examples below shows it being used in the same way, but in a sub procedure:

Range("E6").Value = VAT(Range("D6"))

(This will return the result only of the function into cell E6, not the formula itself)

Range(“E6”).Formula = “=VAT(Range(“D6”))

Or,

ActiveCell.Formula = “=VAT(ActiveCell.Offset(0 , -1).Value)

(These will write the actual formula into cell E6)

More examples are given below using multiple arguments and more code that is

complex.

The following uses two arguments to calculate the difference in years and decimal

fractions of a year, between two dates. The two arguments are separated by a comma:

Function AGE(current_date, date_of_birth)

days = current_date - date_of_birth

AGE = days / 365.25

End Function

The following function return 10% of sales but only where the sales value is greater

than or equal to 30000.

Excel Level 6: VBA Intermediate) Function Procedures

Function COM(sales_value)

 If sales_value >= 30000 Then

 COM = sales_value * 0.1

 Else

 COM = 0

 End If

End Function

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet or, insert a new module.

4. Position the cursor in the module where you want to

create the function procedure.

5. Type Function.

6. Type a space.

7. Type a name for the function.

8. Type an opening bracket (.

9. Type the variable name(s) for the function argument(s).

10. Type a closing bracket).

11. Press Enter.

12. Type the necessary calculation(s) to return a value for the

function.

13. Type End Function

14. Press Enter.

Excel Level 6: VBA Intermediate) Function Procedures

GETTING HELP WITH USER DEFINED FUNCTIONS

Discussion

Excel offers help in two ways when entering your user-defined function into a

worksheet.

The first is a Help Tip that appears as you type the function name in a cell. It appears

as a list showing functions that match your spelling. This is only available in Excel

2007. There are NO Help Tips for user-defined functions in previous versions of

Excel.

Help List in Excel 2007

The second way that you can get help with a user-defined function is by opening the

Insert Function window. This is available in all versions of Excel and offers help on

all Excel worksheet functions as well as any user defined ones available.

To find the user defined functions, you have to filter the Select a function: list by

selecting User Defined from the Or select a category: dropdown list.

The Insert Function window (Excel 2007) The Insert Function window (Excel 2000 -03)

Excel Level 6: VBA Intermediate) Function Procedures

Help pages are not available for user-defined functions. These have to be created

using Microsoft tools that are not part of VBA or Office.

Procedures

1. Select the cell where you want to use the user-defined function.

2. Press the button.

3. Click the Or select a category: list.

4. Select User Defined.

5. Select the required function.

6. Click OK.

7. Enter the required arguments.

8. Click OK.

It is possible, however, to add a description for a user defined function as follows.

Procedures

Excel 2000 - 2003 Excel 2007

1. Click the Tools menu. Click the View tab on the Ribbon.

2. Select Macro  Macros... Click the Macros button.

3. Select View Macros....

4. Type the name of the

user-defined function in

the Macro name: text box.

Type the name of the user-defined

function in the Macro name: text box.

5. Click the Options button. Click the Options button

6. Type a description for the

macro.

Type a description for the macro.

7. Click OK. Click OK.

8. Click Cancel. Click Cancel.

Excel Level 6: VBA Intermediate) Function Procedures

The description for the macro will appear when the macro is selected in the Insert

Function window.

Insert Function window showing description

for a user-defined function

DECLARING VARIABLES IN USER DEFINED FUNCTIONS

Discussion

As in a sub procedure, it is good practice to declare any variables used in a function

procedure. This includes:

 the function name

 the arguments, and

 any additional variables created in the calculation.

The function name variable is declared at the end of the Function statement

immediately after the closing brackets of the arguments. The argument variables are

declared within the brackets of the argument following each variable. Any additional

variable created are declared at the beginning of the function procedure immediately

below the Function statement. The following example declares the variables as used

in the AGE function above. Underlining is used for clarity only:

Function AGE(current_date As Date , date_of_birth As Date) As

Single

Dim days As Single

days = current_date - date_of_birth

AGE = days / 365.25

End Function

Excel Level 6: VBA Intermediate) Function Procedures

USING RANGES IN USER DEFINED FUNCTIONS

Discussion

There are many Excel worksheet functions that take a range (or ranges) as arguments,

eg. SUM, AVERAGE, COUNT, MAX, MIN, to name but a few.

Ranges can also be used as variables in user defined procedures and are normally

handled in the function procedure with a For... Each... Next loop (or loops).

The following example does the same as a simple SUM function:

Function MYSUM(cells_to_sum as Range) As Single

 For Each indCel in cells_to_sum

 MYSUM = MYSUM + indCel.Value

 Next indCel

End Function

The loop repeats for as many cells as there are in the given argument (cells_to_sum).

At each iteration of the loop, the value of MYSUM becomes its previous value plus

the value of the next cell in cells_to_sum.

In the example shown in the pictures below, the loop iterates through the range C3 to

C9.

The value of MYSUM first time round the loop will be 0 (the value in the first cell).

The second time round the loop the value of MYSUM will be 3000 (its old value – 0,

plus 3000 – the value in the second cell of cells_to_sum); the third time round the

loop the value of MYSUM becomes 6200 (its old value – 3000, plus 3200 – the value in

the third cell of cells_to_sum). Hence, by the time it has completed the loop, the value

of MYSUM has risen to 12300. In essence, the loop carries out a cumulative addition

of cells_to_sum.

Procedures

1. Launch or switch to the VB Editor.

Excel Level 6: VBA Intermediate) Function Procedures

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet or, insert a new module.

4. Position the cursor in the module where you want to

create the function procedure.

5. Type Function.

6. Type a space.

7. Type a name for the function.

8. Type an opening bracket (.

9. Type the variable name(s) for the function argument(s).

10. Type a closing bracket).

11. Press Enter.

12. Type the necessary calculation(s) to return a value for the

function.

13. Type End Function

14. Press Enter.

Excel Level 6: VBA Intermediate) Function Procedures

EXERCISES

USER DEFINED FUNCTIONS

Task 1: Create User Defined Functions.

1. Open the file Practice Functions.

2. The Temperature sheet gives formulas for converting Fahrenheit into Centigrade

and vice versa. Create two user-defined functions that will do the same.

Suggest starting with the lines:

Function DegF(TempC) to convert Fahrenheit to Centigrade and,

Function DegC(TempF) to convert Centigrade to Fahrenheit .

3. Create a function for calculating the hypotenuse of a right-angle triangle. Use the

existing formula in the Pythagoras sheet as a guide but beware that in Visual

Basic, the function for square root is SQR not SQRT as in Excel.

4. Save and close the file.

5. The Gas Bill sheet gives a complex series of calculations to arrive at a total charge

in column G. Create a user-defined function that will calculate the total for each

quarter. Test it in column H. The results should match those in column G. You

will probably need to use some extra variables in your code and a suggestion for

the arguments is:

Function GasBill (UnitsUsed, LowUnits, HighRate, LowRate)

6. Save and close the file.

Task 2: Create Complex User Defined Functions.

1. Open the file Sales Tracking.

2. Create in this workbook, a function procedure named HighSales, which will

return the number of sales in a range that are over 3000 in value. The first line

of the function procedure should be:

HighSales(RangeToCount)

3. Use the function in cell F22 of the spreadsheet, using the range F2:F20 as the

argument. The result should be 7.

4. Create another function in this workbook named CountText, which will return

the number of cells in a range containing a text value. The first line of the

function procedure should be:

CountText(RangeToCount)

Excel Level 6: VBA Intermediate) Function Procedures

5. Use the function on cell F23 of the spreadsheet, using the range A2:E20 as the

argument. The result should be 57.

6. Save and close the file.

LESSON 4 - ADD-IN APPLICATIONS

In this lesson, you will learn how to:

Create an Add-In

Viewing an Add-In’s code

Excel Level 6: VBA Intermediate Add-Ins

DEFINING AN ADD-IN

Discussion

An Excel Add-in is a compiled version of a workbook containing procedures,

toolbars and menu configurations, user-defined functions and forms and many other

VBA features. Add-ins usually provide additional functionality that makes the

standard application more powerful. In its simplest form the Add-in may just contain

user-defined functions.

An Add-in is saved like other files to a suitable location on your system (it has a .xla

extension) and “added in” when/ if necessary to the Excel installation on your

computer. Like the Personal Macro Workbook, the Add-in file is normally kept

hidden in Excel, but can be viewed in the VB Editor.

Add-ins are a convenient way of distributing sub procedures, functions and other

VBA functionality to groups of users who can load them into their own Excel

application via a simple dialog box.

The Add-in dialog box (Excel all versions)

Excel comes with several built-in Add-ins; the number available varies with the

version. These can be accessed and loaded by opening the Add-ins dialog box.

When a workbook is saved as an Add-in, Excel converts its code into a compressed

form that cannot be read, altered or converted back into a workbook. This is to make

the code in the Add-in work more quickly than in the original workbook.

The workbook’s Title and Comments, set in File Properties, are used as the name and

description to help identify Add-ins.

Because a compiled Add-in cannot be converted back to a workbook, it is essential

that before saving as an Add-in, the workbook is saved separately as a workbook. If

changes are needed, therefore, they can be written into the original workbook and

then resaved as another (or the same) Add-in.

When a workbook is made into an add-in, worksheets in the workbook are hidden,

and subroutines in the Add-in’s project are hidden from the user (the routines do not

appear in the macros dialog box).

Excel Level 6: VBA Intermediate Add-Ins

If the Add-in is saved to the XLSTART folder, its functionality applies as if it was

built into Excel.

CREATING AN ADD-IN FOR USER DEFINED FUNCTIONS

Discussion

Creating user-defined procedures as described in the previous lesson only makes

them available in the workbook that contains their code. To make them available to

all workbooks, the workbook containing the function procedures’ code has to be

saved as an Add-in, and then added in to the Excel installation on the user’s

computer.

To prevent the Add-in code being altered by users, it is advisable to password protect

the workbook before saving it as an Add-in. It is also advisable to give the workbook

file a title and description in order to make it more easily identified for use later.

Procedures – Step 1: Protecting the Code

1. Launch or switch to the VB Editor.

2. Select the workbook (VBA project) that contains the

function procedure code in the Project Explorer pane.

3. Click the Tools menu.

4. Select VBAProject Properties....

5. Open the Protection tab.

6. Click the Lock project for viewing check box.

7. Type a password in the Password text box.

8. Repeat typing the password in the Confirm password

text box.

9. Click OK.

Procedures – Step 2: Adding File Properties

1. Switch to the Excel window.

Excel Level 6: VBA Intermediate Add-Ins

2. Ensure you have active, the workbook containing the

function procedure code.

Excel 2000 - 03 Excel 2007

3. Click the File menu. Click the Microsoft Office

Button.

4. Select Properties. Point to Prepare  and select

Properties in the side menu.

5. Type a descriptive name

for the file in the Title:

text box.

Type a descriptive name for

the file in the Title: text box.

6. Type an explanation of or

purpose for the file in the

Comments: text box.

Type an explanation of or a

purpose for the Add-in in

the Comments: text box.

7. Click OK. Click the Close button in the

top right of the properties

pane.

Procedures – Step 3: Saving As an Add-in

Excel 2000 - 03 Excel 2007

1. Click the File menu. Click the Microsoft Office

Button.

2. Select Save As. Point to Save As  and

select Other Formats in the

side menu.

3. Type a name for the Add-in in the Name: text box.

Excel Level 6: VBA Intermediate Add-Ins

4. Select Microsoft Office Excel Add-In from the Save as

type: dropdown list. (Wording may vary slightly

between versions)

The Save As dialog box (Excel 2003 shown). Appearance may vary

slightly between versions but basic functionality is the same.

5. If the Add-in is for your personal use only, leave the

location as selected by Excel (the default Add-Ins folder is

part of your personal profile).

If the Add-in is to be shared with other users, select a

suitable shared location in the Save in: dropdown list.

6. Click Save.

INSTALLING AN ADD-IN

Discussion

Once the Add-in has been created, prepared and saved as described in the topics

above, you, and other users, will need to install it on your (their) computer to make

the code available for use.

This is achieved by opening the Add-ins dialog box and depending on where it has

been saved, either selecting it from the list (if it has been saved in the default location)

or browsing to the location that it has been saved in (if you have selected your own

location).

If the Add-in file has been saved in the default location, it will appear in the list with

the name that you gave it as a Title in File Properties. If the Add-in file has been saved

in a different location, it will appear in the list after your browse for it.

After the Add-in has been selected and the dialog box confirmed, the procedure(s) in

it will be immediately available for use.

Excel Level 6: VBA Intermediate Add-Ins

Procedures

Excel 2000 - 03 Excel 2007

1. Click the Tools menu. Click the Microsoft Office

Button.

2. Select Add-ins. Click the Excel Options

button.

3. Click the checkbox beside

the Add-in that you want

to install, or...

...click Browse... and

open it from the location

where it has been saved.

Select Add-ins in the pane at

the left.

 At the bottom of the pane at

the right, click the Go...

button.

 Click the checkbox beside the

Add-in that you want to

install, or...

...click Browse... and open it

from the location where it

has been saved.

4. Click OK. Click OK.

EDITING AN ADD-IN

Discussion

If you encounter errors and need to debug the code in your add-in, you can make the

add-in visible and view the code provided you supply the proper project password.

Excel Level 6: VBA Intermediate Add-Ins

Once the project is unprotected, you can view, debug the code and resave the Add-in.

Procedures

1. Launch or switch to the VB Editor.

2. In the Project Explorer pane, double click the Add-in

(.xla file) in that you want to edit.

3. If password protected, you will be prompted for the

password.

4. Open the module containing the function procedure(s)

that you want to edit.

5. Make necessary changes to the code.

6. Click the Save button in the VB Editor.

REMOVING AN ADD-IN

Discussion

If you have many Add-in installed into Excel it can slow down its performance,

particularly when starting up and it has to load them all.

It is a good idea, therefore, to uninstall any Add-ins that are no longer required for

use. This does not delete the Add-in file (.xla); the file will still be available for re-

installing another time.

Procedures

Excel 2000 - 03 Excel 2007

1. Click the Tools menu. Click the Microsoft Office

Button.

2. Select Add-ins. Click the Excel Options

button.

3. Click the checkbox beside

the Add-in that you want

to uninstall.

Select Add-ins in the pane at

the left.

 At the bottom of the pane at

the right, click the Go...

button,

 Click the checkbox beside the

Add-in that you want to

uninstall.

Excel Level 6: VBA Intermediate Add-Ins

4. Click OK. Click OK.

Excel Level 6: VBA Intermediate Add-Ins

EXERCISE

WORKING WITH AN ADD-IN

Task: To create and install to Excel, additional VBA functionality.

1. Open the file named, Conversions. This file contains several function procedures.

2. Carry out the necessary actions to save this file as an “add-in” , named Conversion

Functions.

3. Close the file.

4. Open the file named, Needs Functions.

5. Add into Excel the Conversion Functions saved above.

6. Test a couple of the functions on Sheet1.

7. Save and close Needs Functions.

8. Remove the Conversion Functions add-in from Excel.

LESSON 5 – TESTING AND DEBUGGING CODE

In this lesson, you will learn how to:

Step through code to identify and/ or rectify potential problems

Use the Locals and Watch Windows to observe variable values

Set a Breakpoint to halt execution of a procedure

Work with the Immediate Window to test code and variables

Excel Level 6: VBA Intermediate) Testing & Debugging Code

TYPES OF ERROR AND DEBUGGING

Discussion

There are various types of error that may occur whilst executing code (run-time), or

during the writing of the code (compile-time).

Errors fall into four broad types:

 Language (syntax) errors – occur as a result of misspells, leaving out essential

punctuation, or omitting keywords at the end of a statement (eg. If... without

End If).

 Compile errors – occur when the VB Editor cannot convert your statement

into viable code such as when you try to use a method or property on an object

that does not support it.

 Run-time errors – occur when the procedure is run and it encounters an

unexpected problem that did not show up during compilation or that the

developer did not anticipate.

 Logical errors – occur when the procedure produces unexpected results are

can be due to many reasons including a miscalculation of variables, incorrect

use of a method parameter or property value, or selecting an incorrect range,

worksheet or workbook.

Compile Error Warning

The good news is that the VB Editor can identify many language and compile errors

as soon as you press Enter at the end of a statement (or use the up/ down arrow, or

click onto another statement). These errors, therefore, can normally be corrected

immediately. Some language and compile errors, however, can only be identified

during run-time.

In most cases, the cause of run-time errors can also be identified because the

procedure comes to a halt with a Run-time error message. If the Debug button is

clicked, it highlights in yellow the statement that failed (a condition known as break

mode).

Excel Level 6: VBA Intermediate) Testing & Debugging Code

Run-time Error Warning

Logical errors can be the most difficult to pin down and discovering the cause

usually involves going through the procedure statement by statement (a technique

known as stepping) until it becomes apparent where it goes wrong.

Stepping can also be used in conjunction with the Watch or the Locals window.

These keep an eye on your variable as you step the code and can indicate where and

when a variable may not be behaving as expected!

The VB Editor provides various tools to help locate the source and cause of any run-

time errors detected. This lesson will examine four of them:

1. Stepping

2. Watching variables

3. Creating Breakpoints

4. Using the Immediate Window

STEPPING THROUGH A PROCEDURE

Discussion

Step Into

Normally, your code runs unattended; it executes until its logical end. When you are

testing code, however, it is often useful to step through it line by line, watching each

line of code take effect. This makes it easy to determine exactly which line is not

producing the desired effect.

You can step through code line by line by selecting Step Into from the Debug menu of

the VB Editor or, by pressing the F8 key to start the procedure in which the cursor is

and then pressing F8 to “ step” each statement.

Stepping causes VBA to execute each line one at a time, highlighting the next line of

code in yellow. Note, the highlighted line is the line of code that will execute when

you next press F8; it does not mean it has already been executed.

Excel Level 6: VBA Intermediate) Testing & Debugging Code

A Procedure being Stepped Into



By showing the Debug toolbar in the VB Editor (View,

Toolbars), access to the various debugging and testing

tools can be made quicker and more obvious.

The Debug Toolbar (all versions)

Button Function

Toggle

Breakpoint

Placing Breakpoints within your code will

stop execution at that point.

Quick

Watch

After selecting an expression, you would use

the Quick Watch button and Add button. The

watch window will show the information

about the expression. (Use Step Into).

Step Into Using the Step Into button allows you to

execute one line of code at a time

Step Over Step Over executes called sub Procedures

without stepping through them.

Step Out Step Out completes execution of the current

procedure and pauses on the next line.

Step Over

If you are stepping a procedure that calls another procedure, the VB Editor will step

into the called procedure and execute it line by line.

You can, therefore, click Debug, Step Over (or press SHIFT F8) to cause the entire

called procedure to be executed immediately. This will make debugging simpler if

you are confident that the problem does not lie within that called procedure.

Step Over takes you back to the statement following where the called procedure was

called.

Excel Level 6: VBA Intermediate) Testing & Debugging Code

Step Out

In you are stepping through a called procedure statement-by-statement, you can click

Debug, Step Out (or press CTRL+SHIFT+F8) to come out of the that procedure. This

causes VBA to execute until the end of the procedure (an End Sub or Exit Sub

statement) and then stop at the line of code immediately following the line that called

the procedure.



A useful way of stepping is to tile the VB Editor

window and the Excel window. As you step through

the procedure, you will be able to see exactly what the

effect of each statement is in Excel. This can help

identify errors or potential problems more easily.

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) containing the procedure that you want to

step through.

3. Open the module sheet containing the procedure.

4. Click the Debug menu.

5. Select Step Into.

6. Continue selecting Step Into (or press F8) until you get to

the end of the procedure.

Excel Level 6: VBA Intermediate) Testing & Debugging Code

Stepping a Procedure - the VB Editor and Excel Tiled Side-by-Side

DISPLAYING VARIABLE VALUES

Discussion

Logical errors can, and often do, occur as a result of variables that are not calculating

or picking up their values as expected. The Locals and Watch windows can be used

while stepping to display the behaviour of variables and hence, assist in identifying

errors and potential problems.

Locals Window

The Locals Window displays all the variables in a procedure (as well as global

variables declared at the project or module level), and their values. This makes it easy

to see exactly what the value of each variable is at a particular point in the procedure

and how it changes as you step through the code. You can display the Locals

Window by choosing it from the View menu. The Locals Window does not allow you

to change the values of variables, it simply displays their names and values.

Excel Level 6: VBA Intermediate) Testing & Debugging Code

Procedure being Stepped with the Local Window Displaying all

Variables in the Procedure and their Current Values



The value of a variable at a particular point can also

be seen as you step through a procedure by holding

the mouse pointer over the variable name.

Displaying the Value of a Variable While Stepping

Procedure

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) containing the procedure that you want to

add a watch to.

Excel Level 6: VBA Intermediate) Testing & Debugging Code

3. Open the module sheet containing the procedure.

4. Position the cursor on the procedure containing the

variables that you want to watch.

5. Click the View menu.

6. Select Locals Window.

7. Click the Debug menu.

8. Select Step Into. Observe the variable values in the

Locals window.

9. Continue selecting Step Into (or press F8) and observing

the variable values until you get to the end of the

procedure.

Watch Window

The Watch Window allows you to be more selective about which variable(s) you

"watch." You can set a variable with three watch types:

Watch Type Description

Watch Expression Watches the variable statement-by-statement as you

step through the procedure (same as Locals Window).

Break When Value Is

True

Halts the procedure and enters break mode when the

variable is given a value (value becomes TRUE).

Break When Value

Changes

Halts the procedure and enters break mode each time

that the value of the variable changes.

The Add Watch Window

Procedure

1. Launch or switch to the VB Editor.

Excel Level 6: VBA Intermediate) Testing & Debugging Code

2. Identify in the Project Explorer pane, the workbook

(VBA project) containing the procedure that you want to

add a watch to.

3. Open the module sheet containing the procedure.

4. Click the View menu.

5. Select Watch Window.

6. Right-click the variable name in the procedure that you

want to watch.

7. Select Add Watch....

8. Repeat 6 above for all other variables that you want to

watch

9. Click OK.

10. Click the Debug menu.

11. Select Step Into. Observe the variable values in the

Watch window.

12. Continue selecting Step Into (or press F8) and observing

the variable values until you get to the end of the

procedure.

13. Click the close button in the top right of the Watch

window.

BREAK MODE

Discussion

A break point is a setting on a line of code that tells VBA to pause execution

immediately before that line of code is executed and code execution is placed in what

is called break mode. When the VB Editor is in break mode, you can edit the procedure

as normal.

To put a break point on a line of code, place the cursor on that line select Debug,

Toggle Breakpoint, press F9, or click in the grey bar at the left of the module next to

the line where you want to add the break point.

Removing a break point is the same as applying one (hence, “ toggle”).

When a line contains a break point, it is displayed with a brown coloured

background and a large dot in the grey band at the left of the module sheet.

Immediately before this line of code is executed, it will appear with a yellow

background. When a break point is encountered, code execution is paused but that

line of code has not yet executed. You cannot place break points on blank lines,

comment lines, or variable declaration lines (lines with Dim statements).

Excel Level 6: VBA Intermediate) Testing & Debugging Code

After a break point is encountered, you can resume normal code execution by

pressing F5, selecting Run, Continue, clicking the Continue button, or stepping

through the code line by line (F8).



Break points are not saved in the workbook file. If

you close the file, all break points are removed.

Breakpoints are preserved only while the file is

open.

Procedure with a Breakpoint Applied

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code that you

want to add a breakpoint to.

4. Position the cursor in the procedure where you want to

add the breakpoint.

5. Click the Debug menu.

6. Select Toggle Breakpoint.

7. Click the Run button . The procedure will execute

down to the breakpoint and then enter break mode.

8. Step through the rest of the procedure.

9. Position the cursor on the statement containing the

breakpoint.

10. Click the Debug menu.

Excel Level 6: VBA Intermediate) Testing & Debugging Code

11. Select Toggle Breakpoint.



Break points can also be toggled by clicking on the

grey band immediately to the right of the module

sheet.

Immediate Window

The Immediate Window is a window in the VB Editor where you can try out

statements and/ or variables while your code is in Break mode or when no macro

code is executing. It is most useful when testing new or problematic code.

To display the Immediate Window, press CTRL+G or select View, Immediate

Window.

VB Editor with the Immediate Window Displayed

In the Immediate Window, you can test a statement by typing it in and pressing

Enter. For example:

Range(“A1”).CurrentRegion.Select

or,

Selection.Interior.Color = vbMagenta



A useful way of using the Immediate Window is to tile

the VB Editor window and the Excel window. As you

press Enter on each statement, you will be able to see

exactly what the effect is in Excel.

Excel Level 6: VBA Intermediate) Testing & Debugging Code

To test a variable in the Immediate Window, create the variable name and give it a

value. Press Enter. Type on the next line: ?variablename and press Enter. The value

of the variable will be given on the line below. For example:

numCols = Selection.Columns.Count

?numCols

12

Or,

?ActiveCell.Address

A10

Because of the way that the Immediate Window is designed to work, it will not allow

you to test statement blocks (eg, If..., For... , Select Case... etc.). You can, however,

combine several "logical" lines of code in to a single "physical" line of code using

the colon (:) and execute this as an entire command. For example:

If ActiveCell.Value < 1000 Then: ActiveCell.Value = 0: Else: ActiveCell.Value = 1


End IF is NOT used when writing the If statement block

on one single line.


You can extend a single statement across several lines in

the Immediate Window by using the line-continuation

character (a space followed by an underscore (_)).

The Immediate Window always behaves as if there is no Option Explicit statement in

the active code module (see page 20), namely, you don't have to declare variables that

you will be using in the Immediate Window commands. In fact, this is prohibited

and you will receive an error message if you attempt to use Dim in the Immediate

Window.



There is no programmable way of clearing the

Immediate window. You have to select the text and

press Delete on the keyboard.

Procedures

1. Launch or switch to the VB Editor.

2. Click the View menu,

Excel Level 6: VBA Intermediate) Testing & Debugging Code

3. Select Immediate Window.

4. Position the cursor in the immediate window.

5. Write and test code as necessary.

Debug.Print

You can use the Debug.Print statement anywhere in your code to display messages

or variable values in the Immediate Window. These statements do not require any

confirmation or acknowledgement so will not affect the execution of your code, so it

is safe to leave in the code when it is distributed to your users.

They are used purely to explain, clarify, remind or note what is taking place at a

particular point of the procedure.

They are much like comments except that they are written for you to see in the

Immediate Window. If the Immediate Window is not displayed, Debug.Print has no

effect.

For example, you can send a message to the Immediate Window when a particular

section of code is executed.

Some code...

Debug.Print "Starting Code Section 1"

More code...

Debug.Print “Procedure is now calling Procedure2”

See also Appendix III, Debug.Assert on page 123.

Excel Level 6: VBA Intermediate) Testing & Debugging Code

EXERCISE

TESTING AND DEBUGGING CODE

Task: To test and identify problems and errors in a sub procedure

1. Open the file, Workbook to Debug.

2. Tile vertically the Excel and VB Editor windows.

3. Step the macro EnterDateTime and identify any problems.

4. Correct the error(s) and step the macro again to ensure it works correctly. It

should enter the date into cell A1 and the time into the cell below it.

5. Run the sub procedure CellsToCheck.

6. Step the macro to identify the problem (you may also find it useful to “Watch”

the counter variable as you step).

7. Run the LeapYears sub procedure and note the incorrect result.

8. Step the sub procedure together with the Locals window and identify the reason

for the incorrect result. Correct the code so that it runs correctly.

9. Show the Debug toolbar.

10. Step through the procedure named, Main using the Step Into.

11. Repeat 10 above using the Step Over button. Note how it omits stepping the

called procedures.

12. Save and close the file.

LESSON 6 – ERROR HANDLING & TRAPPING

In this lesson, you will learn how to:

Handle errors using an If statement

Trap errors using the On Error statement

Trap errors by means of their error codes

Excel Level 6: VBA Intermediate) Error Handling & Trapping

ERROR HANDLING USING IF

Discussion

If an error occurs whilst a macro is running, it will either cause the macro to fail (run-

time error), or make it behave unpredictably.

If the error is anticipated, however, the code can be written in such a way that makes

the procedure continue to execute, or informs the user what the problem is and gives

them the opportunity to take corrective action and continue, or take an alternative

course of action.

While it is almost impossible to anticipate every run-time error that might occur, a

good developer will always add some error handling code which as a minimum,

terminates the procedure with a user-friendly message instead of the infamous and

often inexplicable Run-time error window!

The simplest way to deal with errors, if possible, is to use an If... Then... Else

statement. This can check for a criteria and allow execution of the rest of the code

only if that criteria is true, otherwise, it could terminates the procedure or make it

follow a different course of action.

Consider the examples below:

If Selection.Cells.Count >1 Then

...code

Else

MsgBox “This macro requires more than one cell to be selected. Procedure will terminate”

Exit Sub

End If

Or,

If ActiveCell.Address = “A1” Then

...code

Else

MsgBox “Incorrect cell selected. Select A1 and run again”

Exit Sub

End If

In both cases, the selection is tested and if true, a message is displayed to explain the

problem before terminating execution of the procedure.

In the following example, an input box is displayed for the user to enter a number. If

the user accidentally enters a text value or clicks Cancel (both string values), a run-

time error occurs when the procedure attempts to use the string in the calculation.

Excel Level 6: VBA Intermediate) Error Handling & Trapping

interestRate = InputBox("Enter today's interest rate")

Range("B1").Value = Range("A1").Value * interestRate

Type mismatch run-time error

By using an If... Then... Else function, together with the IsNumeric function to check

that the input is valid before attempting the calculation, the run time error can be

handled in a more user-friendly way, eg:

interestRate = InputBox("Enter today's interest rate")

If IsNumeric(interestRate) And interestRate >= 0 Then

Range("B1").Value = Range("A1").Value * interestRate

Else

MsgBox "Input is not valid or user clicked Cancel"

End If

There are several Is... functions in VBA that can be used in a similar way:

 IsArray

 IsDate

 IsEmpty

 IsError

 IsMissing

 IsNull

 IsObject

Procedures

1. Launch or switch to the VB Editor.

Excel Level 6: VBA Intermediate) Error Handling & Trapping

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor in the procedure where you want to

add the error handling code.

5. Type If.

6. Enter a valid test to validate a condition encountered by

the procedure at that point.

7. Type Then.

8. Press Enter.

9. Type code to execute if the test is true.

10. Press Enter.

11. Type Else.

12. Press Enter.

13. Type code to execute if the test is false.

14. Press Enter

15. Type End If.

ERROR TRAPPING

Discussion

While If...Then...Else is a good, simple way of testing for correct input, it is not able

to handle all errors under all circumstances. In most cases, error trapping code will

almost certainly be needed. This come in three forms:

 On Error Resume Next

 On Error GoTo

 Resume

The error “ trap” is “ turned on” and “ sits in wait” until an error occurs or until the

“ trap” is “ turned off” . The On Error statement is normally written into the procedure

just above where the anticipated error may occur. In many cases, this will be at the

top of the procedure just below any variable and/ or constant declarations.

On Error Resume Next

Some errors can be safely ignored; a procedure encountering non-significant errors

can often still execute successfully through to the end.

Excel Level 6: VBA Intermediate) Error Handling & Trapping

On Error Resume Next tells the procedure to ignore any statements producing a run-

time error, and continue with the next statement.

The code below is designed to hide all toolbars. Some toolbars, however, do not have

a visible property and the following run-time error will be generated.

For Each cmdbar In Application.CommandBars

If cmdbar.Visible = False Then cmdbar.Visible = True

Next cmdBar

By writing the code as follows, the run-time error window will be ignored and the

procedure will successfully continue and hide all the toolbars.

On Error Resume Next

For Each cmdbar In Application.CommandBars

If cmdbar.Visible = False Then cmdbar.Visible = True

Next

The following example deletes ALL files from three folders (Data1, Data2 and Data3)

on the H:\ drive.

Kill "h:\Data1*.*"

Kill "h:\Data2*.*"

Kill "h:\Data3*.*"

If a folder does not contain any files, the following run-time error message will occur:

Excel Level 6: VBA Intermediate) Error Handling & Trapping

This is a classic case of where the error can be ignored; if the folder is already empty,

then it does not need emptying, so VBA can safely ignore it and continue with the

next one!

On Error Resume Next

Kill "h:\Data1*.*"

Kill "h:\Data2*.*"

Kill "h:\Data3*.*"

In the earlier example on page 84 where the user is prompted for a numeric input, On

Error Resume Next would negate the need for the If... Then... Else.

On Error Resume Next

interestRate = InputBox("Enter today's interest rate")

Range("B1").Value = Range("A1").Value * interestRate

The result in this case, however, is hardly ideal because although the run-time error

message does not appear, the procedure results in nothing happening! This is where

a different On Error statement is needed.

On Error GoTo <label>

On Error GoTo diverts the code to a specific location further down the procedure

(usually at the end just above End Sub) where an "error handling routine" takes over.

This location can be marked with a "label" (a made-up word followed by a colon (:))

or a line number.

The error handling routine can just be a message explaining the problem and ending

the procedure. Alternatively, it could explain the problem, advice on how to rectify it

and provide the opportunity to return to where the error occurred and try again.

In the example on page 87, using On Error GoTo would be as follows:

Excel Level 6: VBA Intermediate) Error Handling & Trapping

On Error GoTo errhandle

interestRate = InputBox("Enter today's interest rate")

Range("B1").Value = Range("A1").Value * interestRate

errhandle:

MsgBox "Invalid Data entered or user clicked Cancel"

End Sub

It is true that this code in its current form does not contribute any more than using

the If...Then...Else explained on page 84. Its advantage, however, lies in its ability to

return to where the error occurred and attempt the statement again. This involves the

use of the word Resume.

Resume

The keyword Resume tells VBA to retry the statement that failed. It can only be used

as part of an error handling routine, and is always used on its own (eg. On Error

Resume will cause an error). The error handling routine above, therefore, could

explain the problem the return the user to try again as follows:

On Error GoTo errhandle

interestRate = InputBox("Enter today's interest rate")

Range("B1").Value = Range("A1").Value * interestRate

errhandle:

MsgBox "Invalid Data entered or user clicked Cancel"

Resume

End Sub

The code above, however, does not give the user an opportunity NOT to return and

try again. So the next step in making the error handling routine as user-friendly as

possible, is to provide an interactive message box displaying a message explaining

the problem, asking whether the user WANTS to try again, and providing two

buttons (Yes and No) with which to respond.

Excel Level 6: VBA Intermediate) Error Handling & Trapping

Creating an interactive message box is covered in the Excel Introduction to VBA

Course. An extract of the course materials are given in Appendix IV on page 125. The

example below assumes knowledge and experience of this topic.

On Error GoTo errhandle

interestRate = InputBox("Enter today's interest rate")

Range("B1").Value = Range("A1").Value * interestRate

errhandle:

response = MsgBox("Invalid Data Entered. Do you want to try again?", vbYesNo)

If response = vbYes Then

Resume

End If

The final (and very important!) step is to prevent the error handling routine being

executed when the procedure runs WITHOUT any errors. This is achieved by

including the words Exit Sub immediately above the error routine label. The

complete procedure with error handling code is given below:

Sub CalculateInterest

Dim interestRate as Single

On Error GoTo errhandle

interestRate = InputBox("Enter today's interest rate")

Range("B1").Value = Range("A1").Value * interestRate

Exit Sub

errhandle:

response = MsgBox("Invalid Data Entered. Do you want to try again?", vbYesNo)

If response = vbYes Then

Resume

End If

End Sub

Excel Level 6: VBA Intermediate) Error Handling & Trapping



Resume Next can be used as an alternative to

Resume in an error handling routine. It passes

control to the line following the statement that

caused the error.

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor on the line below the Sub statement.

5. Type On Error GoTo errhandle (or other “ label” to

identify a point further down in the procedure where the

procedure must divert to if a runtime error occurs.

6. A the bottom of the procedure and immediately above

the End Sub statement, type errhandle (or other label

used).

7. Type a colon.

8. Press Enter.

9. Type appropriate error handling code for the anticipated

error using the examples above.

10. Position the cursor on the line immediately above the

errhandle label.

11. Type Exit Sub.

12. Press Enter.

TRAPPING ERRORS WITH ERR NUMBERS

Discussion

Most run-time errors generate error numbers (see Appendix II on page 119). When

the On Error Goto <Label> is used to trap errors, the number of any error is returned

by the Err Function that acts like a public variable. The value of Err, therefore, can be

tested and acted upon using an If... Then... Else statement.

In the example below, there exists the possibility of two different run-time errors

occurring:

Excel Level 6: VBA Intermediate) Error Handling & Trapping

 Err number 13 - due to incorrect data being entered

 Err number 9 – due to the Interest Calcs sheet not existing in the workbook

Sub CalculateInterest

Dim interestRate as Single

On Error GoTo errhandle

interestRate = InputBox("Enter today's interest rate")

Sheets("Interest Calcs").Activate

Range("B1").Value = Range("A1").Value * interestRate

Exit Sub

errhandle:

response = MsgBox("Invalid Data Entered. Do you want to try again?", vbYesNo)

If response = vbYes Then

Resume

End If

End Sub

The solution is to substitute the following code as the error handling routine:

errhandle:

If Err.Number = 13 Then

response = MsgBox("Invalid Data Entered. Do you want to try again?", vbYesNo)

If response = vbYes Then

Resume

End If

ElseIf Err.Number = 9 Then

MsgBox ("Sheet Interest Calc not found. Please check sheet names and re-run procedure")

Else

MsgBox "Unexpected error. Procedure will terminate"

End If

Excel Level 6: VBA Intermediate) Error Handling & Trapping

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor on the line below the Sub statement.

5. Type On Error GoTo errhandle (or other “ label” to

identify a point further down in the procedure where the

procedure must divert to if a runtime error occurs.

6. A the bottom of the procedure and immediately above

the End Sub statement, type errhandle (or other label

used).

7. Type a colon.

8. Press Enter.

9. Type If.

10. Type a space.

11. Type err.Number = .

12. Type the anticipated error number.

13. Type a space.

14. Type Then.

15. Press Enter.

16. Type appropriate code to handle the error generated by

the error number in the previous test.

17. Press Enter.

18. If it is anticipated that the procedure may generate

additional error numbers, type ElseIf.

19. Type a space.

20. Type err.Number = .

21. Type the anticipated error number.

22. Type a space.

23. Type Then.

24. Press Enter.

25. Type appropriate code to handle the error generated by

the error number in the previous test.

Excel Level 6: VBA Intermediate) Error Handling & Trapping

26. Press Enter.

27. Continue as described in 18 – 26 above for any further

anticipated error codes.

28. Press Enter.

29. Type Else:.

30. Press Enter.

31. Type MsgBox “An unexpected error has occurred”. This

is to cover any errors NOT anticipated by the If/ ElseIf(s)

above.

32. Press Enter.

33. Type End If.

34. Position the cursor on the line immediately above the

errhandle label.

35. Type Exit Sub.

36. Press Enter.

On Error GoTo 0

This statement disables a previous On Error Resume Next or On Error Goto Label

statement. When the next error occurs, an error message will be generated and the

procedure will fail, eg:

On Error Resume Next ' trap errors from here onwards

Kill "h:\Data1*.*"

Kill "h:\Data2*.*"

Kill "h:\Data3*.*"

On Error GoTo 0 'stop trapping errors from here onwards

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

Excel Level 6: VBA Intermediate) Error Handling & Trapping

4. Position the cursor in the procedure where you want the

error handling no longer to have an effect.

5. Type On Error GoTo 0.

6. Press Enter.

Err.Description

A common way of creating a user-friendly run time error message is by creating a

custom message box quoting the error number and the error description. For

example, the code could be as follows (line continuation characters have been used

for clarity but are not required):

MsgBox "The error " & Err.Description & _

" has occurred. Please contact the Helpdesk and quote error number " _

 & Err.Number & " . Thank you."

It is true to say that this message box does not say much more than the normal, run-

time error window, but it is rather less scary and upon clicking OK, does not

potentially leave the procedure hanging in break mode.

Excel Level 6: VBA Intermediate) Error Handling & Trapping

EXERCISE

DEALING WITH POTENTIAL ERRORS IN PROCEDURES

Task 1: To effectively handle errors using a simple IF statement.

1. Open the file Error Handle.

2. Run the sub procedure CircData (click the Circle worksheet button), which

calculates the circumference and area of a circle.

3. Enter a value of 10 for the radius of the circle.

4. A message box should appear giving you the area and circumference.

5. Run the sub procedure again but just click the Cancel button.

6. Note the run-time error message and click End.

7. Repeat running the sub procedure but this time enter a text value as the radius

of the circle.

8. Note the run-time error message and click End.

9. Add a simple IF statement to deal with the above-demonstrated errors.

10. Repeat 5 and/ or 7 above and check that the procedure now works correctly.

11. Save and close the file.

Task 2: Trapping errors in a sub procedure.

1. Open the file Trap Error.

2. This workbook contains a macro that is designed to delete a file.

3. The macro already contains a simple IF statement to handle the error

generated if the user clicks the Cancel button.

4. Run the macro by clicking the worksheet button on Sheet1 and enter the

filename, Remove Me (not case sensitive) into the input box.

5. You should receive confirmation that the file has been successfully deleted.

6. Repeat 4 above. Note the error message and write down the error number.

7. Add code to deal with the error in a more user-friendly way. The code

should:

a. display a message explaining the error (eg. File not found);

b. offer options to either try again or cancel the task;

Excel Level 6: VBA Intermediate) Error Handling & Trapping

c. return control to where the error occurred, if applicable.

8. Run and test the sub procedure again. Correct any errors.

9. Open the file Remove Me Too.

10. Leave this file open and switch back to the Trap Error workbook.

11. Run the Delete Old File macro and attempt to delete Remove Me Too. Is

your previous code handling the error correctly?

12. De-activate the error handling code by commenting out the On Error GoTo

statement at the top of your procedure.

13. Run the Delete Old File macro again.

14. Note the error message. How does it differ from the one displayed in 4

above? (Tip: note the error number)

15. Edit the DeleteOldFile sub procedure with some additional error-trapping

code to deal with both potential errors in a more user-friendly way.

16. Re-activate the error handling code at the top of the procedure.

17. Test the macro by attempting again to delete Remove Me Too.

18. The file should be successfully deleted.

19. Save and close all open files.

BEWARE - files deleted by a macro cannot be recovered.

LESSON 7 - BUILT-IN DIALOG BOXES AND
CUSTOM USERFORMS

In this lesson, you will learn how to:

Display built-in dialog boxes

Create and display user defined forms

Use controls on userforms

Add code to create event procedures for the useform

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

EXCEL DIALOG BOXES

Discussion

Dialog boxes allow applications to interact with their users. A built-in Excel dialog

box can be used in a procedure giving a quick, easy way to request information from,

or display information to, the user.

Excel contains approximately 200 built-in dialog boxes. Each dialog box is identified

by a constant (referred to as enumerators). These constants are all prefixed with

xlDialog. Use the Object Browser to browse the list of dialog box constants or pick

from the list of constants displayed when typing in the VB Editor.

The Show method of the Dialogs property displays and executes any action taken in a

built-in Excel dialog box. To access a particular built-in Excel dialog box, specify an

xlDialog constant with the dialogs property of the Application object. For example,

the following line of code displays the Save As dialog box, eg:

Application.Dialogs(xlDialogSaveAs).Show

Procedures

1. Launch or switch to the VB Editor.

2. Identify in the Project Explorer pane, the workbook

(VBA project) that you want to add code to.

3. Open the module sheet containing the code or, insert a

new module.

4. Position the cursor in the procedure where you want to

show the built-in dialog box.

5. Type Application.

6. Type a full stop.

7. Type Dialogs.

8. Type an opening bracket (.

9. Type or select from the list the dialog box required.

10. Type a closing bracket).

11. Press Enter.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

USER-DEFINED FORMS

Discussion

As with built-in dialog boxes, User-Defined Forms (or just User Forms) can be

created to allow an applications to interact with the user. UserForms are, in essence,

dialog boxes that you design yourself for a special purpose that is not met by the

built-in ones.

Creating a functioning UserForm can be broken down into five steps:

1. Inserting a blank UserForm into a workbook

2. Adding controls to the form.

3. Giving the controls necessary properties.

4. Adding VBA code “behind” the form in order to make it respond to the user

input.

5. Adding code to display the form.

 Controls can also be added directly on to a

worksheet or a chart. This topic is covered in the

Microsoft Excel Level 4 Course.

INSERTING A USERFORM INTO A WORKBOOK
Before a UserForm can be created, a blank form has to be inserted into the workbook

that the form applies to. It is a good idea to have clearly in your mind what you want

the UserForm to achieve before making a start as this will determine the controls that

need to be placed on it and how they are setup and programmed.

Procedures

1. Launch the VB Editor.

2. Right-click the workbook that you want to insert the

UserForm into.

3. Point to Insert .

4. Select UserForm.

ADDING CONTROLS TO A FORM
Controls are the objects that you can add to a user form so that the user can “ talk”

with it (hence, dialog box). These appear on the Toolbox toolbar when a UserForm is

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

inserted into a workbook in the VB Editor, and are quite literally drawn onto the

form.

The UserForm Toolbox toolbar

These are as follows:

Name of Control Button Image Description

Select Objects

Selects objects on a form

Label

Static text that is displayed to inform the

user

Text Box

Mostly used when a typed-in input is

requested from the user

Combo Box

Displays a dropdown list of values to

choose from

List Box

Displays a fixed list of values to choose

from (possibly with scroll bar)

Check Box

A box allowing the user to set a yes/ no,

true/ false value

Option Button

A button (often referred to as radio

button) allowing the user to set a yes/ no,

true/ false value. Usually used in groups

(see below)

Toggle Button

A button allowing the user to set a

yes/ no , true/ false value. The button

appears pressed in when “on” and out

when “off.”

Frame

Used to create group of option buttons.

This allows only one option button at a

time to be active.

Command Button

A button for running a command. Most

commonly used to OK or Cancel the

UserForm.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

Name of Control Button Image Description

Tab Strip

A TabStrip is used to view different sets

of information for related controls

MultiPage

Used generally for large amounts of

data that needs to be shown in separate

tabs

Spin Button

Allows the user to select a numerical

value by clicking up and down buttons.

The Spin Button needs a text box to

display (return) its values.

Scroll Bar

Similar to a Spin Button but in the form

of a bar with a sliding “ lever.”

Image

Displays a picture. File formats vary

with Excel versions but most common

are: .bmp, .jpg, .wmf, .gif, .ico.

RefEdit

Similar to a text box control but contains

a button at the right that collapses the

form thus allowing easier selection of

cells behind it.

It is advisable to have clear in your mind what controls the form should contain

before you start. Design the form on paper before you start.

Procedures

1. Click in the Toolbox, the button for the control that you

want to draw on the form.

2. Click the mouse pointer (black cross) on the form where

you want the top left corner of the control to be placed.

3. Point to the grey border on the edge of the control

(mouse pointer changes to a crosshair.

4. Click and drag to move the control, if necessary.

5. Point to one of the white square on the corners or edges

of the control (mouse pointer changes to a double headed

arrow.

6. Click and drag to resize the control, if necessary.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

7. In the case of:

 Labels

 Command buttons

 Check boxes

 Options buttons

Click on any visible text (Caption property) and replace it

with a description of what the control stores or does, eg.

a command button might have the text OK or Cancel on

it.

8. Continue drawing, moving and resizing controls as

necessary.

 In cases where text cannot be written directly on the

control (eg. Frames, MultiPage and the form title),

use the Caption property for the control.

 Double-clicking a button on the Toolbox toolbar

allows multiple controls of that type to be drawn on

the form. Clicking the button again (or pressing

ESC) cancels this operation.

FORM CONTROLS DESIGN TOOLS AND TECHNIQUES

Grouping

Grouping controls, temporarily joins them together so that they can be moved,

resized, aligned and formatted simultaneously.

Controls can also be grouped together permanently.

Procedures

1. Click the first control that you want to include in the

group.

2. Hold down the SHIFT key.

3. Click the next control that you want to include in the

group.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

4. Continue holding down the SHIFT key and clicking

control to include in the group.

5. Release the SHIFT key when all the controls have been

selected.

6. Move or resize any of the grouped control.

7. Click the Format menu.

8. Point to the appropriate command to format and layout

the grouped controls.

9. Click away from the grouped controls to cancel the

selection.

Grouped Labels and Text Boxes on a UserForm

 To permanently group controls together, select

them as described above and then click the Format

menu, Group command in the VB Editor.

 To gain quicker and easier access to control layout

and formatting commands, the UserForm toolbar

can be displayed in the VB Editor.

Click the View menu, point to Toolbars and

select UserForm from the side menu.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

The UserForm Toolbar in the VB Editor

CONTROL PROPERTIES
Each form control has a list of properties that can be displayed and (if necessary)

changed in the Properties pane.

Many properties can be modified by directly formatting the control on the form;

others are set from the properties window. Properties can also be set or modified at

run-time, ie. when the form is displayed.

A comprehensive list of all properties for all form control would be too long and

unnecessary for this booklet, but help can be sought by clicking onto a property in

the properties pane and pressing F1.

VB Editor showing the Properties Pane in lower left corner

 If the Properties pane is not visible, click View –

Properties, press F4 or click the Properties button

 on the VB Editor toolbar.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

For the purposes of a UserForm, the property that would usually need to be set for all

controls on the form is the Name property. Giving the controls a clear, consistent and

descriptive name makes them easier to identify when it comes to programming the

form.

Adding a Name Property to a Text Box Control

Control Naming Convention

While there seem to be no hard and fast rules to naming form controls, the use of

prefixes to describe the type of control is a recommended approach. For example,

naming a control txtDate or chkMkItalic makes it clear what type of control it is (text

box / check box), and what it holds or does (date / makes italic).

The following list can be used as a guide to prefixes for the more common form

controls:

Control Type Prefix

Label lbl

Text Box txt

Combo Box cbo

List Box lst

Check Box chk

Option Button opt

Command Button cmd or btn

Spin Button spn

Scroll Bar scr

Image img

 The form itself should also be named. The prefix to

use is frm, eg. frmDataEntry.

Procedures (naming a control)

1. Launch the VB Editor.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

2. Identify the workbook containing the UserForm that you

want to modify control properties for.

3. Display the form.

4. Select a control that you want to name.

5. Click the Name box in the Properties pane.

6. Type a name for the control, bearing in mind the naming

convention described above.

7. Press Enter.

 To add a name property for a form, click the grey

form background or its blue title bar.

PROGRAMMING A USERFORM

Discussion

UserForms and controls have a predefined set of events. For example a command

button has a “click” event, a procedure that runs when the user clicks the command

button. UserForms have an “ initialise” event that runs when the form is loaded.

In order for a UserForm to work in the expected way (ie. as a dialog box), it has to

have at least two event procedure – one for when the OK button is pressed and a

second for when the Cancel button is pressed.

To write a control or form event procedure, open a module by double clicking the

form or control. A default event will appear on the module sheet but this can be

changed by selecting a different one from the procedure drop-down list at the top

right of the window.

 A good analogy to the module sheet that appears

when you double click a form or control is to

imagine the back of the form where the instructions

on how to use it are written.

Event procedures include the name of the control. For example, the name of the click

event procedure for a command button named cmdOK is

Private Sub cmdOK_Click. “Private” because the sub procedure should not show in

the Macro list in Excel, it does not need to because it is purely for use by the OK

button on the form.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

 Beware of renaming a form or control after the event

procedures have been written. The name of the

procedure will not be automatically renamed and

hence, the event procedure will not run as expected.

 It is good practice to name controls as described in the

previous topic before writing event code.

Procedures

1. Double click the Cancel button on the form design.

2. Add code as necessary (see examples below).

3. Double-click the form in the Project Explorer pane.

4. Double-click the OK button on the form design.

5. Add code as necessary (see examples below).

6. Double click the form in the Project Explorer pane.

All the possible ways of programming a form and its controls’ events are too

numerous and varied to mention in any document. The examples given below,

therefore, apply to the more commonly used controls and are given as a guide only.

Additional examples and help can be obtained from the VB Editor help, and on

various websites including the Microsoft Developer Network at:

http:/ / msdn.microsoft.com/ en-us/ library/ aa220733(office.11).aspx

The Cancel Command Button

Only one thing would normally happen when the cancel button is clicked – the form

is removed from the screen and anything typed or set in its controls discarded. The

code for this would be (assuming the form was named frmDataEntry):

Unload frmDataEntry

The OK Command Button

Many things will happen when the OK button is clicked! For example:

a) Anything typed into text boxes will have to be acted on.

b) Items selected in combo boxes and list boxes will need to be interpreted and

made to carry out commands.

c) Spin button and scroll bars will have to have their values converted into

meaningful actions.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

d) Check boxes, toggle buttons, and options button on the form will need to be

tested to ascertain which condition(s) apply.

e) The form itself must be removed from the screen after all the above tasks have

been completed.

The following examples all apply to the “ click event” of the OK button and can be

written in any order. When referring to the control, its name as defined in the

properties pane must always be preceded by the name of the form that it is on, eg:

frmDataEntry.txtName.Value

 The word Me can be used in place of the full form

name. Me meaning “me, the form that I am on!”

So instead of...

frmDataEntry.txtName.Value

 you can use...

Me.frmDataEntry.txtName.Value

Text Boxes

Typically, when the OK button is clicked, text entered into a text box will need to be

transferred to a cell on a sheet, eg:

ActiveSheet.Range(“A2”).Value = frmDataEntry.txtName.Value

“Value” can be omitted because VBA always defaults to the value property for a

range object if the method or property is omitted. In addition, if the form must write

the text into cell A1 of the sheet that the form is being run from, there is no need to

include ActiveSheet. Hence, the code can be abbreviated to:

Range(“A2”) = Me.txtName

Combo Boxes and List Boxes

These can be used in a similar way to a text box, to enter the selected text into a cell

on a sheet. The code, therefore, would be very similar, eg:

Range(“A3”) = Me.cmbDepartment

or

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

Range(“A4”) = Me.lstLocation

Under other circumstances, it may be that the combo box or list box is designed to

give the user options to choose from. In the following example, a list box has been

used to give the user a choice of files to open. The code, therefore, would be:

Workbooks.Open Filename:= Me.lstFileNames

The above code assumes that the file to open is in the active, default folder. It may be

safer, therefore, to concatenate the correct path to the value returned by the control,

eg:

Workbooks.Open Filename:= s:\Excel\Stats\ & Me.lstFileNames

or

ChDir “s:\Excel\Stats\”

Workbooks.Open Filename:= Me.lstFileNames

In the following example, a combo box has been placed on the form to give the user a

selection of fonts to use. Assuming that the range to format is A1 to E1, the code

would be as follows:

Range(“A1:E1”).Font.Name = Me.cmbFontName

Option Buttons

Although not necessary if only one set of option buttons are used on a form, it is

good practice to draw them inside a frame. Only one option button can be selected at

a time so when one button is “pressed in,” another is “pushed out” (hence, radio

buttons).

A Frame containing two Option Buttons

Invariably, a decision will need to be made which option button is selected and thus,

an If structure used to carry out the necessary actions.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

In the following example, a frame has been set up on a form with two option buttons,

one for selecting male and one for selecting female. Whichever of the two is chosen

must be placed into cell B4 as M or F.

If Me.optMale = True Then

 Range(“B4”).Value = “M”

Else

 Range(“B4”).Value = “F”

 End If

Check Boxes

Because a check box has two conditions – true or false, an If statement has to be used

to evaluate them. In the following example, a check box has been used for the user to

state whether to print the workbook or not.

If Me.chkPrint.Value = True Then

 ActiveDocument.PrintOut

End If

Spin Buttons and Scroll Bars

A spin button or scroll bar control does not have a built in way of viewing its value.

Under usual circumstances, a text box has be placed beside the control to show its

current value.

The picture below, a spin button and a text box have been placed on a UserForm side

by side.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

The code for making the value of the spin button visible in the text box would be

added to the spin button’s On_Change event. As the value in the spin button

changes, it is transferred to and made visible in the text box.

Procedures

1. Double-click the spin button on the form design.

2. Add the following code to the button’s On_Change event

procedure.

a. Private Sub spnCopies_Change()

i. Me.<text box name> = Me.<spin box name>

b. End Sub

3. Double-click the form in the Project Explorer pane.

 A spin button’s values (ie. how high and low they

can go) can be controlled by using its Max and Min

properties.

The above procedure is purely to make the value of the spin button visible to the user

while using the form. Additional code has to be added to the OK button’s on click

event to make use of the spin button’s value.

In the following example, a spin button has been created on a form to prompt the

user for how many copies to print. The code uses the spin button’s value to print the

requested number of copies.

ActiveSheet.PrintOut Copies:=Me.spnCopies

FORM EVENTS

The topic above deals with events associated with form controls. The form itself also

has “events” that can be assigned a procedure. As with control events, the number

and variety of examples is too great to cover in this booklet. A couple of commonly

used examples, however, are given below to demonstrate use of the Initialize event.

The initialize event occurs when the form loads (just before it becomes visible on the

screen) and is often used to set default values for its controls and for populating

combo and list boxes.

Example A populates a combo box with four cities and Example B applies default

values to a text box and check box.

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

Example A

Private Sub UserForm_Initialize()

With Me.cmbLocations

.AddItem “Belfast”

.AddItem “Cardiff”

.AddItem “Edinburgh”

.AddItem “London”

End With

End Sub

 A simpler way of populating a combo or list box is

to type the list in a column on a worksheet. Create a

named range from the list and use the range name

in the Row Source property of the control.

 To limit a combo box so that users can only select

from the list, set the Style property to

frmStyleDropDownList.

Example B

Private Sub UserForm_Initialize()

Me.txtLocation.Value = “London”

Me.chkPrint.Value = True

End Sub

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

DISPLAYING A USERFORM
To display a user form, use the Show method for the form in question. This would be

written on a normal module sheet in the same workbook that the form has been

created in. The following example displays the UserForm named frmDataEntry:

Sub DisplayForm()

 frmDataEntry.Show

End Sub

Once the procedure has been written, a method of running it from Excel needs to be

chosen. This would be the same as for any other macro, ie. button, menu or

keystroke. The code could also be included as part of a larger procedure, or called

into one as a separate sub procedure.

Procedures

1. Launch the VB Editor.

2. Identify the workbook containing the form that you want

to show.

3. Insert a module sheet in the workbook.

4. Type the following code:

Sub ShowForm

<formname>.Show

End Sub

5. Run the userform

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

EXERCISE

CREATING A USERFORM

Task 1 - To create a UserForm to prompt for Text, ComboBox and CheckBox information.

1. Open a Blank Workbook and save it as User Form Practice.

2. Insert a new UserForm into the workbook and create controls on it as shown below:

3. Set properties to the objects as follows:

Control Property

CommandButton 1 Name: btnOK

Caption: OK

CommandButton 2 Name: btnCancel

Caption: Cancel

Label 1 Caption: Enter your name

Text Box Name: txtInput

Label 2 Caption: Select a colour for your name

ComboBox Name: comColour

CheckBox 1 Name: chkBold

Caption: Bold

CheckBox 2 Name: chkItalic

Caption: Italic

UserForm Name: frmDataEntry

Label

Combo Box

Text Box

Check

Boxes Image

Command

Buttons
Label

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

Caption: Data Entry

4. Assign an "on-click event" (what will happen when the control is clicked) to the

Cancel buttons by double clicking it and typing the following code:

Unload frmDataEntry

5. Double-click the form in the Project Explorer to return to its design window.

6. Assign an “initialize event” to the form (what happens when the form starts up) by

double clicking the form background and typing the following code. This is

necessary to load (“populate”) the combo box:

With frmDataEntry.comColours

.AddItem "Red"

.AddItem "Blue"

.AddItem "Green"

End With

7. Return to the form design window.

8. Double-click the OK button and add the following code. This is necessary to

“ implement” the userform:

Range("A1").Value = frmDataEntry.txtInput.Value

Select Case frmDataEntry.comColours

Case Is = "Red"

Range("A1").Font.Color = vbRed

Case Is = "Blue"

Range("A1").Font.Color = vbBlue

Case Is = "Green"

Range("A1").Font.Color = vbGreen

End Select

If frmDataEntry.chkBold = True Then

Range("A1").Font.Bold = True

Else

Range("A1").Font.Bold = False

End If

If frmDataEntry.chkItalic = True Then

Excel Level 6: VBA Intermediate) Dialog Boxes and Userforms

Range("A1").Font.Italic = True

Else

Range("A1").Font.Italic = False

End If

Unload frmDataEntry

9. Finally, write a short sub procedure on a new module sheet to show the form:

Sub EnterData()

frmDataEntry.Show

End Sub

10. Create a custom button on your toolbar to run the EnterData macro and check

correct data entry in cell A1. Correct any code, if necessary.

11. Save and close the file.

Excel Level 6: VBA Intermediate) Appendix I – Sub Procedure Add-ins

APPENDIX I – CREATING AN ADD-IN FOR SUB
PROCEDURES

Discussion

In order for a workbook containing sub procedure(s) to be used as an Add-in, there

must be a way for the Add-in to add a menu or buttons to run the procedure(s) when

it is installed.

In order to achieve this, the following two (or similar) procedures needs to be added

to the ThisWorkbook Excel Object module sheet as Private Subs (one that is not seen

from the Excel side because it is not relevant to run it from there).

The Add-in can then be protected, saved and installed as described in lesson 6 on

page 59.

Option Explicit

Dim cControl As CommandBarButton

Private Sub Workbook_AddinInstall()

' This procedure adds a menu command to run the procedure when the Add-in is installed

On Error Resume Next 'Just in case

 'Delete any existing menu item that may have been left

 Application.CommandBars("Worksheet Menu Bar").Controls("My Code").Delete

 'Add the new menu item and set a CommandBarButton variable to it

 Set cControl = Application.CommandBars("Worksheet Menu Bar").Controls.Add

 'Work with the variable

 With cControl

 .Caption = "My Code"

 .Style = msoButtonCaption

 .OnAction = "MyGreatMacro"

 'Macro must be stored in a standard module in the Add-in file

 End With

On Error GoTo 0

End Sub

Excel Level 6: VBA Intermediate) Appendix I – Sub Procedure Add-ins

Private Sub Workbook_AddinUninstall()

' This procedure removes the menu command when the Add-in is un-installed

On Error Resume Next 'In case it has already gone.

 Application.CommandBars("Worksheet Menu Bar").Controls("Super Code").Delete

 On Error GoTo 0

End Sub

Excel Level 6: VBA Intermediate) Appendix II –Error Codes

APPENDIX II – LIST OF TRAPPABLE ERRORS
AND THEIR CODES

Source:

http:/ / msdn.microsoft.com/ en-us/ library/ ms234761(VS.80).aspx

Code Message

3 Return without GoSub

5 Invalid procedure call

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

16 Expression too complex

17 Can't perform requested operation

18 User interrupt occurred

20 Resume without error

28 Out of stack space

35 Sub, Function, or Property not defined

47 Too many code resource or DLL application clients

48 Error in loading code resource or DLL

49 Bad code resource or DLL calling convention

51 Internal error

52 Bad file name or number

53 File not found

54 Bad file mode

55 File already open

57 Device I/ O error

58 File already exists

59 Bad record length

Excel Level 6: VBA Intermediate) Appendix II –Error Codes

61 Disk full

62 Input past end of file

63 Bad record number

67 Too many files

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive

75 Path/ File access error

76 Path not found

91 Object variable or With block variable not set

92 For loop not initialized

93 Invalid pattern string

94 Invalid use of Null

97 Can't call Friend procedure on an object that is not an instance of

the defining class

98 A property or method call cannot include a reference to a private

object, either as an argument or as a return value

298 System resource or DLL could not be loaded

320 Can't use character device names in specified file names

321 Invalid file format

322 Can't create necessary temporary file

325 Invalid format in resource file

327 Data value named not found

328 Illegal parameter; can't write arrays

335 Could not access system registry

336 Component not correctly registered

337 Component not found

338 Component did not run correctly

360 Object already loaded

361 Can't load or unload this object

363 Control specified not found

364 Object was unloaded

365 Unable to unload within this context

Excel Level 6: VBA Intermediate) Appendix II –Error Codes

368 The specified file is out of date. This program requires a later

version

371 The specified object can't be used as an owner form for Show

380 Invalid property value

381 Invalid property-array index

382 Property Set can't be executed at run time

383 Property Set can't be used with a read-only property

385 Need property-array index

387 Property Set not permitted

393 Property Get can't be executed at run time

394 Property Get can't be executed on write-only property

400 Form already displayed; can't show modally

402 Code must close topmost modal form first

419 Permission to use object denied

422 Property not found

423 Property or method not found

424 Object required

425 Invalid object use

429 Component can't create object or return reference to this object

430 Class doesn't support Automation

432 File name or class name not found during Automation operation

438 Object doesn't support this property or method

440 Automation error

442 Connection to type library or object library for remote process

has been lost

443 Automation object doesn't have a default value

445 Object doesn't support this action

446 Object doesn't support named arguments

447 Object doesn't support current locale setting

448 Named argument not found

449 Argument not optional or invalid property assignment

450 Wrong number of arguments or invalid property assignment

451 Object not a collection

452 Invalid ordinal

Excel Level 6: VBA Intermediate) Appendix II –Error Codes

453 Specified code resource not found

454 Code resource not found

455 Code resource lock error

457 This key is already associated with an element of this collection

458 Variable uses a type not supported in Visual Basic

459 This component doesn't support the set of events

460 Invalid Clipboard format

461 Method or data member not found

462 The remote server machine does not exist or is unavailable

463 Class not registered on local machine

480 Can't create AutoRedraw image

481 Invalid picture

482 Printer error

483 Printer driver does not support specified property

484 Problem getting printer information from the system. Make sure

the printer is set up correctly

485 Invalid picture type

486 Can't print form image to this type of printer

520 Can't empty Clipboard

521 Can't open Clipboard

735 Can't save file to TEMP directory

744 Search text not found

746 Replacements too long

31001 Out of memory

31004 No object

31018 Class is not set

31027 Unable to activate object

31032 Unable to create embedded object

31036 Error saving to file

31037 Error loading from file

Excel Level 6: VBA Intermediate) Appendix III – Debug.Assert

APPENDIX III – DEBUG.ASSERT

Discussion

In Excel 2000 and later, you can use Debug.Assert statements to cause the code to

break if a condition is not met. The syntax for Debug.Assert is:

Debug.Assert (condition)

 ...where condition is some VBA code or

expression that returns True (any numeric non-zero value) or False (a zero value). If

condition evaluates to False or 0, VBA breaks on that line (see Breakpoints, page 76).

For example, the following code will break on the Debug.Assert line because the

condition (X < 100) is false.

Dim X As Long

X = 123

Debug.Assert (X < 100)

Debug.Assert is a useful way to pause code execution when special or unexpected

conditions occur. It may seem backwards that Debug.Assert breaks execution when

condition is False rather than True, but this peculiarity traces its roots back to early C-

language compilers.

Your end users do not want the code to enter break mode under any circumstances,

so be sure to remove the statements before distributing your code, or use Conditional

Compilation to create "release" and "debug" versions of your project. Note that

Debug.Assert is not available in Excel97 or earlier versions.

Conditional Compilation

While not directly part of debugging code, conditional compilation allows you to

create "debug" and "release" versions of your code. For example, you may want to

include message boxes, or Debug.Print or Debug.Assert statements while you are

developing and testing your code, but you do not want those to be active when you

release the code to users. VBA allows you to include or exclude blocks of code with a

technique called conditional compilation. Conditional compilation uses If, Then, and

Else statements to include or exclude a block of code. First, you want to create a

compiler variable called, for example, DEBUG_ . Use the #CONST directive to create

the variable.

#CONST DEBUG_ = True

Then, delimit blocks using the compiler directives to include various blocks of code.

For example,

Excel Level 6: VBA Intermediate) Appendix III – Debug.Assert

#If DEBUG_ Then

 Debug.Assert (X<100)

#End If

Note the use of the # character. In your development version, keep the value of

DEBUG_ equal to True. When you are ready to release the code to end users, set this

one constant value to False to prevent the Debug.Assert statement from even being

included in the compiled code.

Excel Level 6: VBA Intermediate) Appendix IV – Adding Interactivity

APPENDIX IV – ADDING INTERACTIVITY TO A
MESSAGE BOX

Discussion

Examples of where an interactive message box might be required are where

confirmation is required to proceed with the next part of a procedure, or in error

handling, eg.

 Example A Example B

To make the message box interactive, the arguments must be put inside brackets. The

following code will display Example A above.

MsgBox ("Do you want to continue deleting the data", vbYesNo, "Delete Confirm")

The buttons argument consists of constants or values from each of the following

three groups:

Number and type of button:

Constant Value Display

vbOKOnly 0 OK button only

vbOKCancel 1 OK and Cancel buttons

vbAbortRetryIgnore 2 Abort, Retry and Ignore buttons

vbYesNoCancel 3 Yes, No and Cancel buttons

vbYesNo 4 Yes and No buttons

vbRetryCancel 5 Retry and Cancel buttons

Icon style:

Constant Value Display Icon

Prompt Buttons Title

Excel Level 6: VBA Intermediate) Appendix IV – Adding Interactivity

vbCritical 16 Critical Message icon.

vbQuestion 32 Warning Query icon.

vbExclamation 48 Warning Message icon.

vbInformation 64 Information Message icon.

Default Button:

Constant Value Default

vbDefaultButton1 0 First button is default

vbDefaultButton2 256 Second button is default

vbDefaultButton3 512 third button is default

The buttons argument of the message box function can hold three pieces of

information separated by a plus (+) symbol. Using the following code as the buttons

argument will produce Example C below.

vbYesNo + vbQuestion + vbDefaultButton2

A more concise method of writing the above sample of code would be to use the

numeric values for the arguments, eg.

4 + 32 + 256

It is easier, however, to remember the vb constants, viz. vbYesNo + vbQuestion +

DefaultButton2.

Procedures

1. Position the cursor in the sub procedure code where you

want to place the statement.

vbYesNo

vbQuestion

vbDefaultButton2
(second from left)

Excel Level 6: VBA Intermediate) Appendix IV – Adding Interactivity

2. Type a variable name to store the value of whichever

button is clicked in the message box, eg. response.

3. Type =.

4. Type MsgBox.

5. Type an opening bracket (.

6. Type a speech mark (Shift 2).

7. Type a prompt for the message box, ie. the message that

you want it to display, eg. Do you want to continue?

8. Type a speech mark (Shift 2).

9. Type a comma.

10. Type the necessary value to indicate which buttons you

want the message box to display, eg. vbYesNo.

11. If you wish to add an icon

and/ or default button to

the message box, type a

plus symbol (+).

If you do not wish to add an

icon and/ or a default button

to the message box, go to 15

below.

12. Type the necessary value

to indicate which icon to

display, eg. vbQuestion

13. Type a plus symbol (+).

14. Type the necessary value

to indicate which default

button you wish to set,

eg.vbDefaultButton2

15. Type a comma.

16. If you wish to add a title

to the message box, type

a comma

If you do not wish to add a

title to the message box, go

to 20 below.

17. Type a speech mark

(Shift 2).

18. Type the title text.

19. Type a speech mark

(Shift 2).

20. Type a closing bracket) .

21. Press Enter.

22. Add additional code as necessary.

Excel Level 6: VBA Intermediate) Appendix IV – Adding Interactivity

Responding to an Interactive Message Box

The value returned by the function depends upon which button is pressed. The value

is returned as a constant, which is equal in value to a number. The constant or the

value can be tested by the procedure, usually by means of an IF statement. :

Constant Valu

e

Button Selected

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

In the following example, the message box offers a yes/ no response. If the user clicks

yes, then the procedure will delete all the data from the sheet. If the user clicks no, the

procedure will terminate.

If MsgBox (“Do you want to delete all data”, vbYesNo + vbCritical) = vbYes

Then

ActiveSheet.Cells.Clear

End If

The result of the message box (ie. whether the yes or no button is clicked) can be

stored in a variable and the code could also be written:

Dim response as Byte

response = MsgBox (“Do you want to delete all data”, vbYesNo + vbCritical)

If response = vbYes Then or If response = 6 Then

ActiveSheet.Cells.Clear

End If

Procedures

1. (The procedure below assumes a message box containing

Yes and No buttons. It can be adapted, however, to

respond to any set of buttons (eg. vbOKCancel,

vbRetryCancel etc.))

Excel Level 6: VBA Intermediate) Appendix IV – Adding Interactivity

2. Position the cursor in the sub procedure code where you

want to place the statement.

3. Create an interactive message box as described in the

previous topic of this lesson.

4. Press Enter.

5. Type If.

6. Type a space.

7. Type the variable name that you have used to store the

response from the message box.

8. Type a space.

9. Type = vbYes.

10. Type a space.

11. Type Then.

12. Type the statements that you want the sub procedure to

perform if the user has clicked the Yes button.

13. Press Enter.

14. Type Else.

15. Press Enter.

16. Type the statements that you want the sub procedure to

perform if the user has clicked the No button.

17. Press Enter.

18. Type End If.

19. Press Enter.

20. Add additional code as necessary.

Excel Level 6: VBA Intermediate) Appendix V - Solutions to Exercises

APPENDIX V – SOLUTIONS TO EXERCISES

Review Exercise (Page 5)

Sub CreateTable()

Sheets.Add

' Add data

Range("B1").Value = "USA"

Range("C1").Value = "Europe"

Range("A2").Value = "Sales"

Range("A3").Value = "Costs"

Range("A4").Value = "Profit"

' Add formulas

Range("B4").Formula = "=B2-B3"

Range("C4").Formula = "=C2-C3"

' Add formatting

Range("B1:C1").Font.Bold = True

Range("A2:A4").Font.Italic = True

Range("A4:C4").Interior.ColorIndex = 15

End Sub

Sub TestProfit()

' Declare variable

Dim cel As Variant

' Start looping through each variable in range

 For Each cel In Range("B4:C4")

' Test each variable

 If cel.Value >= 15000 Then

 cel.Font.Bold = True

 Else

 cel.Font.Color = vbRed

 End If

 Next cel

End Sub

Excel Level 6: VBA Intermediate) Appendix V - Solutions to Exercises

Working with the Range Object (Page 18)

Sub LayoutTable()

' Select a cell on the table before running this macro

ActiveCell.CurrentRegion.Select

Selection.ColumnWidth = 12

Selection.Columns(1).Font.Color = vbBlue

Selection.Rows(1).HorizontalAlignment = xlCenter

End Sub

Sub FormatNumbers()

' Select a cell on the table before running this macro

ActiveCell.CurrentRegion.Select

Selection.Offset(1, 1).Select

Selection.Resize(Selection.Rows.Count - 1, Selection.Columns.Count - 1).Select

Selection.NumberFormat = "£#,##0.00"

End Sub

Sub LastCell()

' Select a cell on the table before running this macro

Selection.CurrentRegion.Select

Selection.Cells(Selection.Cells.Count).Select

ActiveCell.Font.Size = 14

ActiveCell.Interior.Color = vbYellow

ActiveCell.EntireColumn.AutoFit

End Sub

Sub RunAllMacros()

' Select a cell on the table before running this macro

Call LayoutTable

Call FormatNumbers

Call LastCell

End Sub

Excel Level 6: VBA Intermediate) Appendix V - Solutions to Exercises

Variables and Arrays (Page 41)

Task 1

Sub CreateNewForecast()

Dim arrMonthName As String

Dim arrVals(1 To 4) As String

 Sheets("Template").Copy After:=Sheets(Sheets.Count)

 arrMonthName = InputBox("Enter the name for the sheet")

 ActiveSheet.Name = arrMonthName

 For i = 1 To 4

 arrVals(i) = InputBox("Enter value for week " & i)

 Next i

 For i = 1 To 4

 Cells(2, 1 + i).Value = arrVals(i)

 Next i

End Sub

Task 2

Const PURPLE As Byte = 29

Const ORANGE As Byte = 45

Const ROSE As Byte = 38

Const BLUE As Byte = 5

Sub ApplyColours()

' Select a cell on the table before running this macro

ActiveCell.CurrentRegion.Rows(1).Interior.ColorIndex = PURPLE

ActiveCell.CurrentRegion.Rows(1).Font.ColorIndex = ROSE

ActiveCell.CurrentRegion.Columns(1).Interior.ColorIndex = ORANGE

ActiveCell.CurrentRegion.Columns(1).Font.ColorIndex = BLUE

End Sub

Excel Level 6: VBA Intermediate) Appendix V - Solutions to Exercises

Task 3

Sub TransferData()

Dim arrData(1 To 6, 1 To 4)

Dim iRows As Byte

Dim iCols As Byte

For iRows = 1 To 6

 For iCols = 1 To 4

 arrData(iRows, iCols) = Cells(iRows + 1, iCols + 1).Value

 Next iCols

Next iRows

Sheets("Net").Activate

For iRows = 1 To 6

 For iCols = 1 To 4

 Cells(iRows + 1, iCols + 1).Value = arrData(iRows, iCols) * 0.8

 Next iCols

Next iRows

End Sub

Excel Level 6: VBA Intermediate) Appendix V - Solutions to Exercises

User-Defined Functions (Page 57)

Task 1

Function DegF(TempC)

 DegF = TempC * 9 / 5 + 32

End Function

Function DegC(TempF)

 DegC = (TempF - 32) * 5 / 9

End Function

Function Hypot(x, y)

 Hypot = Sqr(x ^ 2 + y ^ 2)

End Function

Function Gasbill(UnitsUsed, LowUnits, HighRate, LowRate)

Dim highUnits As Integer

 highUnits = UnitsUsed - LowUnits

 Gasbill = (LowUnits * LowRate) + (highUnits * HighRate)

End Function

Task 2

Function CountText(RangeToCount)

For Each numb In RangeToCount

 If Not IsNumeric(numb) Then

 CountText = CountText + 1

 End If

Next numb

End Function

Excel Level 6: VBA Intermediate) Appendix V - Solutions to Exercises

Dealing with Potential Errors (Page 95)

Sub CircData()

Const PI = 3.142

Radius = InputBox("Type the radius of your circle in centimetres", "Circle Data")

 If IsNumeric(Radius) Then

 CircArea = PI * (Radius ^ 2)

 CircCircumf = 2 * PI * Radius

 MsgBox "The area of the circle is: " & CircArea & vbCrLf & vbCrLf & _

 "The circumference of the circle is: " & CircCircumf

 Else

 MsgBox "Input not valid"

 End If

End Sub

Sub DeleteOldFile()

Dim fileToRemove As String

On Error GoTo errhandle

fileToRemove = InputBox("Type name of file to delete from the current folder", "Delete File")

If fileToRemove = "" Then

 Exit Sub

Else

 Kill ThisWorkbook.Path & "\" & fileToRemove & ".xls"

 MsgBox "File successfully deleted"

End If

Exit Sub

errhandle:

 If Err.Number = 53 Then

Excel Level 6: VBA Intermediate) Appendix V - Solutions to Exercises

 response = MsgBox("File not found. Do you want to try again?", vbYesNo)

 If response = vbYes Then

 fileToRemove = InputBox("Type name of file to delete from the current folder", "Delete File")

 Resume

 End If

 End If

 If Err.Number = 70 Then

 MsgBox "File is currently open. Close the file and run the macro again"

 End If

End Sub

Excel Level 6: VBA Intermediate) Index

INDEX

A

Add-ins

code for subprocedures 117

creating ... 61

editing ... 64

installing to Excel ... 63

overview ... 60

removing .. 65

Arrays

Array function .. 38

assigning values ... 31

declaring ... 24

dynamic .. 35

lower bound ... 26

multi-dimensional ... 28

Option Base 1 ... 27

overview ... 24

ReDim ... 36

ReDim Preserve ... 37

using loops with... 33

C

Collections

Cells .. 10

ChartObjects ... 11

Columns ... 11

Rows ... 11

Sheets .. 10

WorkBooks ... 10

WorkSheets .. 10

Constants

declaring ... 22

using ... 22

D

Debugging

Break mode .. 76

Debug.Assert ... 123

Debug.Print .. 80

displaying variable values 73

error types .. 69

Locals window ... 73

step into .. 70

step out ... 72

step over ... 71

stepping a procedure 70

Watch window ... 75

Dialog Boxes

using Excel dialog boxes in procedures 98

E

Error Handling

Err.Number .. 91

error codes - list .. 119

error descriptions ..94

Is... functions ...84

On Error statement ...85

Resume statement ...85

trapping with error numbers90

using interactive message boxes88

using labels to divert code87

using the IF statement83

F

Functions

declaring variables in54

getting help ...52

user-defined ..49

using Excel functions in procedures44

using ranges in arguments55

VBA functions ...46

M

Message Box

adding interactivity .. 125

button types .. 125

default buttons .. 126

icons ... 125

interactive use examples 128

responding to .. 128

O

Offset ..14

R

Ranges

Cells property .. 8

CurrentRegion property12

Offset property..14

referring to ... 7

Resize property ...15

Resize ...15

U

Userforms, custom

adding controls ...99

adding events to controls 106

Cancel button .. 107

check boxes ... 110

combo boxes .. 108

control properties ... 104

control types .. 100

creating ..99

displaying .. 113

editing controls ... 101

form events - initialize 111

grouping controls ... 102

Excel Level 6: VBA Intermediate) Index

inserting to a workbook 99

list boxes .. 108

naming ... 105

OK button .. 107

options buttons ... 109

scroll bars .. 110

spin buttons ... 110

text boxes ... 108

V

Variables

Dim statement ...20

naming ...31

Option Explicit ..20

scope ..21

visibility ...21

