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PREFACE

The work described in this report was authorized under Contract No.
DAAKII-83-K-0011. This work was started in August 1983 and completed in
April 1985.

The use of trade names or manufacturers' names in this report does not
constitute endorsement of any commercial products. This report may not be
cited for purposes of advertisement.

Reproduction of this docLmuent in whole or in part is prohibited except
with permission of the Commander, U.S. Army Chemical Research and Development
Center, ATTN: SMCCR-SPD-R, Aberdeen Proving Ground, Maryland 21010-5423.
However, the Defense Technical Information Center and the National Technical
Information Service are authorized to reproduce the document for U.S. Govern-
ment purposes.

This report has been approved for release to the public.
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VISCOUS FLUID MOTION IN A SPINNING AND NIJTATING CYLINDER

1. Accomplishments

The working period for this contract was originally 83/08/02 - 85/02/02, but has been

extended until 85/04/30 in order to provide for completing the experimental setup for flow

visualization. During this working period, the following personnel has been partly supported

under contract DAAKI 1-83-K-0011;

Thorwald Herbert, Professor, Principal Investigator

J. Wallace Grant, Assistant Professor

Relja Zivojnovic, Graduate Student (NI. S. level)

German Santos , Graduate Student (Ph.D. level)

Charlotte R. Hawley, Research Specialist

David Pierpond, Undergraduate Student, has been involved in the experimental work at no

cost. His stnior project is close to completion. Parta of the theoretical work have been sup-

ported by the Army Research Office under Contract DAAG29-82-K-0129.

!,,PrL s n'.onn

New research findings have been reported at the following conferences:

(1) "The Flow of Highly Viscous Fluid in a Spinning and Nutating Cylinder," 1883 Scientific

Conferince on Chemical Defenze Research, November 14-18, 1083, Aberdeen Proving

Ground, Maryland.

(2) "Highly Viscous Fluid Flow in a Spinning and Nutating Cylinder," Second Army Confer-

ence on Applied Mathematics and Computing, May 22-25, 1084, Troy, New York.

(3) "Instability of the Visc,-us Flow in a Spinning and Nutating Cylinder," ARO Workshop

on Liquid-Filled Shells, September 20-21, 1984, Aberdeen Proving Ground, Maryland.

(4) "Instability of the Viscous Flow in a Spinning and Nutating Cylinder," 1984 Scientific

Conference on Chemical Defense Research, November 13-16, 1984, Aberdeen Proving

Ground, \M'aryland.

(5) An abstract of a paper entitled "On the Fluid Motion in Liquid-Filled Shells," has been

submitL.d for presentation at the 19ZIb Scientilic t.onfercncc on Chemical Defense

Research, November 19-22, 1085, Aberdeen Proving Ground, Maryland.
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1.2. Publications

A selection of results has been published in the following papers:

(1) "The Flow of Highly Viscous Fluid in a Spinning and Nutating Cylinder," Proc. 1993

Scientific Conference on Chemical Defense Research, Aberdeen Proving Ground, Mary-

land, (Eds. R. L. Dimmick, Jr. & M. Rausa), Report CRDC-SP-84014, (1984).

(2) "Highly Viscous Fluid Flow in a Spinning and Nutating Cylinder," Trans. Second Army

Conference on Applied Mathematics and Computing, Troy, New York, ARO Report 85-1

(1985).

(3) "On the Viscous Roll Moment in a Spinning and Nutating Cylinder," Proc. 1984

Scientific Conference on Chemical Defense Research, Aberdeen Proving Ground, Mary-

land, to be published.

(4) "Viscous Fluid Motion in a Spinning and Nutating Cylinder," submitted for publicAtion

in Journal of Fluid Mechanics.

Copies of the papers (1), (2) and or the manuscripts (3) and (4) are attached as Appen-

dices A.1 - A.4.

2. Technical Discussion

2.1. Introduction

It is well-known that spin-stabilized shells carrying liquid payloads can suffer dynamical

instability. For cylindricai cavities and low viscosity of the liquid, ,he inistability due to basically

inviscid inertial waves can be predicted by the Stewartson-Wedemeyer theory (Stewartson 1959;

\Wedemeyer 1966). This theory rest-s on the boundary-layer approach and is, therefore, res-

tricted to the range of sufficiently large Reynolds numbers. The instability of certain shells like

the XM761 (D'Ainico 1977; 1978), however, escapes such a prediction and is also dis-

tinguished in character owing to the rapid loss in spin rate. Experiments with a full-scale

liquid-filled cylinder (Miller 1982) and subsequent field tests (D'Amico & Miller 1979) estab-

lish that this nev flight instability is most pronounc'- ! For liquid fills of very high viscosity.

We have conducted an analysis of this problem *n order to support the ongoing experi-

liient's and to iindcpendently obtain insight into the wantomy of the flow phenomena. The initial

steps of this analysis are reported elsewhere (Ilerbert 1H82): evaluation of the experimental



3

dta ltase, dimensional analysis, scaling aspects, governing equations, and discussion of various

simplifying assumptions. Two observations in this earlier work led to the approach discussed in

the following. First, if the despin (negative roll) moments (Miller 1982) and void observations

(Mil!.er 1981) are correlated with the Reynolds number Re, at least three regions can be dis-

tinguished. At low Re, the despin moment increases proportional to Re, and the void in an

incompletely filled cylinder is parallel to the spin axis. This suggests a simple fluid motion that

is essentially independent of the axial coordinate, except in t(ie neighborhood of the end walls.

In a middle range of Re, the despin moment assumes a maximum, and a wavy distortion of the

void seems to indicate a cellular structure of the fluid motion. This cellular motion can, in

principle, originate from hydrodynamic instability of the basic flow with respect to axially

periodic disturbances. At still higher Reynolds numbers, the despin moment decreases with

increasing Re in a manner not clearly defined by the few available data points. The void obser-

vations indicate, however, that the motion ultimately becomes turbulent.

The second observation is the appearance of the nutation rate and angle as a small paran-

eter in the equations for the deviation from solid-body rotation. The forcing term due to nuta-

tion can be considered small enough for linearization of the equations in the situations of prar-

tical interest.

Consequently, our research focused on three topics. First, theoretical analysis of "simple"

fluid motions at low Reynolds number that satisfy the linearized equations for the deviation

from rigid body rotation. Second, analysis of inviscid and viscous inertial modes and their

relevance for the occurrence of a maxnimum despin moment at moderate Reynolds numbers.

Third, the design of a small-scale, low-cost experiment for visualization of the interior fluid

motion- The results of these efforts are discussed in sections 2.2, 2.3 and 2.4, respectively.

2.2. The Deviation from Solid Body Rotation

A for-mal analysis of the equations' for the deviation of the velocity field from solid body

rotation suggests that (1) the equations can be linearized without- introducing major errors, (2)

at low Reynolds nuiibers Re *, the velocity field is indepeiidenit of the axial direction over a

conside-able paurt of the relatively long (-1 = -1.3) cylinder, and (3) the flow is in the axial

direction and turns at the ends. Application of thit-e concept-n,.' a•..'u inptiolis turned out very

t Detailed equations are given in A[jpvnIiix A.i

We use the notation iiitroduccd in A .\,l-i.hx A ..
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fruitful. A detailed description of the results and comparison with computational and experi-

mental data is given in the paper "Viscous F'iuid Motion in a Spinning and Nut-ating Cylinder"

(Appendix A.4), submitted for publication in the .Tournal of Fluid tMechanics A sample pro-

gram with the relevant subroutines for rpproducing the theoretical results is given in Appendix

B. Here, Nke report only the main conclusions.

The model oi a two-dimensional unidirectional flow in a finite segment of an infinite

cylinder yields the solution of the linearized equations in analytical form. The disregard of the

end walls has some obvious consequences: the turning flow near the ends and the associated

contributions of pressure and shear stresses to the moments cannot- be obtained from this

model, Nevertheless, we gather understanding as well as quantitad.ie information. The velocity

field of the core flow agrees well with computational results (Vaughn et al. 1985) for low Rey-

nolds numbers. The analytical result is an evident example for the formation of boundary

layers. The cc ( flow can be utilized as a basic flow in studies of hydrodynamic instability with

respect to cellular motions. The parametric excitation of such cells by the azimuthally periodic

deviation has been discussed by Herbert (1084). The core flow also represents the lowest-order

approximation to the solution of the nonlinear equations and can be extended by higher-order

tenrms.

The roll moment agrees well with measured and computed values, and can also be found

at Reynolds numbers too large for successful numerical simulations. The roll moment ori-

ginates from Coriolis forces. While the direct calculation of the yaw moment suffers from

neglecting the pressure contribution, the yaw moment can be found from the roll moment

using the relations given by Murphy (198-1, 1985). The pitch moment remains an open issue.

The average rate of change of temperature is found to be proportional to roll moment and spin

rate. This estimate needs further verification once more detailed data become available.

The simple form and scaling relations of our results provide guidance for sorting and

evaluating the experimental data base. The results also suggest various improvements in the

experimental procedures. First, the changes in temperature and viscosity should be carefully

monitored. \Vith the effective viscosity known, a closer agreeinent- between theory and obser-

vation is to be expectd. Second. the yet neglected variation of the roll moment with ",e spin

rate is considered relevant, anid in fact provides the roll moment in some range of iteynolds

num bers• Instead of recording the roll moment- as a function of Re by using numerous viscosi-

t:es at Fixed N l-cfl rate, very similar data canl be generated by varying the spin rate for a few



5

fluids. For directing the research efforts within this project, it has been most revealing that the

characteristic variation of roll moment versus Rcynolds number, in particular the sharp max-

inum Dt Re ; 19 is a property of the unidirectional model flow. This result contradicted the

earlier working hypothesis which attributed thc occurrence of this maximum to hydrodynamic

iustability and the onset of cellular motions.

2.3. Cellular Structure of the Motion

Aithough not as relevant to the moments as earlier thought, the cellular motior. at

surprisingly low Reynolds i.jmbers is in itself an interesting physical phenomenon. In our

analysis, we superpose to the steady basic flow v. = (0,r,v1 ), p. disturbances , = (u,v,w), p

sufficiently small for linearization. Substitution into the governing equations and neglect of

products between disturbances and terms of order 0(02) provide the following stability equa-

tions:

Ou &u 8 P_ I, IA. 2 dV
T+ Ou_- 2(, + r,)v +-l. -y-1 .D "u2 ,-i--

di dQ ar' H~e r 2 r2

+ [v,- + 2 = 0

[,v + V r,)u+. 1pJ - 1 "v + 2 au['b +TY 2.(1+ -,,7 . •7o _7

Ow "-•+u v " -,.-- _ _LD,w] =(0 r++V O- il 0

01- + O + OP: - a. 2-r#)
iT, cJ i: Re) 'Dr

• 1 Or': au,, 0+ t'"+ -r,) v+ V2T 1ý1 01 - • D

10[ 1 Cr Ow
-- (ru) +-- + 0
r r r 00 Oz

Three groups of tcrins have been scsparated by square brackets in taese a , The

Ii rst group, if set to zero, r•lpes e elI.'I the equations for inviscid inert,im modes

-- cxl)( ') 4 10, -1- J . 1t), wlI cre II is the (in teger) azinmuthal waveniumber, cr the axial



wavenumber, anda = a, + ici provides the amplification rate a, and frequency aj. Usually,

an equation for the pressure is used for obtaining the analytical solution (Stewartson 1959).

We have derived an alternative system ill terins of u,t, and applied a spectral collocation

method to be used for more general cases in order to check the numerical results against the

e',act values.

The programs are designed to provide results for arbitrary values of the azimuthal and

axial wavenumber. A typical spectrum for i = 1a = I is sLown in figure 1. In the complex

s-plane, a = cr + sin, stable (a, < 0) eigenvalues are located to the left of the vertical s,-axis,

while eigenvalues in the right half-plane indicate instability. In the inviscid case, the eigen-

values are located on the ai-axis (a, = 0) and are neutral. The eigenfunctions associated with

the eigenvalue of maximum frequency are shown in figure 2. Note that only the no-

penetration condition for the radial velocity component is satisfied, while v and w slip at the

cylinder walls.

1- The second group of terms in the stability equations is multiplied by l1'Re and represents

the viscous correction to the inertial modes. Bly eliminating w and p, a system of ordinary

differential equations for u anld v has been derived. Due to the higher order of this system, all

boundary conditions can be satisfied. Programs have been developed for calculating spectra of

(complex) eigenvaues, for tracing single eigenvalues as a function of Re, a, and for obtaining

the eigenfunctions. At high Re, the results follow the trends predicted by asymptotic theories.

Our analysis, however, also covers the range of low Reynolds numbers, where the inertial

modes suffer rapid decay (s,<0).

Spectra of eigenvalues for viscous inertial modes at in = 1, a 1 in an infinite cylinder

are shown in figure 3 for Re = 1000 and in figure 4 for Re 100 All eigenvalues move to

the left as Re decreases. indicating stabilization of the r.iodes. The eigenfunctions for the least

stable mode at Re = 100 are shown in figure 5. Note that all \clocity components vanish at

the cylinder wall.

T'he most interesting aspect of the stabilioy equations is the third group of terms. The

coefficients in this group, V:, T,, and rT , a-c of order O( ) and periodic in p. The periodicity in

p leads to a coupling of the mode equations for in and mi 1. aid may cause primary resonance

between incrtial modes. In view of viscous dampl)ing, this resonance is likely to occur as f

exceeds a critical value that decrdeases as Re increa.scs.

16 .N
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The analysis of this parametrical instability has been prepared by solving the full set of

stability equations with the coupling terms between modes artificially set to zero. A spectrum

of eigenvalues in the c-plane for in = 0, a ý I and Re - 100 is shown in figure 6. This

spectrum consists of the superposition of the spectra for in = 0, ± I of the viscous equations.

As the coupling terms are taken into account, the spectrum drastically changes, as shown in

figure 7. Most remarkable is the appearance of a small number of eigenvalues in the unstable

right half-plane. These eigenvalues are either real or appear as complex conjugate pairs. This

reflects the fact that the physical solution must be real. Instability at lower values of the axial

wavenumber a can be found at low Reynolds number. Figure 8 shows an example of instabil-

ity at Re = 20. A single pair of complex conjugate eigenvalues appears in the unstable

domain; the amplification rate decreases with the Reynolds number.

The analysis of the parametric instability of the azimuthally periodic flow is rather costly

in terms of computer time. Within the framework of this contract, we were not able to com-

plete a systematic parameter study that could provide a lower limit or critical Reynolds number

for the onset of cellular motion; neither were experimental data available for a comparison of

eigenfunctionr. It has been shown, however, that cellular motions can appear at low Reynolds

numbers as a result of resonant coupling beetween inertial modes.

2.4. Flow Visualization

Although theoretical (Herbert, Appendix AA) and computational (Vaughn et al. 1985)

work provides some insight into the interior fluid motion, the nature of the phenomena

remains largely in the dark. This is especially true for the range of medium and high Reynolds

numbers where finite-amplitude ccllular motions and, ultimately, turbulence are expected to

occur. This range is barely within the scope of computational methods nor can it be fully

explored with the theoretical means of sections 2.2, 2.3.

Previous experiments (Miller 1981) tusing a partially filled full-scale cylinder revealed

some axil nonuniform iiv of the flow at higher Hle without showing details of the flow field.

Later attempts to use flow tracers (\Mil hr &• Oberkanipf, iersonwd comnini ication) had little

success due to the high spini rates (accelerations) combined with minute density differences

between working fluid and tracer particle.-. Lven carefully centrifuged and selected particles

failed to follow the li(iid pIath. probably due to chinges of ;,nlpe rature during the run.

---4 A! 14AA I



Attempts to employ laser-induced fluorescence (Miller 1084) were partly successful after chang-

ing the time scale, i.e. to lower spinrate, nutation rate, and viscosity at fixed values of the

dimensionless parameters. These efforts have been discontinued, however, due to continuing

lighting problems.

Evaluation of the e;.periniental attempts to visualize the fluid flow clearly reveals the

extreme full-scale conditions as evil. Conclusive experiments can be conducted by exploiting

the principals of dynamical similarity and appropriate scaling laws. These aspects have been dis-

cussed in earlier work (Herbert 1082) and extended by the analysis in Appendix A.4.

Between the three reference quantities, radius a, spinrate w, and density p for length,

time, and mass, respectively, the density of different fluids offers little variability. However,

length and time scale can be easily changed. For dynamical similarity, the following dimension-

less quantities must be fixed:

X c /a aspect ratio

e nutation angle

r ---- /w frequency

Re = pwa2 /ls Reynolds number

The nutation angle must remain the same in a scaled setup. Radius a and half-length c of the

cylinder must be scaled by the same factor in order to keep the aspect ratio fixed. A second

factor can be applied to both spinrate w and nutation rate 0, in order to preserve the fre-

quency. Keeping Re fixed requires changing the kinematic viscosity V, - p/p by the same fac-

tor u wa 2 . Since the desired tendency is toward smaller radii and spinrates, we require less

viscous fluids than those used in the full-scale experiments. Such fluids are easy to find.

It is obvious that the main thrust of an experiment may require specific optimum condi-

tions. Flow visualization requires low velocities, i.e. low values of we. Measurements of

moments require optimum values of w2a6 . Minimizing the rate of change of temperature

requires a minimnum of w3 U2 . A good setup for flow visualization, therefore, may produce

moments in a hardly measurable range.

The goal of our efforts was to show that a low-cost device (=-$*ýUu) can be designed for

flow visualization. Details had to be kept simple. Accuracy and convenience had to comprom-

ine. The results of these efforts arc ,hown in frgures ) and 10.
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A one-inch inner diameter cylinder of aspect ratio X = 4.3 is used, The cylinder is cut

from a pyrex glass tube with the inner diameter accurate within 1/5000 inch, but with varying

wall thickness that affects the optical quality. The cylinder is filled with mixtures of water and

glycerin. The mixing ratio is used to vary viscosity. On top, the cylinder is closed with a

screwed-in plastic plug. A center hole allows access to the interior, especially for removing air

bubbles. The hole can be closed using a toothpick.

The cylinder is glued to a drive plug and axis machined from a single piece of aluminum.

The one-sided support allows easy (optical) access to the cylinder and permits using cylinders of

different length. One-sided support is affordable due to the moments being approximately five

orders of magnitude smaller than in the full-scale experiments. The axis is twice supported by

ball bearings. The cylinder and shaft are driven via timing belts over exchangeable sets of pul-

leys. The most expensive piece of the spin arrangement is a <24AV d.c. motor with sufficient

torque in the range of 500 - 5000 rpm. Motor and cylinder support are mounted to an alumi-

num frame that can be inclined to the vertical axis by 5, 10, 15 and 20 ' using different support

holes and struts.

The horizontal support plate is machined to leave the cer.ter position free for access and is

screwed to a commercial record player (Garrard model 775). The plate can be offset in order to

align the center of mass of the cylinder with the nutation axis. The record player provides

nutation rates of 33, 45, and 78 rpm. The hollow axis is only utilized to provide power to the

spin motor. A 1u-contact slip ring of high quality has been kindly donated by Poly-Scientific,

Blacksburg, VA, but has been saved for more sophisticated experiments. A nail with a smooth

top and a brush fixed to the turntable proved suflicient for transmitting a single voltage.

The remaining components of the experiment are: a Heathkit regulated power supply for

the spin motor, a strobelight for controlled pulsed lighting, and suitable flow tracers.

As flow tracers we use Afflair 100 Silver Pearl, kindly donated by EM Chemicals,

Hawthorne, NY. The material consists of very fine and shiny plastic platelets commercially

used for cosmetic purposes. Although of specific weight different from that of the fluid, the

low accelerations in the scale model permit practically buoyant behavior of the platelets over

considerable time. The strobelight (General Radio Strobotac) with adjustable frequency is used

for lighting as well as for measuring the spin rate of the cylinder.

At, the slow time scale of the experiment, the fluid motion can be visually inspected while

running the apparatua. At high viscoiities, the apparatus can also be suddenly stopped, with the
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flow tracers "frozen" in the resting fluid. The platelets dign with surfaces of constant shear.

Therefore, by manually rotating the cylinder forth and back, the three-dimensional structure of

the field can be inspected. This crude observation is very heilpful in developing the visualiza-

tion technique. A detailed account of the technique (appropriate particle density, pitfalls such

as the history of particle distribution and alignment) will be given by Pierpont (1985).

A typical view of the "frozen" pattern is shown in figure 11. Note, however, that the

V. stereoscopic view by eye reveals the spatial distribution of the particles which is here projected

into a single plane. The photograph also shows some undesirable reflections from the cylindri-

cal surfaces. Visualization of the frozen pattern can be essentially improved by using a light

sheet parallel to the spin axis. Sheet lighting Mso enables photographic recording of the flow

structure while the apparatus is in operation.

A continuous light sheet is produced by a Spect,, Physics model 120 (15 mW) helium-

neon laser and a cylinder lens. In order to avoid the need for accurately firing the camera (35

""."mm Pentax with 50 mm lens) at a certain time, a cylindrical card board screen with a vertical

slot and a 900 offset opening is fixed to the circumference of the turntable. The shutter is

manually opened and closed after the laser sheet of light [lashed through the slot. Some photo-

graphs taken with the apparatus in motion are shown in the figures. The figures show the pat-

tern in the x,z-plane (the plane spanned by spin axis and rutation axis) as seen at 4 - 0* in

the y-direction. The series of figures 12,13,14 is for different nutation rates of 33, 45, 78 rpm,

respectively at otherwise fixed parameters. The figures rrveal the changing pattern and forms-

tion of cells at a Rcyno!ds number Re ý 40. At slightly higher Re, additional cells appear as

shown in figure 15. At the high value of Re z 8000, the flow is highly unsteady and irregular

(turbulent) with a superposed large-scale cellular motion. This cellular motion accumulates the

platelets in streaks around the cylinder wall, as shown iii figure 16. Number and position of the

streaks depends sensitively on the parameters, see figure 17. The distortion of the bright line

near the axis is very similar to the diktortion of the void in Miller's (1081) photographs at low

viscosity.

Specification of accurate Reynolds nunmbers suffers from some uncertainty in monitoring

and measuring the wide range of viscosities for the hygroscopic water-glyccrin mixtures exposed

to uncontrolled thermal cojiditioils, Falling-plihere viscomnetry is the easy way out, but requires

":" a whole variety of spheres, dilferenit in diameter and specific gravity. To within this uncer-

taintiy. however, the figures clearly reveal the cellular structt're of the flow and the changes of

,?..,

-.- .-. A!
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the structure as Reynolds number and rate increase. Perhaps the most striking result of this

visual study of the flow structure i. the manifold of pattern at higher Reynolds numbers. A

systematic analysis of these patterns cannot be conducted within the ongoing senior project.

Neither can a coarse sampling of pattern in the y,z-plar.e be completed before submission of

this report. However, the feasibility of flow visualization with simple means by proper sealing

has been clearly demonstrated. A manifold of cellular motions in the laminar range has been

observed as well as turbulent flow at high Reynolds numbers.

Some improvements are suggested from experience with the present experiment:

(1) More accurate measurements of viscosity and spinrate ini order to reproduce experimental

conditions.

(2) Redesign of the spin drive plug: a steel axis should be fixed to the bearings with an easy-

to-detach cylinder bottom plug snug-fit to the axis.

(3) Refined laser-light sheet (thinner, piane can be rotated) and more sophisticated shutter

release for the camera (controlled by timing pulse at proper turntable position).

(4) Higher precision of the cylinder for improved optical quality.

(5) Replacement of the record player by a turntable with continuously variable rate of rotation

and heavier duty bearings.

Various of these improvements can be achieved with minor efforts and expenses, but not

within the time frame of this contract. Moreover, we are confident that using photochromic

dye exposed to a pulsed laser beam would allow visualization and - with some effort - quantita-

ti,.We analysi- of velocity prnfiles.
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THE FLOW OF HIGHLY VISCOU.S FLUID

IN A SPINNING AND NUTATING CYLINDER

Thorwald Herbert
Department of Engineering Science and M•echanics

Virginia Polytechnic institute and State University
Blacksburg, Virginia 24061

Abstract

Evaluation of the sparse experimental data and analysis of the equations
for the fluid motion in a spinning and nutating cylinder suggest a theoretical
analysis in three steps: (1) analysis of the viscous flow In -n infinitely
long cylinder, (2) hydrodynamic stability analysis of this basic flow, and (3)
study of the end effects. A status report is given on the first of these
tasks. The purely axial basic flow is governed by ordinary differential
equations. Analytical and numerical solutions show the different character of
this flow at low and high Reynolds numbers. The resulting moments are
consistent with experimental data.

Introduction

Spin-stabilized projectiles with liquid payloads can experience a severe
flight instability that is characterized by a rap yaw angle growth and a
simultaneous loss in spin rate. Experiments with u full-scale liquid-filled
cylinder (Miller 1982) have shown that this instability originates from the
internal motion of fluids In the range of high viscosities. We have initiated
a theoretical analysis of this problem in order to support the ongoing experi-
ments and to obtain independently nhsight into the flow phenomena. The
initial steps of our approach are reported elsewhere (Herbert 1982): evalua-
tion of the experimental data base, dimensional analysis, scaling aspects,
governing equations, and discussion of various simplifying assumptions. Two
observations in this earlier work led to the results presented here. First,
if the despin moment data and void observations (Miller 1981) are correlated
with the Reynolds number, at least three regions can be distinguished. At low

Reynolds numbers Re, the despin moment increases proportional to Re. and the
void in an incompletely filled cylinder Is parallel to the spin axis. In a
middle range, a maximum of the despin moment exists that seems to be associ-
ated with the onset of a void distortion due to a cellular motion of the
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fluid. At higher Reynolds numbers, the despin moment decreases In a manner
that is not clearly defined by the few available data points. The void
observations indicate, however, that the motion ultimately is turbulent. In
the theoretical approach, the initial increase in the despin moment is
attributed to a simple basic flow that can be studied disregarding the end
effects. The occurrence of a cellular motion at higher Reynolds numbetrs and
trie reduced despin moment can, in principle, be associated with a hydrodynamic
instability of the basic flow. Accounting for the end effects should provide
the final polish of the results. The second observation was the appearance of
a parameter in the equations for the deviation from solid body rotation that
can be considered small enough for linearization In the situations of practi-
cal and experimental Interest.

In the following, we describe the development of a simple system of
equations for the basic flow and discuss asymptotic solutions and numerical
results. A comparion Is made with computer simulations of the flow (Vaughn
1983) and with experimental data (Miller 1982).

The Basic Flow

We consider the motion of a fluid of density p and viscosity u in a
cylinder of radius a and length 2c. The cylinder rotates with the spin rate w
about its axis, the z-axis. The z-axis is inclined by the nutation angle e
with respect to the inertial i-axis and the 2,z-plane rotates with the nuta-
tion rate n about the Z-axis. The two rotation axes intersect in the center
of mass of the cylinder. In contrast to the experimental procedures (Miller
1982), we consider waO, n)0O, and o0>O as constant. We describe the motion by
the Navier-Stokes equations, written in the aeroballistic or nutating coordi-
nate system x~y,z, where x is normal to z in the Zz-plane:

DV
P + 2 . + a x(ax r). -vp + JjV2

(I)
v.v - I.

Sis the velocity measured in the nutating system, Pn the pressure, and C
tfe position vector. The body force due to gravity is neglected. Equations
(1) are subject to the no-slip and no-penetration conditions at the cylinder
walls.

In the next step, we split the velocity and pressure fields according to

Vn - Xs + Vd- Pn ' Ps +Pd (2)

where YsP describe the state of pure solid body rotation, whereas ,
describe tRe deviation from solid body rotation. It is obvious thath dO_-

Pd-O If either one of the following conditions is satisfied: wxO, fl.O, g0o
or p- (solid fill).

The equations for Xd are written in terms of non-dimensional quantities,
using a, w, and p for scaling length, time and mass. Note that this choice Is
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APPEN~DI X A

4A 62Yn i'xI R..Fd* ~ ¶.'i :~ K A 4 X.JJ FC !._ g.'I. -- 4- M." Vd- 4ý n. ýWA 4. f



A-4

ambiguous (Herbert 1982) and excludes the case of no spin. The problem then
depends on four non-dimensional parameters.

C- /a aspect ratio
o sine
S- n1 frequency
Re - pwa2/1z Reynolds number.

The aspect ratio is only conftained In the boundary conditions.

Finally, cylindrical coordinates r,#,z are Introduced. The equations for
the (non-dimensional) components vrv ,v of the velocity deviation and the
pressure deviation p' are given as equatfons (4.22) by Herbert (1982). The
most remarkable fact ahout these equations Is the appearance of a force term
2rorcos# In the z-momentum equation. If this term vanishes, the equations
support only a trivial solution. It is obvious, therefore that the deviation
velocity is of order O(To). At close analysis, -to (-/wisine turns out to
be a rather small parameter. Even a conservative estimate with n4500 rpm,
w,30 0 0 rpm and 94200 provides values -0i0.057. It seems well justified,
then, to linearize the equations in To. It Is also worth noting that this
linearization imposes no restriction on the Reynolds number Re.

The resulting system of linear equations is still quite difficilt to
solve, mainly owing to the boundary conditions. Use of the boundary layer
approximation would simplify the task, but secms inappropriate in the inter-
esting range of Reynolds numbers. The equations suggest, however, that a
solution can be found when the boundary conditions at the end walls of the
cylinder are relaxed. As a first step, therefore, a steady flow (basic flow)
is sought disregarding the end walls, I.e. for an infinitely long cylinder.
Despite other Initial thoughts, the force term In the z-momentum equation
causes a deviation velocity that Is purely axial,

Yd - (0, 0, aav z), Pd 0. (3)

lt Is also consistent with the equations to assume a solution in the form

vz 2'rolf(r)coso + g(r)sino) (4)

where

f" V- 1 - Re Re r (Sa)
1. 1

g" +-F g' - r-rZ + Re f - 0 (Sb)

-0 at r-1
f'g { finite at r - 0. (5c)

The prime denotes d/dr. These equations seem to call for en analytical
solution, but our attempts were not yet successful. For low Reynolds numbers.
it Is ouvious that
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f - f(R.o q n(flr?) (6)

and in more detail

Ile-!(r - r 3 ) +O(Re 3 ) (7a)

Re2u- .jU (2r - 3r0 + rs) + O(ReW). (7b)

A series includinghigher order terms In Re has been constructed but converges
only for Rec12. Another Interesting limit can be easily obtained for Re--:

f * ) as Re .(8)
9 r

Owing to the loss of the highest derivatives, this solution cannot satisfy the
boundary conditions and is valid only outside the thin boundary layers near
the cylinder sidewall.

Without atny detailed knowledge of the solution in the medium range of Re,
It can be seen that the basic flow exhibits characteristically different
behavior at low and high Reynolds numbers. At low Re, the componont f in thp
plane €=0 (Z.z-plane) is dominating. AL high Re, f is negligible (except in
the boundary layer), and the component g In the plane *-900 is dominating.

In the medium range of Re, we have applied a spectral collocation method
for numerical solution. This method is especially capable of resolving the
steep gradients In the boundary layers at large Re. Figure 1 shows the numer-
ical results in the form of contour lines of equal axial velocity. The flow
to the right or above the (thicker) zero-velocity line is toward the reader.
The shift of the velocity maximum from *-0 at ReuO.01 to 4w900 at R-1O00, and
the pronounced boundary layer formation in the latter case is clearly visible.

eg. e.g ll uI|L. O.OICl L II.N Ll('CI Q. IO+O lt. IWO.fl ItI(It . O.001

Figure 1. Contour lines of equal axial velocIty, vz/(2.o) - const., for
Re-0.01, 10 and 1000. The difference between levels is 0.001, 0.1 and 0.2,
respectively.
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Tor supporting the relevance of our solution, Figure 2 shows the compari-
son with computatlonal results for the velocity distributions in tho center
cross-section (z=O) of the cylinder. The data were kindly provided by Dr.
Vaughn. Sandia National Laboratories. The agreement for Re=14.9 is considered
representative for the range of lower Reynolds numbers. At the higher Rer45.7.
a minor hut systematic deviation between our solution and the Sandia results
exists that seems to be due to a superposed cellular motion. This cellular
motion is not yet incorporated into in our analysis and will be subject to
further study. The axial flow considered here will provide the basic flow for
an analysis of the hydrodynamic stability. It is encouraging, though, that
our simple theory yields results in essential agreement with the computational
solution of the full Navier-Stokes equations for A finite-length cylinder. The
computational effort for solving the ordinary differential equations (5) Is
rather small, typically 25 msec (IBM 3081) per solution.

Figure 2. Radial distribution of the axial velocity (in fps) at z=O for

Re-14.g and Re-45.7. The symbols show the solution to the full Navier-Stokes
equations (Vaughn, personal commu1ication'.

Moments

"i ~In o~r.der to compare with the experimental data for the despln moments, we
'have analyzed the moments that arise from the deviation velocity V, disre-
Sgarding the contribution of pure solid body rutation. Conservation of angular

momentum for the fixed cylindrical control volume R (surface S) requires

M~d p-d- + r xJ J [ x (21l x Vd)]pdR

+ l r (s+ Vd)]P(Vd • FS-iT"( d)
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where I Is the resultant torque on the system. The first term on the right-
hand side vanishes for steady Yd. The second term originates from Corlolis
forces In the nutating system. The third term describes the net rate of
angular momentum flux through the rontrol surface with the outer normal n.
The contribution from Z x -d vanishes since Yd has only an axial component.
The last term gives the moments due to the shear forces at the cylindrical
surface. There is no pressure contribution since Pd-O-

Substitution of Xd and vz provides the following expressions for the
components of M:

Mx i(2n slne) (e) ,'i. r2fdr1 (10a)"X A Re -D] rfr te

f'(l)

M - ml(2nasine)(wa) f Re -( J r2gdr) (lOb)

Mz -mt(2asine) 2 {oJ r 2 fdr] (lO)
0

where in is the liquid mass In the cylinder. The derivatives g', f' in MNOMv
originate from the shear forces at the cylinder, whereas the Integra's provid•
the rate of angular momentum flux. The despin moment M is due to Coriolls
forces. Note, however, that the interpretation of Mz wTfi be different if the
flux through the cylinder end walls is prohibited.

Using the differential equations (5a,b) and integration by parts, the
integrals in (lOab,c) can be expressed as

r 2fdr - -- eg'"1) 9 J r 2 gdr " .~e- 2+ . (I1)

The moments can therefore be written as

N~~~~~ - '2 '2N, 1a
Mz a M (2aastne)2a (z12a) g

2 M In I (2nasine)
2 M-Z, - -We g(1) (12b)

Ma- "W H. (12c)

Since f'(1) < 0, g'(1) < 0 for all finite Re*O, the moment M. about the spin
axis is always positive, whereas Mx < 0. For small Reynolds number, the
series solution (7) provides

I * Re2  Re
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which allows.a quick estimate of the mnme.nt% for Re < 10. say. The, linear
Increase of HM with Re is consistent with the experimental data.

The values of #4. and M.7 fr9m numerical solutions are given in Figyre 3.
It is interesting to'note teiat Mz has a pronounced maximum at Re,19. M4
varies between 1/4 and -1/4 with a sign change at Re-3l. A comparison 4ith
experimental data for Pz (Miller 1982) is glyen in Figure 4 on a doubly
logarithmic scale. The data are reduced to M using the Initial spin rate
W=4 0 0 0 rpm. For Re < 10, the experimental pofnts agree with the simple law
Mz a Re/96. The systematic deviation for higher Reynolds numbers Re < 200
seems to be due to the occurrence of a cellular motion that is likely to
reduce the moment Mz. The two data points for Re > 103 indicate turbulent
flow.

Figure 3. The nondimenslonal coefficients and Mz in the moments (12&.b)
versus the "~yol ds number Re.

%'I

Figure 4. Comparison 9f the
theoretical values of M
with the experimental data of
Miller (1982). The straight
line shows the asymptotic lawS€ I | €Mz a Re/96.

LOG a0CI

Conclusions

The theory developed here is a first but virtually essential step toward
understanding and predicting the gross features of the fluid motion in a
spinning and nutating cylinder. The axial basic flow !'llows f", an analysis
of the hydrodynamic instability with respect to a celluiar motion and provides
the basis for refinements of the theory.
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HIGHLY VISCOUS FLUID FLOW
IN A SPINNING AND NUTATING CYLINDER

Thorwald Herbert
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT. Spin-stabilized projectiles with liquid payloads can experi-
ence a severe flight instability characterized by a rapid yaw angle growth and
a simultaneous loss in spin rate. Laboratory experiments and field tests have
shown that this Instability originates from the internal fluid motion in the
range of high viscosity. Evaluation of the experimental data and analysis of
the equations for the fluid motion in a spinning and nutating cylinder suggest
a theoretical approach in three major steps: (I) analysis of the steady vis-
cous flow in an infinitely long cylinder, (2) hydrodynamic stability analysis

of this basic flow, and (3) analysis of the end effects. The basic flow has
been found in analytical form. At low Reynolds number, this flow agrees well
with computational results for the center section of a cylinder of aspect
ratio 4.3i The despin moment caused by this flow largely agrees with experi-
mental data for a wide range of Reynolds numbers. Current work aims at the
stability of this flow.

1. INTRODUCTION. It is well-known that spin-stabilized shells carrying
liquid payloads can suffer dynamical instability. For cylindrical cavities
and low viscosity of the liquid, the instability due to basically inviscid
inertial waves can be predicted by the Stewartson-Wedemeyer theory [1,21.
This theory rests on the boundary-layer approach and is, therefore, restricted
to the range of sufficiently large Reynolds numbers. The instability of cer-
tain shells like the XM 761 [3,41, howevee, escaped such a prediction and is
also distinguished in character owing to the rapid loss in spin rate. Experi-
ments with a full-scale liquid cylinder [51 and subsequent field tests [61
established that this new flight instability is most pronounced for liquid-
fills of very high viscosity.

We conduct a theoretical analysis of this problem in order to support the
ongoing experiments and to independently obtain insight into the anatomy of
the flow phenomena. The inttial steps of this analysis are reported elsewhere
171: evaluation of the experimental data base, dimensicnal analysis, scaling
aspects, governing equations, and discussion of various simplifying assump-
tions. Two observations in this earlier work led to the building-block
approach discussed in the following. First, if the despin (negative roll)
moments [5] and void observations [8) are correlated with the Reynolds number
Re, at least three regions can be distinguished. At low Re, the despin moment
increases proportional to Re, and the void in an incompletely filled cylinder
is parallel to the spin axis. This suggests a simple fluid motion that is
essentially independent of the axial coordinate, except in the neighborhood of
the end walls. In a middle range of Re, the despin moment assumes a maximum,
and a wavy distortion of the void seems to indicate a cellular structure of
the fluid motion. This cellular motion can, in principle, originate from
hydrodynamic instability of the basic flow with respect to axially periodic
disturbances. At still higher Reynolds numbers, the despin moment decreases
with increasing Re in a manner not clearly defined by the few available data
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points. The void observations indicate, however, that the motion ultimately
bec,"es turbulent.

The second observation was the appearance of the nutation rate and angle
as a small parameter in the equations for the deviation from solid-body rota-
tion. The forcing term due to nutation can be considered small enough for
linearization of the equations in the situations of practical and theoretical
interest.

In the following, we describe the development of a simple system of equa-
tions for the basic flow. Analytical solutions are given for the flow field
and for the liquid moments. A comparison is made with computer simulations of
the flow 191 and with experimental data (51. The properties of inertial modes
at low Reynolds numbers and the possibility of instability due to primary
resonance is discussed.

2. GOVERNING EQUATIONS. We Z
consider the motion of a fluid of | z
density p and viscosity u in a cyl-
inder of radius a and length 2c that
rotates with the spin rate w about
its axis of syninetry, the z-axis.
We consider the motion with respect
to the nutating coordinate system
x,y,z. This system is obtained from /
the inertial system X,Y,Z by a rota-
tion with the nutation angle e about 0 X
the axis Y-y. Therefore, x is in x
tne Z,z-plane, and this plane
rotates about the Z-axis with the
nutation rate n. The two axes of
rotation intersect in the center of
mass of the cylinder, as shown in
Fig. 1. In contrast to the experi-
mental procedures (51, we consider
w>O, a, and Osesw/2 as constant. The spin nutation
fluid motion is governed by the Xis axis
Navier-Stokes equations written in
the nutating coordinate system: Figure 1. Definition sketch.

plý+20 (n r) +-0 a + iiV2V
-txY n -n()

-.Vn(1)o

.0.

Vn is the velocity measured in the nutating frame, Pn the pressure, and r the
position vector. The body force due to gravity has been disregarded. Equa-
tions (1) are subject to the no-slip and no-penetration conditions at the
cylinder walls.

It is convenient (71 to split the velocity and pressure fields according
to
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Yn Ys + Ydt Pn Ps +Pd

where V.P. describe the state of pure solid body rotation, whereas Vd,Pd
represent ihe deviation from solid body rotation. The advantage of this-iso-
lated view on the deviation is obvious: V, and the reduced pressure Pd are
responsible for the observed flight instail1ity. A glance at the equations
shows that Vd3O and Pd3O if either one of the following conditions is satis-
fied: w-0, d-0, e-O or u-= (solid fill).

The equations for Vd, Pd are then written in terms of nondimensional
quantities v p We use a, w, and o for scaling length, time, and mass.
Note that Jh; ciice is ambiguous 17) and excludes the case w-0 (which lacks
practical interest). The problem then depends on four nondimensional
parameters:

x= c/a aspect ratio
a - sine

S= 0/w frequency
Re pwa 2 /u Reynolds number.

The aspect ratio e.ters the solution only through the boundary conditions. The
boundary conditions on vd are homogeneous.

In cylindrical coordinates r,t,z, the equations for the nondimensional
deviation velocity Yd = (vrv$IVz) and pressure Pd take the form

rar (rvr) + ±+-. 0 (2a)

ar r r r 2  r2

vv2r•+v 2(1 + Tz) vr -
2 TrVz

r'v r z 4 $ (2b)

vv rv

-r Re r r 2  
r2a

D IV + - +2v d 1 2 "v
z ÷ rV r az -rtr R z

where

D'1 a-- d--+ L Jv • +.-- L+ _v

r at a€ r e r r a t z az

1" • a 1 a2  a2

- • + - - + I - + -I ar
2  r ar r

2 r+
2  

az
2
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and

r -ccos, To csin, Y.= -cose, c = rsine (3)

The primary effect of nutation is contained in the #-periodic force term
- 2 rT_ - 2crcos4 in the z-momentum equation (2d). If this term vanishes
throughout, E-0, equations (2) support a trivial solution vd=0 , Pd-O. For
sufficiently small c*O, it is obvious that the deviation velocity is of order
O(c). In the situations of practical interest, c (n/w)sine turns out to be
a rather small parameter. Even a conservative estimate with a s 500 rpm,
z 3000 rpm, and e s 200 provides values of c s 0.057. Consequently, It

seems well justified to linearize the equations in e. This linearization
imposes no restriction on the Reynolds number.

3. THE BASIC FLOW. The system of equations after linearization is still

quite difficult to soe. Any serious attempt to satisfy all boundary condi-
tions leads directly to a purely computational approach. Use of the boundary-
layer approximation would simplify the task but seems inappropriate in the
interesting range of low Reynolds numbers. Recalling that the flow in a rela-
tively long cylinder (aspect ratio x-4.3) at low Re exhibits little axial
variation over much of the cylinder length 171, we have relaxed the boundary
conditions at the end walls. As a first step, we seek for a steady flow in an
infinitely long cylinder.

At closer analysis, the z-independent force term in eq. (2d) can only be
balanced by a purely axial deviation velocity. It is consistent with the lin-
earized equations to assume a solution in the form

Yd (0, 0, vz), Pd u 0 (4)
and moreover,

Vz • z(r,*) * 2c[f(r)cos* + g(r)sineJ (5)

Substituting (4),(5) into the linearized equations provides

f" + f- f - Re g Re r (6a)
rr 2 f Reu Rr

g" + 1g - - g + Re f 0 (6b)

f=O, In0 at r=1 (6c)

f, g finite at r=O (6d)

The primes denote d/dr. For Re.O, the solution of these equations can be
found in the form of series

f =Le (r - r 3 ) -Re3 (7r - 12r 3 + 6rs - r7) + O(ReS) (7a)

8 921A6
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g 9Re2 (2r - 3r 3 + rS) + O(Re4). (7b)

With higher terms included, these series converge for Re s 12. In the limit
Re * ®, one obtains

f -0, g . r as Re -. (8)

Owing to the loss of the highest derivatives, however, this solution cannot
satisfy the boundary conditions (6c) and is valid only outside the thin bound-
ary layers near the wall at r=1. Even without any knowledge of the solution
in the intermediate range, the different character of the basic flow at low
and high Reynolds numbers is evident. At low Re, the component f in the z,x-
plane o-0 is dominating. At high Re, f is negligible in the core of the
cylinder while g in the z,y-plane o=900 is dominating.

In earlier work 1I01, we have applied a spectral collocation method for
numerical solution of eqs. (6). Here, we derive an analytical solution by
introducing the complex function Fzg+if. Eqs. (6) can then be written in the
form

r2F" + rF' - (P + iRe r2)F - iRe r 3  (9a)

F = 0 at r = I (9b)

F finite at r = 0 (9c)

A particular solution of the inhomogeneous equation (9a) is Fo=r, whereas the
homogeneous part of (9a) is the equation for the modified Bessel functions
II(qr) and Kl(qr) of the complex argument qr with q - tRe/2 (1 + i)r. For
(9c), K, (qr) cannot contribute to the solution. Finally, (9b) provides

F(r) = g 4 if = r - I (qr)/l (q). (10)

Expressing the solution in terms of Kelvin functions of real argument is of
little advantage for the numerical evaluation. The solution is valid for
arbitrary Re but may be unstable as Re exceeds some critical value. It is
straightforward to derive the approximations (7) from the ascending series for
I, (and to explain the convergence problem for larger Re). The asymptotic
expansion for large arguments provides

F - r - /r e q(r-1).( )

This expression agrees to within 1% with (8) provided that r s 1 - 6. The
boundary layer thickness 6 can be obtained from the transcendental equation

6 = i2-- 14.605 - 2n (1 - 6)], (12)

e.g., 6=0.223 for Re=1000. The characteristic changes in the flow structure
with increasing Re, in particular the shift of the velocity maximum from *uO

U at Re=2 to 4m90o at Re=200 are shown in Fig. 2.
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9. 200 8L1836: 9.11M0 ft. W0.00 LhgE0.1000 M. Go.0 L~o3e 0.240

Figure 2. Contour lines of equal axial velocity. vZ/(2c) - const., for Re-2,
20, and 200. The difference between levels 1ý0.02, .,ad02
respectively, The + marks the velocity maximum. 5 .. ad02

2.90 5.00

ft. 14.134 Pa- 43.730

a Sande atst00 0 San~die 9.t$

Figure 3. Radial distribution of the axial velocity (in fps) at z-0 for
Reul4.9 and Re-45.7. The symbols show the solution to the full Havier-Stokes
equations.
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Fig. 3 compares the dimensional velocity distributions obtained from (5),
(10) with computational results for the center cross-section (z-O) of the
cylinder.* The agreement for Re=14.9 is considered representative for the
range of lower Reynolds numbers. The numerical simulation provides very small
components vr, v. and hence verifies our estimates. At the higher value
Re-45.7, a system tic deviation between the two results seems to be due to a
superposed cellular motion that is not yet incorporated into our analysis. It
is encouraging, however, that the simple theory of the basic flow yields
results in essential agreement with the computational solution of the full
Navier Stokes equations for a finite-length cylinder.

4. MOMENTS. With the deviation velocity V - (0,O,wav2 ) and vz given,
the moments on a finite-length section of the cyl1nder can be calculated. We
consider a control volume R (surface S) formed by the solid cylindrical wall
and liquid surfaces at both ends. Conservation of angular momentum requires

M + 1: (r .d F rff(:x pddR + ff jr (2n YdjadR
tR R

+ fr (r .d~o(Vd V n)dS + ff ( . Vs)p(V )dS
s s - -s *Yd *nS "" "S

where n is the outer unit normal. On the left-hand side, M is the resultant
torque on the control volume. The second term accounts for the moments due to
the shear force Fd and vanishes owing to the solid sidewall and cancellation
of the contributions from both ends**. On the right-hand side, the first term
vanishes for steady Vd. The second term originates from Coriolis forces in the
nutating system. The third term vanishes since V has only an axial compo-
nent. The last term then provides the net rait of angular momentum flux
through the control surface.

Substitution of V.d leads to the following expressions for the cartesian
components of M:

Mx m L (Znasine)(wa) mx, mx 0 fI r2fdr (14a)

M= m (2nasine).(wa) my, m - r) r 2gdr (14b)

Mz X m (Znaslne)i m., m. = f r2fdr - -mx (14c)

where m. is the liquid mass in the cylinder. In this form, the components
Mx, M represent the net rate of angular momentum flux through the liquid end-
walls, whereas the roll moment Mz is solely due to Coriolis forces. A close

*The data were kindly provided by Dr. H. Vaughn, Sandia National Laboratories.

"**Improper account of the sidewall conditions introduced an incorrect factor
of two in earlier results for Mx, My 1101.
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relation between roll moment M and yaw moment Mx has also been found by
Murphy 1111 for the range of higg Reynolds numbers.

A cifferent interpretation can be derived using the differential equation
(9a), integrating by parts, applying (9b), and separating real and i..iaginary
part:

m= =m rZfdr ILL 1 (15a)

m r - r 2gdr U 1 (15b)
y ofR

In this form, the moments are directly related to the shear forces at the
cylindrical sidewall, r-l. Since f'(1)<O, g'(1)<O, the roll moment N is
always positive (even for a<O), while M. is negative for a<O and changes fign
with a. For small Re, the series (7) provide the approximations

m Re2 (16)

z 9- My -TM

that can be used for quick estimates up to ReslO. The linear increase of m
and Mz with Re is consistent with the experimental data. From the analytical
solution (10), we obtain

F'(1) - g'(1) + if'(1) - 2 - ql.(q)/1 1 (q). (17)

Substitution Into (15) provides the variation of mzi, m with the Reynolds
number shown in Fig. 4. The coefficient mz assumes a pWonounced maximum at

log W)

£Miller~ date

I Og Ift)

Fig. 4. The -nondimensional coef- Fig. 5. Comparison of the theoreti-
ficients m , m in eq. (14) versus cal result for m. with experimental
the Reynolds n4mber, Re. data [51. The straight line snows

the asymptotic law mz, Re/96.
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Rem19. The coefficient m is negative and reaches an asymptotic value of
m - - 1/4 as Re - -. 4 nce, for n>O, My reduces the pitch moment due to
tRe solid body rotation. This result is consistent with computations (9). A
comparison of theoretical and experimental [51 results for m. is given in Fig.
5 on a double logarithmic scale. The initial spin rate wu-OOO rpm was used
for reducing the experimental data. For Re<1O, the experimental points match
the analytical result as well as the asymptotic law mi Re/96. The
occurrence of a maximum of m is found to be a property of "the basic flow.
Only the systematic deviation for higher Reynolds numbers Re<200 may be
attributed to a cellular motion. The two data points for Re>103 probably
indicate turbulent flow.

The basic flow, hence, can be considered a first but essential step
toward understanding and predicting the gross features of the fluid motion in
a spinning and nutating cylinder. Some observations, however, such as the
virtual Independence of the despin moment on the spin rate require further
analysis, especially of the end effects. The occurrence of a cellular motion
may bE due to hydrcdyramic instability of the basic flow.

ad5. STABILITY ANALYSIS. The stability analysis is currently coi..ucted
and only a brief outline is given here. We superpose to the steady flow
vn-(o,r,vz), Pn disturbances v'=(u,v,w), p sufficiently small for lineariza-
tion. Substitution into eqs.'(2) and neglect of products between disturbances
and terms of order 0(c2) provides the following stability equations:

au au 1r • u 2 av
a +-!u - 2(1 + Tz)v + }r - (O'u - 2- (!a)T t sZ a er 2 r t( 1 8 a )

+{Vz + 2T w) - 0

av av - _ - v___ro + L_}u)
a-t +-a# (I+r autie r

2  
r
2  

a* (18b)

av+v ( - -2TW} - 0
%Jz az r

3We 3v 1v
_(- + 1w} +2-u+(L + 2Tr)V

at +w az Te- + r((l- 2a)u r as r
(18c)

+ w v -L} 0

-- (ru) + -v + 1w= (1d)
r ar r at az

Three groups of terms have been separated by braces in eqs. (18a-c). The
first group, if set to zero, represents the equations for inviscid iiertial
modes ~exp(im® + ioz + st), where m is the (integer) azimuthal, a the axial
wavenumber, and s - Sr + isi provides the amplification rate sr (-0) and fre-
quency si. Usually, an equation for the pressure is used for obtaining the
analytical solution. tie have derived an alternative system in terms of u,v
and applied the spectral method to be used for more general cases in order to
check the numerical results against the exact values.
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The second group of terms multiplied with 1/Re represents the viscous
correction to the inertial modes. By eliminating w and p, a system of
ordinary differential equations for u and v has been derived. Due to the
higher order of this system, all boundiry conditions can be satisfied. Pro-
grams have been developed for calculating spectra of (complex) eigenvalues,
for tracing single elgenvalues as function of Re, a, and for obtaining the
elgenfunctions. At high Re, the results follow the trends predicted by
asymptotic theories. Our analysis, however, also covers the range of low
Reynolds numbers, where the inertial modes suffer rapid decay (sr<O).

The most interesting aspect of the stability equations (18) is the third
group of terms. The coefficients In this group, vz, Tr, and To, are (1) of
order O(c) and (2) periodic in o. The periodicity in o leads to a coupling of
the mode equations for m and m±l, and may cause primary resonance between
inertial rx..Jes. In view of viscous damping, this resonance is likely to occur
as c exceeds a critical value that decreases as Re increases. The analysis of
this parametric instability is currently in preparation.

ACKNOWLEDGMENT

The open cooperation and sharing of data with Miles C. Miller (CROC) and
Harold R. Vaughn (Sandia Laboratories) are greatly appreciated. This work is
supported by the Army Research Office under Contract DAAG29-82-K-0129 and by
the Army AMCCOM under Contract DAAK11-83-K-0011.

REFERENCES

ill Stewartson, K. 1959 "On the Stability of a Spinning Top Containing
Liquid," Journal of Fluid Mechanics, Vol. S, Part 4, pp. 577-592.

12) Wedemeyer, E. H. 1966 "Viscous Corrections to Stewartson's Stability
Criterion," Ballistic Research Laboratory, Report 1325.

131 O'Amico, V. P. 1977 "Field Tests of the XM761: First Diagnostic Test,"
Ballistic Research Laboratory, Memorandum Report 2792.

[41 D'Amico, W. P. 1978 "Field Tests of the XM761: Second Diagnostic
Test," Ballistic Research -Laboratory, Memorandum Report ARBRL-MR-
02806.

[51 Miller, M. C. 1982 "Flight Instabilities of Spinning Projectiles Having
Nonrigid Payloads," Journal of Guidance. Control, and Dynamics, Vol.
5, pp. 151-157.

(61 D'Amico, W. P. &Miller, M. C. 1979 "Flight Instability Produced by a
Rapidly Spinning, Highly Viscous Liquid," Journal of Spacecraft and

Rockets, Vol. 16, pp. 62-64.

171 Herbert, Th. 1982 "Fluid Motion in a Rotating and Nutating Cylinder -

Part I," Report prepared under the Scientific Services Program.

APPENDIX A 892



A-22

[8) Miller, M. C. 1981 "Void Characteristics of a Liquid Filled Cylinder
Undergoing Spinning and Coning Motion," Journal of Spacecraft and
Rockets, Vol. 18, 286-288.

191 Vaughn, H. R., Oberkampf, W. L. & Wolfe, W. P. 1983 "Numerical Solution
for a Spinning Nutating Fluid-Filled Cylinder," Sandia Report SAND 83-
1789.

(101 Herbert, Th. 1983 "The Flow of Highly Viscous Fluid in a Spinning and
Nutating Cylinder," Proceedings of the 1983 Scientific Conference on
Chemical Defense Research, Aberdeen Proving Ground, Md.

[111 Murphy, C. M. 1984 "A Relationship between Liquid Roll Moment and
Liquid Side Moment," Ballistic Research Laboratory Memorandum Report
ARBRL-MR-03347.

APPENDIX A 893

I .•_'/:"L •' _ u.• . . .. . - "• • • •- -• • .: ' •• "": " ., •••'/ • . ' . ..- "°. • . .• -.- _ "



A-23

4,

'4..

'4

Appendix A.3

I

I
�4

I.

I

I

I --



A-24

ON THE VISCOUS ROLL MOMENT
IN A SPINNING AND NUTATING CYLINDER

by

Thorwald Herbert

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, Virglnia 24081

Proceedings of the
1984 Scientific Conference on Chemical Defense Research

November 13-18, 1984
Aberdeen Proving Ground, Maryland

APPENDI X A

.



A-25

On the Viscous Roll Moment
in a Spinning and Nutating Cylinder
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Abstract

Spin-stabilized projectiles with liquid payloads can experience a severe flight instability character-ized by a rapid yaw angle growth and a simultaneous loss in spin rate. Laboratory experiments and field

tests have shown that this instability originates from the internal fluid motion in the range of high
viscosity. We have developed a simpie model or this internal motion that provides the flow field and the

liquid moments in analytical form. A detailed comparison of the roll moment with data from spin-down
equipments is given. New experimental procedures are suggested.

1. Introduction

It is well-known that spin-stabilized shells carrying liquid payloads can suffer dynamical instability.
For cylindrical cavities and low viscosity of the liquid, the instability due to basically inviscid inertial
waves can be predicted by the Stewartson-Wedemeyer theory. The instability of certain shell like the
XM761, however, escapes such a prediction and is also distinguished in character by the rapid loss in
spin rate. Experiments with a full-scale liquid-filled cylinder [1i and subsequent field tests f2] establish
that this new flight instability is most pronounced for liquid fills of very high viscosity.

We have conducted a theoretical analysis of the problem with special attention to the range of
high viscosity. Two observations have permitted the development of a simple model of the internal
fluid motion. First, the nutation rate and angle appear as a small parameter in the nondimensional
equations for the deviation from solid-body rotation (3]. Therefore, the forcing term due to nutation
can be considered sufficiently small for linearization in the situation of practical interest. Second, in a
sufficiently long cylinder, the velocity field consists of primarily an axial component that is independent
of the axial position [4.] The other components are of the same order only in the neighborhood of the
end walls. Therefore, essential features of the internal fluid motion can be obtained by studying the
flow in a finite segment of an infinitely long cylinder.

Although the agreement of the theoretical and experimental results on the roll moment is surpris-
ingly good, there seems to be an essential discrepancy: while the theoretical result depends (via the
Reynolds number) on the spin rate, Miller [I] found that "the despin moment was not a function of the
canister spin rate, provided a sufficient spin rate is present. With more detailed data available in a wide
range of Reynolds numbers, we shed some light on this virtual disagreement. The experimental data
follow in fact the theoretically predicted trends. A systematic deviation persists in the range of
extremely high viscosities. This deviation is likely to originate from changes in temperatures and con-
sequently in viscosity. It also turns out that a survey of the roll-moment versus Reynolds number
curve can be obtained in very few experimental runs at different viscosity.
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2. Analysis of the Flow Field

We consider the motion of a fluid of density p and viscosity p in a cylinder of radius a and length
2c that rotates with the spin rate w about its axis of symmetry, the z-axis. We consider the motion
with respect to the nutating coordinate system :,y,z. This system is obtained from the inertial system

XYZ, by a rotation with the nutation angle e about tLe axis Y=y. Therefore, z is in the Z,z-plane,
and this plane rotates about the Z-axis with the nutation rate 0. The two axes of rotation intersect in
the center of mass of the cylinder, as shown in Fig. 1. In contrast to the experimental procedures [I),
we CODsider w>0, 0 , and 0< -ir/2 as constant.

It is convenient [3] to split the velkcity Pnd pressure fields according to

V. ---V.,+V', P. = P. + Pd (1)

where V,,P, describe the state of pure solid body rotation, whereas Vd,Pd represent the deviation from
solid body rotation. The advantage of this isolated view on the deviation is obvious: Vj and the reduced
pressure Pd are responsible for the observed flight instability. A glance at the equations [3] shows that
Vd w 0 and Pj t 0 if either w=0, n =0, O=,., or p--oo (solid fill).

The effect of nutation and hence the deviation velocity is of order 0(e) where e - (fl /w)sin$. In
the s;tuations of practical interest, e turns out to be rather small: a conservative estimate provides
values of e <0.054. Consequently, it seems well justified to linearize the equations in e. This lineariza-
tion imposes no restriction on the Reynolds number Re = pwa'/p . Recalling that the flow in a rela.
tively long cylinder (aspect ratio X = 4.3) at low Re exhibits little axial variation over much of the
cylinder length 13j, we have relaxed the boundary conditions at the end walls.

In cylindrical coordinates r,e,z, we obtain 131 in an infinitely long cylinder

Vd = (O,0,Wav3), Pd = 0 (2)

where

v= v,(r,o) = 2elf(r)coso + g(r)sino]. (3)

and g and / are the real and imaginary parts, respectively, of

F(r) = g + if = ,- It(qr)11,(q). (4)

-where I1 is the modified Bessel function, and q (1 + i)(Re/2)1/1. This solution is valid for arbi-
trary Re but may be unstable as Re exceeds some critical value. Comparison of the velocity distribution
with computational results [51 for Re - 14.9 has shown excellent agreement in the center section of
the cylinder. At the higher Reynolds number Re = 45.7, the agreement is still satisfactory, with sys-
ternatic deviations due to a weak cellular motion not yet incorporated in our analysis.

3. Moments

With given deviation velocity Vd, the moments on a finite-length section of the cylinder can be
calculated. We consider a control volume R (surface S) formed by the solid cylindrical wall and liquid
surfaces at both ends. Conservation of angular momentum requires

M + (r XF,) f f f (r xV )pdR + f ff (r x(20 xV,)1pdR (5)
R R+ f f (r XV)(Vdn)pdS+ f f (r XV.)(Vin)pdS

S S
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where n is the outer unit normal. On the left-hand side, M is the resultant torque on the control
volume. The second term accounts for the momenta due to the shear force Fd. This term vanishes
along the solid sidewall and the contributions from both ends cancel. On the right-hand side, the first

term vanishes for steady Vd. The second term originates from Coriolis forces in the nutating system.

The third term vanishes since V4 has only an axial component. The last term then provides the net
rate of angular momentum flux through the control surface.

Substitution of VI leads to the following expressions for the components of M:

I

M. - n%(20 esinf)(wa) Y%, m% - -f r2fdr (6a)

10

II
my -= nk(2n 4s6n)(woa) m,. m, - - -f r2gdr (6b)

0

M. -• n4(2n &min#)2 r ., m,. - f rSf dr m,. (6c)
0

where mN is the liquid mass in the cylinder. In this form, the components M., M,, represent the net

rate of angular momentum flux through the liquid endwalls, whereas the roll moment M, is solely due
to Coriolis forces.

A different interpretation can be derived using the differential equation for F 141:

"1,, = - .. f r/,dr - 2 m,..f rgd, " - f 4 (7)

O Re 0 Re 4.

In this form, the momenta are directly related to the shear forces at the cylindrical sidewall, r = 1.
Since f' (1)<O, g'(I)<O, the roll moment M. is always positive (even for 0 <0). From (4), we
obtain

F,(1) - 9'(1) + i, '(1) - 2- q10(q)lI 1(q). (8)

For small Reynolds numbers, use of series expansions for the modified Bessel functions provides the

approximations m, r Re/96, m. P -Re 5/136, that can be used for quick estimates up to Re<10.

These results disregard the effect of the solid end walls of the cylinder, where the axial flow reverses
direction. We expect that the effect of this flow reversal will be primarily on the pitch moment M,. We

also expect that the result for the roll moment M, is rather accurate, and slightly overestimates the
effect of Coriolis forces. Experimental data for a verification of our results are scarce. Only the roll
moment has been reliably measured in spin-down experiments with a full-scale cylinder {I].

4. Compurism of the Roll Moment with &xperlments

Figure 2 shows the comparison of theoretical and experimental results for the roll coefficient m,

on a doubly logarithmic scale. The initial spin rate w = 4000 rpm has been used for reducing the
experimental data. ror He < 10, the experimental data match the analytical data as well as the asymp-

totic law m,-Re/96. The coefficient mn, assumes a pronounced maximum at Re ;19. Whereas this

maximum was earlier thought to originate from hydrodynamic instability with respect to a cellular

motion, we find a simple explanation in the properties of the axial velocity component f in the

z,z- plane. The systematic deviation for Reynolds numbers 20 < Re < 200 may be attributed to either

the effect of a cellular motion or to the neglect of th, end walls. The two data points at Re > 103 are

likely to be for a turbulent internal flow.
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Figure 2. Comparison of the theoretical result Figure 3. Comparison of the theoretical result
for m, vs. Re with experimental data [1). The for the roll moment M, vs. kinematic viscosity

straight line shows the asymptotic law v with experimental data ji]. Parameters:
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Figure 4. Theoretical results for the roll Figure S. Theoretical results for the roll

moment M, vs. kinematc visctosity i, for moment M, vs. nutation rate f for different

different spin rates w. Paa .eters a in Fig. 3. spin rates w. .Parameters: a 50.4mm,
c/a - 4.5, 0 = 200, v = 5l- cS.
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Figure 6. Theoretical results for the roll Figure 7. Experimental results for the roll
moment M, vs. spin rate w for different moment M, vs. spin rate w for diff erent
kinecratic viscositieb V.. Parameters: kinematic viscosites V. Parameters:
a bO.4mmr, c/a 4.5, 0=200, a = 50.mm, c/o 4.5, =200

0 - f2&rpm. 0f) 600rpm.
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ABSTRACT

Spin-stabilized projectiles with liquid payloads can experience a severe flight instability charac-

terized by a rapid yaw-angle growth and a simultaneous loss in spin rate. Laboratory experi-

* mens a�di field tests have shown that this instability originates from the internal fluid motion in

the ranb f high viscosity. After evaluation of the experimental data And analysis of the equl,-

tions fo- ',e fluid motion in a spinning and nutating cylinder, we have developed a simple

model of this flow. Disregarding the finite length of the cylinder, this model provides the flow

field and the viscous conuribution to the liquid momenta in analytical form. At low Reynolds

number, the flow field agrees well with computational results for the center section of a cylinder

of aspect ratio 4.3. The roll moment caused by this flow largely agrees with experimental data

for a wide range of Reynolds numbers. Estimates of the temperature variation indicate that

discrepancies at very low Reynolds numbers may originate from associated changes of the

viscosity during the experiments.
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1. Inteo•actlou

It is well-known that spin-stabilized ihells carrying liquid payloads can suffer dynamical

instability. For cylindrical cavities and low viscosity of the liquid, the instability due to basically

inviscid inertial waves can be predicted by the Stewartson-Wedemeyer theory (Stewartaon 1959;

Wedemeyer 1968). This theory rests on the boundary-layer approach and is, therefore, res-

tricted to the range of sufficiently large Reynolds numbers. The instability of certain shells like

the XM781 (D'Amico 1977; 1978), however, escapes such a prediction and is also dis-

tinguished in character owing to the rapid loss in spin rate. Experiments with a full-scale

liquid-filled cylinder (Miller 1982) and subsequent field tests (D'Amico & Miller 1979) estab-

lish that this new flight instability is most pronounced for liquid fils of very high viscosity.

We conduct a theoretical analysis of this problem in order to support the ongoing experi-

ments and to independently obtain insight into the anatomy of the flow phenomena. The initial

steps of this analysis are reported elsewhere (Herbert 1982): evaluation of the experimental

data base, dimensional analysis, scaling apects, governing equations, and discussion of various

simplifying assumptions. Two observations in this earlier work led to the approach discussed in

the following. First, if the despin (negative roll) momenta (Miller 1982) and void observations

(Miller 1981) are correlated with the Reynolds number Re, at least three regions can be dis-

tinguished. At low Re, the despin moment increases proportional to Re, and the void in an

incompletely filled cylinder is parallel to the spin axis. This suggests a simple fluid motion that

is essentially independent of the axial coordinate, except in the neighborhood of the end walls.

In a middle range of Re, the despin moment assumes a maximum, and a wavy distortion of the

void seems to indicate a cellular structure of the fluid motion. This cellular motion can, in

principle, originate from hydrodynamic instability of the basic flow with respect to axially

periodic disturbances. At still higher Reynolds numbers, the despin moment decreases O'ith

increasing Re in a manner not clearly defined by the few available data points. The void obser-

vations indicate, however, that the motion ultimately becomes turbulent.

Ta'e second observation is the appearance of the nutation rate and angle as a small param-

eter in the equations for the deviation from solid-body rotation. The forcing term due to nllta-

"Lion can be considered small enough for linearization of the equations in the situations of prac-

tical interest.

In the following, we describe the development of a simple system of equations for the

basic flow'. Analytical solutionp are given for the flow field, for the liquid moments, and for the
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rate of change of temperature. A comparison is made with computer simulations of the flow

(Vaughn et al. 1983; 1985) and with experimental data for the momenta (Miller 1982).

VI.

2. Governing Equations

We consider the motion of a fluid of density p and viscosity p in a cylinder of radius a

and length 2c that rotates with the spin rate w about its axis of symmetry, the z-axis. We con-

sider the motion with respect to the nutating coordinate system z,yt,z. This system is obtained

from the inertial system X,Y,Z, by a rotation with the nutation angle 0 about the axis Y=y.

Therefore, z is in the Z,a-plane, and this plane rotates about the Z,-axis with the nutation rate

Q . The two axes of rotation intersect in the center of mass of the cylin ier, as showu in figure

1. In contrast to the experimental procedures (Miller 1C82), we consider w>O, fl , and

0<e<xr/2 as constant.

The fluid motion is governed by the Navier-Stokes equations written in the nutating coor-

dinate system:

DV

v . 0. (Ib)

V. is the velocity measured in the nutating frame, P. the pressure, and r the position vector.

The body force due to gravity has been disregarded. Equations (1) are subject to the no-slip

and no-penetration conditions at the cylinder walls.

It is convenient (Herbert 1982) to split the velocity and pressure fields according to

, V. 'V ,+ V', P. P ,. P., (2)

where V,,P, describe the state of pure solid body rc-tation, whereas Vd,Pd represent the devia-

tion from solid body rotation. The advantage of this isolated view on the deviation is obvious:

V, and the reduceJ pressure P, are responsible for the observed flight instability. A glance at

the equations shows that V, 0 ajid Pd 0 if either one of the following conditions is
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satisfied: w 0 0, 0 O, 0 - 0 orp -* oo (solid fill).

SThe equations for Vj,Pd are written in terms of nondimensional quantities vd,pi. W e use

a w, and p fo- scaling length, time and mass. Note that this choice is ambiguous (Herbert

1982) and excludes the case w=0 which lacks practical interest. The problem then depends on

four nondimensional parameters:

S= c/a aspect ratio

9 nutation angle

0= C/W frequencyI Re - pwa 2/p Reynolds number.

The aspect ratio enters t-., solution only through the boundary conditions. The boundary con-

ditions on vd are homogeneous.

In cylindrical coordinates r,O,z, the equations for the nondimensional deviation velocity

vj = (v,,v#,v,) and pressure pd take the form

1 I 
8
av av,(TT(•)+ 77- -+ ....- o,(

D'v, - - - 2(1 + r)jv, + 2rTv, = (3b)

Opd I -, V, • 2 0v2
'r •

ar Re 72 2a

Dv+ + 2(1 + rj)v, - 2r,,, = (3c)

R CIO2 Rre..

.e 1 p

D'v, + 2r,v - 2r v, ---- - 2rr, + -ID"t, ,(3d)

where

0-7 +~ '- + + " *','

a2 I r 1 82 02D" +- - "4 "

ar r2 TT 72r -;2 az
2
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and

,, -ecsos , TO - esin, , T.- coso , e - raine. (4)

The primary effect of nutation is contained in the O-periodic force term - 2rr, - 2ercoso in

the z-momentum equation (3d). If this term vanishes throughout, e - 0, equations (3) sup-

port a trivial solution vY - 0, pd - 0.

The system (3) of equations is similar to the system numerically solved by Vaughn et al.

(1983; 1985), but simplified by introducing the reduced pressure pd. We also note that this sys-

tem supports certain symmetries. Let v,,v,v, and pd be tle solution at point r,@,z, then the

velocities and pressure at the corresponding point r,O + w,- z are W,v#,- v, and pd. These sym-

metries can be exploited for essential savings in computational work.

2.1 Linenrized equations

For sufficiently small e 7 0, it is obvious that the deviation velocity is of order O(e). In the

situations of practical interest, e - (f) /w)uinO turns out to be a rather small parameter. Even

a conservative estimate with _< 500 rpm, w*> 3000 rpm, and 0< 20' provides values of

e< 0.054. Consequently, it seems well justified to linearize the equations in e. This lineariza.

tion imposes no restriction on the Reynolds number.

While the continuity equation remains unaffected, linearization of the momentum equa

tions provides

CN I, . € 2 8vo
D'v, - 2(1 + ,)v.= --+ ""D , - 2 (5a)

Br

D'v# + 2(1 + r,) v, 2P + .,[D, +' 2- I"' (Sb)
r C.I- -+ r2 r29.

D'IV = - - 2rr, + 1 .. ,, (5c)
Re (Sc)

The system (3a), (5a)-(Sc) of equations is still quite difficult to solve. Any serious attempt to

sansfy all boundary conditions leads directly to a purely computational approach. Use of the
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boundary-layer spproximation would simplify the task but seems inappropriate in the interesting

range of low Reynolds numbers,
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8. The core flow

We recall that the flow in a relatively long cylinder (aspect ratio X = 4.3) at low Reynolds

number is expected to have a rather simple structure and to provide a roll moment proportional

to Re (Herbert 1982). Closer analysis of the equations suggests that this flow exhibits little

axial variation over much of the cylinder length. The effect of the end walls will be essential

only over an axial distance of 0(1) from the ends. Therefore, we have relaxed the boundary

conditions at the end walls. In this way, we seek a steady flow in a finite segment of an

infinitely long cylinder.

The z-independent force term in eq. (5c) can be balanced only by a purely axial deviation

velocity. It is consistent with the linearized equations to assume a solution in the form

SV,= 

(0,0V,), 4 0. 0

Moreover, since v, is of order 0(f) and periodic in 0, we write

v, = vj(r,.) = 2t[f(r)coso + g(r)sin], (7)

where f and g are the imaginary and real parts, respectively, of the complex function

F(r) = g(r) + 1/(r) (8)

Substituting (6)-(8) into the linearized equations and the no-slip conditions at the cylinder wall

provides

r 'F " + rF' - (1 + iRe r 2)F --iRe r 3, (,a)

F= 0 at r = 1, (9b)

F finite at r 0, (9c)

where (9c) is necessary for a physical solution. The primes denote d/dr.

3.1 Solution for Re -- 0 a~nd Re -oo
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For Re--O, the solution of equations (0) equations can be found in the form of series

expansions in Re,

S r- r) - 921O6 (Tr- 123 +6r- r') + O(Re5 ) , (10s)

Rell(

9 (2r - 3rs + r6) + O(Re') (10b)

With higher terms included, these series converge for Re< 12.

In the limit Rc--oo, one obtains

f - 0, r* as Re - oo. (11)

Owing to the loss of the highest derivatives, however, this solution cannot satisfy the boundary

conditions (9b) and is valid only outside thin boundary layers near the wall at r = 1.

Even without any knowledge of the solutiun in the intermediate range, the different char-

acter of the basic flow at low and high Reynolds number6 is evident. At low Re, the component

f in the z,z-plane # - 0 dominates the solution. At high Re, f is negligible except near the
wall of the cylinder whiie g in the V,z-plane 0 = 90' is dominating. One might well expect

that the initial linear increase of f with Re and the change in the flow structure is related to the

observed properties of the roll moment.

3.2 Solution for arbitrary values of Re

In earlier work (Herbert 1983), we have applied a spectral collocation method for numeri-

cally solving a real system of equations for f and g equivalent to eqs. (9). Series in odd Che-

byshev polynomials for the interval 0 < r < I provide accurate solutions at rather low trunca-

tion. This experience together with the minor effect of harmonics in the azimuthal direction at

small e suggests the use of spectral methods for efficiently solving the nonlinear equations (3).

Here, we derive an analytical solution for the core flow in a sufficiently long cylinder. A

particular solution of the inhomogeneous equation (9a) is F 0 = r, whereas the homogeneous

part of (9a) is the equation for the modified Bessel functions 11(qr) and K1 (qr) of the com-

plex argument qr where q = (1 + i)(Re/2)i/ 2. In order to satisfy (9c), K1 (qr) cannot contri-

bute to the solution. Finally, (gb) provides
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F(r) = g + if = r - 11(qr)/1 1 (q) (12)

This solution is valid for arbitrary Re but may be unstable as Re exceeds some critical value.

Although expressible in simple form, the resulting flow field exhibits very interesting proper-

ties.

Rewriting the solution in terms of Kelvin functions of real argument is of little advantage

for the numerical evaluation. We have used a combination of ascending series and asymptotic

expansions for large Prguments (Abramowitz & Stegun 1972) for evaluating F(r). With the

solution (12) at hand, it is straightforward to derive the approximaxicns (10) from the ascend-

ing series for I (and to explain the convergence problem for larger Re). Complementary to

(11), the asymptotic expansion for large arguments, i.e. large Reynolds numbers provides the

boundary-layer behavior

F r - v/r cf (13)

This expression agrees to within 1% with (11) provided r_<1-6. The boundary layer thickness

6 can be obt.ined from the transcendental equation

3I. 6''- v2177 14.605- -jn(1 - b)) (14)

e.g., 6 0.223 for Re = 1000.

3.3 71c veloeaiy field

We have chosen three different graphical -epresentations in order to illustrate the charac-

teristic changes of the velocity distribution over the cylindrical cross section with increasing Re.

Figure 2 shows the components f (in the r,z-plane) and g (in the y,z-plane) for a wide range

of Reynolds numbers. The opposite sign of the velocity at diametral points assures zero net

flux of mass through the cross section. The curves represent cuts through ýhe contour plots of

these functions of r and Re in figure 3 at the tick marks Re =1, 10, 100,and 1000. Up to
"R.• .,..z" overned L- f. .I- i r_-•..-.ep, ,pvri. $,am $ value of
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0.4, assumes a maximum at Re f 20 and retains significant size only in a shrinking neighbor-

hood of the wall as Re increases. The component p rapidly increases from negligible values as

.e > 5 and approaches the linear increase with r according to (11) except near the wall at

r = 1. In figure 4, the data of figure 2 are combined into contour plots of the axial velocity

01/(2e) over the cylindrical cross section. These plots clearly show the shift. of the velocity max-

imum (marked by + ) from O 0o at Re = i to 0 g•*0 at Re = 1000. Figure 4d also illus-

trates the ramp-like velocity disatibution over most of the cross section and the boundary layers

with 8 = 0.223.

Superposition of the deviation velocity Vd and the solid body rotation V, according to eq.

(2) leads to an auimuthally periodic velocity field V. which is steady in the nutating frame. The

paths of fluid elements are circular orbits about ayes tLat. ie incline"J , tLe :-.xis. The incli-

nation depends on radius and Reynolds number.

Figure 5 compares the dimensional velocity distributions obtained from (1), (12) with

computational results for the center cross-section ( x = 0) of a cylinder of aspect ratio 4.3.0 The

agreement for Re - 14.9 is considered representative for the range of lower Reynolds

numbers. We have repeated the numerical simulation of the flow at this Reynolds number with

a modified version of the Saudia code and obtained very small components Iv, I < 0.005 m/s,

IV# I < 0.05 m/s at z - 0. These results verify our estimates and justify the use of linearized

equations. Moreover, disregarding the presence of end walls seems to have little effect in the

center portion of the cylinder. The radial distribution of V, in the range -3.5 < z <3.5 is

nearly identical with the data shown in figure 5.

Figure 6 shows a similar comparison for Re - 45.7. At this higher Reynolds number, we

find a systematic deviation between the theoretical result and numerical results at different axial

positions. We attribute this deviation to a superposed cellular motion that is not yet incor-

pormed into our analysis.

*The dati were kindly provided by Dr. H. Vaughn, Sanidia Nationai LaborTtories.
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4. Mornients

With the deviation velocity Vd (O,0•wav,) ard v, given, the moments on a finite-

length section of the cylinder can be calculated. We consider a control volume R (surface S)

formed by the solid cylindrical wall and liquid surfaces at both ends. Conservation of angular

momentum requires

a

M+ E(>xFj)- -f -f f(rXVd)pdR + f ff [rx(2flxV)lpdR (15)
a 8 R

+ f f (r xV)(V,.n)pdS+ f f (rxV,)(V,.n)pdS,
S S

where n is the outer unit normal. On the left-hand side, M is the resultant torque on the con-

trol volume. The second term accounts for the momenta due to the shear force I'd and van-

ishes owing to the solid sidewall and cancellation of the contributions from both knd.. On the

right-hand side, the first term vanishes for steady Vg. The second term originates from

Coriolis forces in the nutating system. The third term vanishes since Vd has only an axial coin-

ponent. The last term then provides the net rate of angular momentum flux through the con-

trol surface.

Substitution of Vj les,4s to the following expressions for the cartesian components of M:

M, = m a(.fl osinP)(cda) ,m, m, - -f r2fdr, (16a)
0

A!, = ,m(22 asinO)(wa) m. , = -J rygdr, (16b)
0

M,= m,(2Q ainG)2 m, m. = f r:/d = - I,, (6sc)

where rni = 21rpar is the liquid mass in the cylinder. In this form, the components M., MY

represent the net rate of angular momentum flux through the liquid ends, whereas the roll

moment M, is solely due to Coriolis forces. A close relation between roll moment M, and yaw

moment M, has also been found by Murphy (1984, 1985).

APPENDIY A

, -. ... -.....- .



A-43

V4ecous Ilu,. Miuon in a Spinning and Nutatirg Cylinder 11

A different interpretation can be derived using the differential equation (9a), integrating

by parts, applying (Ob), and separating real wid imaginary parts:

I

0 ~Re'

-, f r2gdr = _/_.X.) R _ 4 (,7b)0 Re 4 '

In this form, the moments are directly related to the shear forces at the cylindrical sidewall,

r = 1. Since f'(1)< 0, g'(1)< 0, the roll moment M, is always positive (even for fl < 0),

while M, is negative for f0 > 0 and changes sign with I . For small Re, the series (10) pro-

vide the approximations

Re __ Re•
Maer 5 -,1,536 ' (18)

that can be used for quick estimates up to Re <10. The linear increase of m, and M, with Re is

consistent witl the experimental data. From the analytical solution (10), we obtain

F'( 1) = g'( 1) + if '(1) = 2 - qIo(q)/1 1(q). (1)

Substitution into (17) provides the variation of rn, m1 with the Reynolds number shown in

figure 7. The coefficient m. w. ,rnes a pruiaouiaced maxirum at Re - 19. The occurrence of

thim maximum was earlier thought to originate from hydrodynamic instability with respect to a

cpllular na,,ion. Here, we find a simple explanation in the properties of the axial velocity corn-

",,alart f mn tle z,- plane awid Ule derivative g'(1) The coefficient ni, is naegligible for

Re < 5, , ,iply decreme.es with increwsinig Ile •lui reaches aii asyaaptotic value of mr - - 1/4

&-% Re -- o. Hellw , for 11 > 0, Aft tends to reduce the pitch moment due to tie solid body

i,, tiora. We iiot, however, that these niontilnt8 represent only Lhe effect of viscous shear at

the cylin(dricid side wall Shear at the end walls taud the cor, trimutmon of the presmurc arc
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neglected.

The data base for the yaw and pitch moments is scarce. Computations by Vaughn et al.

(1985) indicate, however, that the pressure contributions to these moments are larger (and

opposite in sign) than the viscous components. Only the viscous component can be estimated

from our solution. Therefore, we concentrate in the folio% ýng on * detailed comparison for the

roll moment.

In figure 8 ve compare the asymptotic law (18) and the theoretical result (17) with exper-

iment*al data (Miller 1982) and computational results (Vaughn et al. 1985) for the roll

coefficient m, on a doubly logarithmic scale. The initial spin rate w - 4000 rpm hms been used

for obtaining the nondimensional values from the experiment. For Re < 10, the experimental

data match the analytical result as well as the asymptotic law m, s Re/06. The deviation

between theoretical and computational results is probably due to a larger axial extend of the

end effects at very low Reynolds numbers. Good agreement with the computational results is

obtained near the maximum of in 5 . The point at Re - 113 is close to the Reynolds number

where the numerical simulation fails to converge to a steady solution, and may not be very

accurate, The experiments find the maximum roll moment at slightly jower Reynolds numbers

than the theoretical value. In fact, this discrepancy will increase as lower spin rates w are used

for data reduction. In view of the agreement between theoretical and computational results, the

discrepancy can not arise from the approximations employed in our analysis. A first possible

source may be the effect of unsteadiness in the spin-down experiments. More likely, however,

the shift is cau!i by changes of temperature and viscosity during the experiments. A moderate

increase iii temperature would reduce the viscosity of the w.rking fluids (qilicor.e oii, corn

syrup) and hence shift the maximum to higher Reynolds numbers. Miller (personal commuri-

V.,., cation) observed a temperature increase by ; 2.5*C per run up to 2 IO'C above ambient tem-V'...'..

perature alter repeated runs. Vaughn et al. (1985) used these values for correcting the results,

with some improved agreement. We waive such a correction but discuss the temperature

increase in more d-al in the next chapter.

A, a final ob-,rvaijon in figure 8, we note the change in tendency for the twC experimen-

tal data points at iWe > 10'. It ip likely that the internal flow become. unsteady and ultimately

turbulent as the Reynolds number inrreaes. Preliminary results from flow visualization in a

small-scale expecaiment (Pierpond 1085) indicate that these two points are for a turbulent inter-

Inai flov%
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lIn figure 9 we recast experimental, computational and theoretical results for the dimen-

sional roll moment M, in different form. Whereas the asymptotic properties are concealed, the

linear scale for M, reveals the pronounced maximum of the roll moment for viscosities near

v = 106 cSt. and more clearly indicates that theory and comnputation yield larger maximum

values than the despin experiments with the old test fixture (Miller 1982). More recent meas-

urements with a new test fixture at higher spin rates (Miller, persnal communication) provide

larger maximum values slightly in excess of the theoretical result.

For the roll moment as a function or nut~ation angle and rate, Herbert (1983) derived

from Miller's data (1982, fig. 12) the empirical relation Al, = 0.00814 (OIsinf)2 Nm. Ile

theory provides M, in the same form but with a somewhat larger factor of 0.0111. 1his corn-

parison for a fluid or kinematic viscosity v 2-2106 cSt is likely to be biased by ',emperawi.e

effects. A notable feature of the roll moment as a function of nutation rate at different spin

rates is shown in figure 10. For these parameters in the range of the maximum roll moment,

the dependence of M, on w is non-monotonic, e.g. the data for w - 9000 rpm are in between

those for w =3000 and 9000 rpm. Ihis puzzling behavior has been observed by Miller in

experiments with the new test fixture. From the theoretical result it is obvious that M,

W decreases (increases) with w for sufficient~ly small (large) viscosities to the left (right) of the

maximum in figure 9.

The interpretation of the experimental results has been hampered by the observation of

Miller ( 1982) thi., "the despin moment was not a function of the canister spin rate, provided a

sufficient spin rate is present". In contrast, the theoretical result (14c),( 15&),( 19) depends on

the spin rate since q - Re1' 2' and H~e -~ w. for fixed a and v. Figure 11 shows the utieoretical

results for M, as a function of the spin rate w for viscosities v' - 10', 0, and 10' eSt on linear

LO scales. Note that in some range of wi, M, appears indeed nearly independent of the spin rate,

especially for ,i = 10' cSt where the maximum of Af, stretches out over most of the observed

range (3000 <c w < 9000 rpm) of spin rats. Figure I1 I Aso shows different prototypes of

behavior 'hat aro. distinguished by the position of the maximum roll moment aloi~g the w axis.

S Experimental data for similar conditions are shown in figure 12 and verify th~e theoretically

predicted behavior. Moreover, these data suggest major simplifications in the experimental pro-

!edures. Whereas the experimental data in figure 9 were obtained by using numerousi working

fluids of d~lerent viscosities, a more complett aet of data can be generated by csrefully mnori-

I... WrIn the tipin-downi for a few runs with fluids ini the range of low, m(ediumi, and high viiscosi-

ties asM fl igure 12
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S. Temperture effect

The comparison of theoretical and computational results with experimental data seems to

be biased by the effect of increasing temperature on the viscosity of the working fluid. These

effects appear more pronounced at high viscosities and high spin rates. For an estimate of the

rate of change of the average temperature T, we consider a control volume R (surface S)

formed by liquid surfaces along the cylinder's side and end walls. The material properties are

assumed to be constant and heat transfer through the surface is disregarded. Balancing the rate

of change of energy with the work done on the control volume, we obtain after some

simplifications

dT
""keg Jf TVdS, (20)

where e. is the specific heet, r the vector of tangential stresses, and Vj the velocity measured

in an inertial frame. Since V4 is independent of z, the contributions from the cylinder ends

cancel. The only contribution is due to the shear stress

I* = (U) a V I_- ==2pf asinO I'(t)coso + g'(l)sin¢j (21)

in the axial direction. The relevant axial component of the velocity (11 + w) Xr of some point

on the surface S is given by - 0 a sinesino. Integration over the cylindrical surface yields

dT
dT -p(20 asin)fl2 r ac g'(1) (22)

After substituting for m, and introducing the Reynolds number, this result can be written as

d-T --- (20 asin9) 2(- -- LL) (23)
dt 2c, Re

Comparison wish eq. (15a) shows that the rate of change or temperature can be directly

expressed in terms of the roll moment,

dT w (20 asinO)'m, = -2- M,. (24)
dt 2 e, ' 2 m: ,

This result immediately shows that the temperature rise per run cannot be specified as a single

iiumhrr, nor should a unliform correction he applied to the experimentaJ dat-a Moreover, the

temiperatu re chasig,'- mcre' %A)thI the spin rate, and consequently are quite dIffcr!'jt for the
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experiments with the old (Miller 1982) :nd the new test fixture. Using the maximum value

m, - 0.0854, we obtain for the 1982 experiments (a - 60.3 hIm, w = 4000 rpm, fl = 500

rpm, 0 = 20*) with silicone oil (c, z 1600J/(kg*C) a temperature rise of

dT/dt = 0.055"C/s. Using the same fluid in the new test fixture (a - 55.4 mm, w = 10'

rpm, fl = 600 rpm, 8 = 20°) leads to a temperature increase of dT/dt = 0.158°C/s.

A single run consists of three phases (Miller, personal communication). The spin-up

period of • 30 9 is followed by a sudden start of the nutaton and a period or = 30 s in order

to reach steady conditions. Finally, the shutdown of the spin drive is followed by a spin-down

period of - 15 a. The second period at nearly steady conditions and maximum spin rate

appears most relevant to the modification of the viscosity. At the start of the third phase, the

average temperature may have increased by = 1.568C in the 1982 experiments, and by

S4.75*C in the more recent experiments at higher spin and nutation rates. These values are

for conditions of maximum roll monment, and may be considerably lower in other cases. The

value of 2.50C mensured in the new fixtitre is well within the estimated range. Our result (24)

indicates, however, that a single measurement is insufficient for evaluating the temperature

effects, especially those in a different experimental setup.

rA •
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6. OocDcudng remarks

We have developed a simple model of the viscous fluid motion in a spinning and nutitang

cylinder. The disregard of the end walls has some obvious consequences: the turning flow near

the ends and the associated contributions of pressure and shear stresses to the moma,its cannot

be obtained from this model. Nevertheless, we gather understanding as well as quantitative

information. The velocity field of the core flow agrees well with computational results for low

Reynolds numbers. Ile analytical result is an evident examnple ror the formaton of boundary

layers. The core flow can be utilized as a basic flow in studies of hydrodynamic instability wlith

respect to cellular motions. The parametric excitat~ion of such cells by the azimuthally periodic

deviation has been discussed by Herbert (1984). The core flow also represents the lowest-order

approximation to the solution of the nonlinear equations (3) and can be extended by higher-

order terms in e.

The roll moment agrees well with measured and computed values, and can also be found

at Reynolds numbers too large for successful numerical simulations. The roll moment ori-

ginates from Coriolis forces. While the direct calculation of the yaw moment suffers from

neglecting the pressure contribution, the yaw moment can be found from the roll moment

using the relations given by Murphy (1984, 1985). The pitch moment remains an open issue.

The estimates for the change in average temperature need further verification once more

detailed data become -tvailsale.

The simple form and scaling relatins of our results provido guidance for sorting and

evaluating the experimental data base. The results also suggest various improvements in the

experimental procedures. First, the changes in temperature and viscosity should be carefully

monitored. With the effective viscosity known, a closer agreement between theory and obser.

vation is to be expected. Second, the yet neglected variation of the roll moment with the spin

rate is considered relevant and in fact provides the roll moment in some range of Reynolds

numbers. Instead of producing the data for figure 9 by using numerous viscosities at fixed spin

rate, very similar data can be generated by varying the spin rate for A- few fluids.
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FIGURE CAPTIONS

Figure 1. Definition sketch

Figure 2. Components f and g of the axial velocity v/(2e) for various Reynolds numbers:

0, Re = 1; 0, 10; A, 102; +, I03.

Figure 3. Contour lines or the components f and g of the axial velocity 0/(2e) as a func-

tion of radius r and Reynolds number Re. Intervals are 0.05; the zero level is

given by the heavy line.

Figure 4. Contour lines of equal axial velocity, v/(2c) coast., for (a) Re 1 1; (b) 10;

(c) 102; (d) 10'. Intervals are 0.01, 0.1, 0.2, 0.2, respectively. The sero level is

given by the heavy line, the velocity maximum is marked by +.

Figure 5. Radial distribution of the dimensional velocity V, at z = 0 for Re = 14.9. The

symbols show the numerical solution to the Navier-Stokes equations (Vaughn

1983, personal communication). Parameters: a = 60.3 mm, c/a o 4.3,

0 - 200, w = 3000 rpm, f = 500 rpm, p = 1400 kg/M 3 .

Figure 6. Radial distribution of the dimensional velocity V, at z = 0 for Re - 45.7. The

symbols show the numerical solution to the Navier-Stokes equations (Vaughn

"1983, personal communication). Parameters: a = 00.3 mm, c/a - 4.3,

0 - 200, w 3000 rpm, f0 = 500 rpm, p - 1400 kg/m 3 .

Figure 7. The nondimensional cnefficients m,,m, in eq. (17) vs. #he Reynolds number Re.

Figure 8. Comparisoun of the theoretical result for m, with: X , experimental data (Miller

1982);0, computational results (Vaughn et al. 1985). The straight line shows the

asymptotic la% m, - Re/06.
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Figure 9. Comparison of the theoretical result for the roll moment M, at w 3000 rpm vs.

kinemmic viscosity v with: X, experimental data (Miller 1982) for

w - 2000- 4000 rpm; 0, computational results (Vaughn et &l. 1985) for

w - 3000 rpm. Parameters: a 5 60.3 mm, c/a - 4.29, 0 200, 0 - 500

rpm, p - 1000 kg/mr.

Figure 10. Theoretical results for the roll moment M, vs. nut.ation rawe 0 for different spin

rates: A, w 3 3000; 0. 6000#• 1, 9000 rpm. Parameters: a - 50.4 mm,

c /a 4.5, 0 - 200, v, - 106 cSt, p - 1000 kg/mr.

Figure 11. Theoretical results for the roll moment M, vs. spin rawe w for different kinematic

viscosities: 0 , 10 3On; 0 , 104, A , ilo cSt. Parameters: a -- 50.4 mm,

c/a 4.5, 0 - 200, 0, 625 rpm, p -1400 kg/mr.

Figure 12. Experimental results for the roll moment M, vs. spin rate w for different

kinematic viscosities: 0 , a-- 10'; 0 , 104, A , 106 cSt. Parameters: a - 50.4

mm, c/a - 4.5, 0 - 200, (1 600 rpm, p , 1400 kg/M3.
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Appendix B

This appendix gives listings of a simple program, subroutines, and input/output. Subrou.

tine PARAM converts dimensional quantities as promnpt~ed into English and SI units and into

nondimensional parameters. If the input line starts with a slash (A), the displayed default value

is used. If a value of zero is given for the viscosity, the program prompts for the value of the

kinematic viscosity. Subroutine EVALA calculates the functions f and g in Appendix A.4, eq.

(12) at r - k/K, k = 0, ... K if K >0, as well as I'(1)/Re and g'(I)/Re used in Appendix

"A.4, eq. (19) for calculating the moments. Subroutine EVALA uses subroutines BES1! and

BESIO in order to calculate the ratios of Bessel functions in Appendix A.4, eqs. (12), (19).

Additional information is given by comments within the programs.

. The sample run provides results for the run of the Sandia code at Re = 14.95 used in the

comparison Appendix A.4, figure 5.
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C ******FLUID FILLED CYLINDER * SAMPLE PROGRAM*******

C * LINEARIZ-ED EQUATIONS, Z-INDEPENDENT FLOW*

gC * WRITTEN BY THC'RWALD HERBERT, VP I V' SU*

Ct *

C * HOWSTHE USE OF THE SUBROUTINES FOR OBTAINING A LIST OF

C * (1) PARAMETERS*

C * (Z) VALUES OF F(R), G(R), F'(il/RE, CG'(1)/RE*

C * (3) DIMENSIONAL VELOCITIES AND rCIMENTS*

5 C

CCOMM':'N /FLOW/ REY,Id-f,R(101 ) ,Fi1011 ,c(101) ,FSl ,GSI

COIMMON IENGL/ RIN,ZIN,OS'R,ONR,THD,Sfi,DENO,VISCV,VIKO, VFT
* ,~ML0,UM:0C)

*.COMMON /METR/ RMMZMM,C'S.,C'N,TH,OX/,OV,OZ,OP,DEN,VIS,VWt,VMS

* ,ML,ULM0
COiMMO--N /PARM/ AR,TAU,EP-S,RE

REAL ML,MLO

CHARACTER*1 FF
FF=CHAR(12-)

C

C*** READ AND PRINT PARAMETERS

C

PRINT Z000, FF

2000 FORMAT (A1C'LINS 07/25/85 **SAMPLE PROGRAM')

CALL FAR-AM (1)

REV =RE

C

C*** SPECIFY NIJME:FR OF RADIAL. STEPS VK 0-101)

C

C

C*** EVALUATE AND PRINT F,G AT RADIAL. POiSITIONS

C

PRINT Z001, FF

2001 FORMAT (Al)

L[ =MIN(KI1 100)

.;LL E9ALA(l)

(**CONVERT F,G INTO DIMENSIONAL. VELOCITY (MIS)

PRINT zoFF
.o(': FOJRMAT (Al ,2. r r',TI'VELOCITY, rn/si/

- - * 1'X,'x,z-plar~e y,z-pI arie',')
DO 1:=()j'1'j

- . DF=RMM*R(,+1 I/IF?'

DVV= VMS*2t EPS*G ( F+1)

PRINT 20037,, Y,DRDVX,,DVY

2(?FCRMAT(4F1.&

C*n. CONVERT M SUE' Z,* M S'JL V INTO DIM.FUSION'tL. FORMI

DM2 -UMID-*4*FFS**J*GSI

DMY=-UMOl*Z4EPS* (FSl+.2!i)
F-F'I NT DM-7 DMY

l'".j.4 FORMAT ( ,'V ISCC'UC7 ROLL MOte. NT: ,FJ I .,Nt,:' /

*ZX, 'VISCC'US PITCH MOMENT:' ,F11.6., Nnrn'I)

PRýINT -0()l, FF
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C ********* FLUID FILLED CYLINDER *** PARAMETERS *************

C * WRITTEN BY THORWALD HERBERT, VPI & SU *

C*

C * SUBROUTINE FOR READING AND CONVERTING DIMENSIONAL VALUES *

C * INTO METRIC UNITS AND DIMENSIONLESS PARAMETERS. *

C * PRINT VALUES !F IO>O *

i.=- C

"SUBROUTINE PARAM (10)

"COMMON /ENGL/ RIN,ZIN,OSR,ONR,THD,SG,DENO,VISO,VIKO,VFT
• ,MLO,UMOO

COMMON /METR/ RMM,ZMM,OS,ON,TH,OX,OY,OZ,OP,DEN,VIS,VIK,VMS
• ,ML,UMO

COMMON /PARM/ AR,TAU,EPS,RE
REAL ML,MLO
CHARACTER*4 ID(18)
DATA PI,RAD1,RAD2/3.14159,57.2958,9.54930/,IFIRST/1/

C

C*** SET PHYSICAL PARAMETERS TO DEFAULT VALUES
C

IF (IFIRST.EQ.O) 60 TO I
RIN= 2.375

ZIN=10.:75
OSR=3000
ONR=500
THD=•O
SG=i.4
DEN=SG*999.84
VIS=I .0'TE05
VIK=1000*VIS/DEN

C*** READ ACTUAL PARAMETERS
C
I PRINT 2000
2000 FORMAT (/'PARAM 09/25/84 ** PARAMETER CONVERSION'//'ID:')

READ 1000, ID
1000 FORMAT (18A4)

PRINT 2001, RIN

Z001 FORMAT (/'RIN = radius (inch) : /',F6.3)

READ *, RIN
PRINT 2002, ZIN

2002 FORMAT (/'ZIN = half-length (inch) : /',F6.3)
READ *, ZIN
PRINT 2003, OSR

2003 FORMAT (/'OSR = spin rate (rpm) : /',F6.0)
READ *, OSR
PRINT 2004, ONR

2004 FORMAT (/'ONR = nutation rate (rpm): /',F6.0)
READ *, ONR

PRINT 2005, THD
2005 FORMAT (/'THD =r utation angle (deg): /',F6.1)

READ *, THD
PRINT Z006, SG

2006 FORMAT (/'SG = specific gravity (-): /,Ft..3)
READ *, $6
DEN=SG*%'99.84
PRINT 2007, VIS

2007 FORMAT (/'VIS vscosity/zero (cp): /',F".0)
READ *, VI3

Vi =VIS.*1000/DEN
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IF (VIS.GT.O) GO 'TO 2

PRINT 2008, Vli'

2008 FORMAT (fVIK =kin, viscosity (cs): /',FS.O)

READ *, VIK

C:* OVRTPYIA PARAMETERS

ZFT:ZIN/12
ZMM=ZIN*25.4

AR-71N/RIN

OSzCISR/RAD2

ON=ONR /RADZ-

TAUrONR/0SR

OZ = -Oy*O(H

FA EPS=OY/OS
~1' VFT=RFT*OcS

VMS=VPT* . 304S

DENO = 1. 94*SG

V1S0:=vIS*2 .C89E-05
VIK0=VISO/DENO
ML=Z*PIIfRMM**3*AR*DEN*1E-9

MLO= 2*P I RFT**3*AR*DENO
RE=VFT*RFT/V1KO
UMC'=ML* (RMM*OS )**Z*1E-6

UMOOj=MLO* (RFT*OS0) **2

IF (IO.LE.O) RETURN

C*** OUTPUT SECTION: LIST OF PARAMETERS

PRINT 2010

2010 FORMAT(/S' ))

L PRINT Zt.oIt,ID,RIN,RMM,ZIN,ZNM,AR
2011 FORMAT {iID: ',18A4/

* ~/IOX,'A =',F1O.3,' IN' ,F16.3, MM

* ~/lCiX,'C =%,F1O.3,' IN',F16.3,' MM',SX,'C/A =',F10.4)

PRINT jx.,"Z,OSN,OSI,ONS,ON,TAU
201Z FORMAT (/9,X,'OS ='1F10.I,' RPM',FXS.2, ' iS'

* /9XC,,ON =',F1O).1,' RPM',F15.2,' iS' ,X, *TAU =',F10.4)

j PRINT 2013i,VFT,VMS,THD,TH,EPS

2013? FfO'RMAT (I3X'/.VEL =',FI0.3,' FPS',F15.$,, M/S'//6x,, THETA t'qFlO).2,

*DEG',F1Sý.4,' RAD'17X,'EPS ='F1o.4)

FRINI 2014,DFN.N,DEN,SG,ML0,ML

Z014 FORMAT (/3jX, 'DEN =',OPFIO.3, ' SLUG/FT3',P'1).1I,' KG!M3',6X,
*'S6 :',FIO.3/9X1 'ML =,O)PF1Q.41 ' SLUG',F14.3,' KG')

PRINT 2015 1 V1S0,VIS,VIKO,'JIK,RE

£0,15 FORMAT' (/:DX, VIS 'IPE1O.3,' LCSIFTZ' 1jE 11.3,' CP, /
* /7X,,'VISK I',PE10.3,' FTZ/S',E13.3, ' CS',SX, 'RE ='E10.3)

PRI\NT 216, UM'), ,UM''

2016 FORMAY (/6),,'U-MOM =',1PEIO.3 1', FT-LBS',E12.23,' N.M,)

bPR INT 0 10
'PET URN

U END
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C *****.FLUID FILLED CYLINDER *F,G AND DERIVATIVES ****

C *WRITTEN BY THORWALD HERBERT, VPI & SU
C.

C * SUBROUTINE FOR CALCULATING:
C * F AND G AT KK EQUIDISTANT POINTS IF KK>O,
C * FSl= F'(1'/RE, G51= G'(1)/RE
C * THE VALUES ARE PRINTED IF 10>0
C********4**************4********

C:

SUBROLTINE EVALAC IO)
COMMON /FLOW/ RE,KK,RR(1O1),FF(1O1),GG(101),FSI,GS1

COMPLEX Z,Z0,S,SO

DIMENSION SS(2)

EQUIVALENCE (S,S5(1))

C:
IF CIO.GT.0) PRINT .2000

2000 FORMAT (/'EVALA 09/25/84 * FUNCTIONS F,G AND DERIVATIVES,)2 CACLT
C CLCUATEF AND G

XOzSQRT(RE/2)

CALL BESII(XO,ZO,SO)
IF (KK.LE.O) GO TO 2
IF (IO.GT.0) PRINT 2001

2001 FORMAT (/3X, k' ,5X, r' ,9X,'f',9X, g I)
K=O

RR( 1)=O

FF( 1)=0

GG( 1)r0
IF (IO.GT.O) PRINT 2002, K,RR(K+1),FF(K+)),GG(K+1)

2002 FORMAT (14,3FI0.6)

DR=1./KK
C

DO 3 K=1,KK
R=V.*DR

RR(K+1 )=R

CALL SESII(R*XO,Z,S)
SzS*EXP(Z-ZO) ISO

FF(K+1)= -SS(Z)
GG(i,+l)=R-SS(l)

IF (IO.GT.0) PRINT 2002, K,RR(K+1),FF(K+1),GG(K4.fl

3 CONTINUE

C

C EVALUATE F',G' AT Rzl

c
2 C.AL.L BE3>IO(XO,Z,S)

Sz '2-S/SO) IRE

FSl=SS(Z)

GS I=5"-(1I)
IF (IO.GT.0) PRINT 2003, FSI,GS1

2003 FORMAT (I5X,9Hf'(1)/Re:,F10.6/5X,9Hg'(1)/Re=,FI0.6/)

RETURN
E:ND
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C ****t***** FLUID FILLED CYLINDER * BESSFL FUNCTIONS ********
C * WRITTEN BY THORWALD HERBERT, VPI &. SU *

C. *

C * SUBROUTINE FOR CALCULATING THE MODIFIED BESSEL FUNCTION *
C * I1(Z)/EgPtZ), Z=x*(u.I *
C * *

C
SUE:ROUTINE BESII(1X,Z,S)

COAMPLEX, Z,ZZ,S

DATA F'I/".141r2".65/
Z-CMF'LX (X, x)

S=1
IF (X.GE.1O.) GO TO I

CC ASCENDING SERIES

7Z=Z*Z/4

DCO 2 L=t,25

a S=S*ZZ/(F0.*(K+I ))+1
S=S*Z*EXP(-Z)//Z

RETURN
C

C ASYMPTOTIC SERIES

C
I ZZ=S*Z

DO :: L=1.18
[..=1;'-L

S=S*((Z.*K-)**Z-4)/(K*ZZ)*+
"S=S/SQRT(2*PI*Z)
RETURN
END
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C ********* FLUID FILLED CYLINDER * BESSEL FUNCTIONS **********
C * WRITTEN BY THORWALD HERBERT, VPI S- SU *
C*

C * SUBROUTINE FOR CALCULATING THE MODIFIED BESSEL FUNCTION *
C * Z*JC(Z)/EXP(Z), Z=X*(1+I) *

C * *

C

SUBROUTINE BESIO(X,Z,S)
COMPLEX Z,ZZ,S
DATA PI/3.1415'?Z65/
Z-CMPLX(X,X)

IF (X.GE.10.) GO TO I
C
C. ASCENDING SERIES
C

ZZ=Z*Z,4
0 Z L=I,?5

k=26-L

2 S=S*ZZ/(K*K )+l
S=S*Z*EXP( -Z)
RETURN

"C
C ASYMPTOTIC SERIES

1 Z7=8*Z
DO 3 L=1,18

3 S=S*(2*K-I)**2/(K*ZZ)+I
S=S*SQRT(Z/(2*PI))

RETURN
END

APPENDIX B
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LINS 07/Z5/85 *** SAMPLE PROGRAM

PARAM 09/25/84 *** PARAMETER CONVERSION

ID:
Sandia run at Re=14.95

RIN = radius (inch) / 2.375

ZIN half-length (inch) : /10.375
/

OSR = spin rate (rpm) : 3000.
/

ONR nutation rate (rpm): / 500.

T;iD nutition angle (deg): / 20.0

/

SG = specific gravity -: / 1.400

ViS = viscosity/zero (cp): 107000.

ID: Sandia run at Re=14.95

A = 2.375 IN 60.325 MM
C = 10.375 IN Z63.5Z5 MM C/A = 4.3684

OS = 3000.0 RPM 314.16 /S
ON = 500.0 RPM 52.36 /S TAU = 0.1667

VEL = 62.177 FPS 18.952 M/S

THETA 20.00 DEG 0.3491 RAD EPS 0.0570

DEN 2.716 SLUG/FT3 1399.8 KG/M3 SG 1.400
ML 0.5779 SLUG 8.434 KG

VIS = 2.235E+00 LPS/FT2 1.070F+05 CF

VISr = 8.230E-01 FTZ/S 7.644E+04 CS RE 1.495E+01

U-MOM 2.2341+o3 FT-LES 3.029E+03 N*M

APPENDIX B

N.*



B-9

EVALA 09125/84 *** FUNCTIONS F,G AND DERIVATIVES

k r s

0 0.000000 0.000000 0.000000
1 0.050000 0.032883 0.051961

2 0.100000 0.065817 0.103001
3 0.150000 0.098828 0.152194

4 0.200000 0.131880 0.198616
5 0.250000 0.164852 0.241340
6 0.300000 0.197510 0.279443
7 0.350000 0.229474 0.312012
8 0.400000 0.2`60191 0.338160

9 0.450000 0.88910 0.357039
10 0.500000 0.3146.55 0.367869

"11 0.550000 0.336197 0.369971
12 0.600000 0.352040 0.362801

13 0.650000 0.360400 0.346007
14 0.700000 0.359201 0.319480

15 0.750000 0.346067 0.283427
16 0.800000 0.318339 0.238448
17 0.850000 O.Z73092 0.185618

18 0.900000 0.207178 0.126587
19 0.950000 0.117281 0.063679
20 1.000000) 0.000000 0.000000

f'(1)/Re= -0.176700

-'(1)/Re= -0.084015

"APPENDIX B
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r, m VELOCITY, m/s

x,z-plane y,z-plane

0 0. 00000) 0.000000 0.000000
1 (0,003016 0.071047 0. 12.26S

42 0.006033 0.142206 0. 2-2.545
3 ().00%04, 0.213520 0.3233?
4 0.01-065 0.Z84941 0.429133
5 0,015(S4 O.356182 0.551444

6 0.0t80l:)8 0.4.6743 0.60:76z
7 0.021114 0. 4;5804 Q. 67413.'
•'[ 8 u.0`4130 0.56217( 0.730633
9 0.027146 0.6Z4214 0.771423

10 0.03016C: 0.67:348 0.79483.4
11 O.03,117Q 0.726392 0.79q364
1Z 0.03P:195 0.760622 0 .7 : 7-;'
13 0.039211 0.778686 0.747587

14 0.042227 0.776094 0.690Z72
15 0.045244 0.747718 0.612377
16 0.0482_60 0.687808 0.515194
17 0.051276 0.590047 0.401049
IS 0.054293 0.447632 0.27 :506
19 (1.057"309 0.253399 0.137586
20 0.060325 0.000000 0.000000

VISCOUS ROLL MOMENT: 3.307994 N*m
VISCOUS FITCH MOMENT: -25.315350 N*m

S%.

b.4
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