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VISCOUS FLUID MOTION IN A SPINNING AND NUTATING CYLJINDER
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1. Accomplishments

The working period for this contract was originally 83/08/02 - 85/02/02, but has been

extended until 85/04/30 in order to provide {or completing the experimental setup for flow

visualization. During this working period, the following personnel has been partly supported

" under contract DAAKI11-83-1<-0011:

"

E Thorwald Herbert, Professor, Principal Investigator
J. Wallace Grant, Assistant Professor

l | Relja Zivojnovice, Graduate Student (M. S. level)
L German Santos , Graduate Swdent (Ph.D. level)

Charlotte R. Hawley, Research Specialist

f. David Pierpond, Undergraduate Student, has been involved in the experimental work at no
cost. His scnior project is close to completion. Parts of the theoretical work have been sup-

ported by the Army Research Office under Contract DAAG29-82-1K-0129.

1.1, Present-tions
New research findings have been reported at the following conferences:

(1) “The Flow of Highly Viscous Fluid in a Spinning and Nutating Cylinder,’’ 1083 Scientific

» " A A U A F.o¥aT T T e

Confercnce on Chemical Defcnse Research, November 14-18, 1983, Aberdeen Proving
Ground, Maryland.

LU, VLE

(2) “Highly Viscous Fluid Flow in a Spinning and Nutating Cylinder,’’ Second Army Confer-
ence on Applied Mathematics and Computing, May 22-25, 1984, Troy, New York.

i -t m .

t;} {3) “Instability of the Viscrus Flow in a Spinning and Nutating Cylinder,”” ARO Workshop
; on Liquid-Filled Shells, Sepiember 20-21, 1984, Aberdeen Proving Ground, Maryland.

:_ * (4) “Instability of the Viscous Flow in a Spinning and Nutating Cylinder,”’ 1984 Scientific
F Conference on Chemical Defcnse Research, November 13-16, 1984, Aberdeen Proving
- Ground, Maryland,

: (5) An abstract of a paper entiled ““On the Fluid Motion in Liquid-Filled Shells,’” has been
: submitu.d for presentation at the 19%6 Scientihe Conference ou Chemical Deflense
;} Research, November 19-22, 1985, Aberdecn Proving Ground, Maryland.
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1.2. Publications
A selection of results has been published in the following papers:

(1) “The Flow of Ilighly Viscous Fluid in a Spinning and Nutating Cylinder,”” Proec. 1983
Scientific Conference on Chemical Defense Research, Aberdeen Proving Ground, Mary-
land, (Eds. R. L. Dimmick, Jr. & M. Rausa), Report CRD C-SP-84014, (1984).

(2) “Ilighly Viscous Fluid Flow in a Spinning and Nutating Cylinder,”’” Trans. Second Army
Conference on Applied Mathematies and Computing, Troy, New York, ARO Report 85-1
(1985).

(3) *“On the Viscous Roll Moment in a Spinning and Nutating Cylinder,”” Proc. 1984
Scientific Conference on Chemical Defense Research, Aberdeen Proving Ground, Mary-

land, to be published.

(4) “Viscous Iluid Motion in a Spinning and Nutating Cylinder,”” submitted for publication

in Journal of Fluid Mechanies.

Copies of the papers (1), (2) and of the manuscripts (3) and (4) are attached as Appen-
dices A.1 < A 4.

2. Technical Discussion

2.1. Introduction

It is well-known that spin-stabilized shells carrying liquid payloads can suffer dynamical
instability. Tor cylindrical cavities and low viscosity of the liquid, the instability due to basically
inviscid inertial waves can be predicted by the Stewartson-Wedemeyer theory (Stewartson 1959;
Wedemeyer 1966). This thcory rests on the boundary-layer approach and is, therefore, res-
tricted to the range of sufliciently large Reynolds numbers. The instability of certain shells like
the XM761 (D’Amico 1977; 1978), however, escapes such a prediction and is also dis-
tinguished in character owing to the rapid loss in spin rate. DExperiments with a full-scule
liquid-filled cylinder (Miller 1982) and subscquent licld tests (D’Amico & Miller 1979) estab-
lish that this new flight instability 1s most pronounceed far liquid fills of very high viscosity.

We have conducted an analysis of this problem in order to support the ongoing experi-
ments and 1o independently obtlain insight into the anatomy of the flow phenomena. The initial

steps of this analysis are reported elsewhere (Ilerbert 1982): evaluation of the experimental
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data Lase, dimensional analysis, scaling aspects, governing equations, and discussion of various
simplifying assumptions. Two observations in this carlier work led to the approach discussed in
the following. First, if the despin (negative roll) moments {Miller 1982) and void observations
(Milter 1981) are correlated with the Reynolds nuinber Re, at least three regions can be dis-
tinguished. At low Re, the despin moment increases proportional to Re, and the void in an
incompletely filled cylinder is parallel to the spin axis. This suggests a simple fluid motion that
is essentially independent of the axial coordinate, except in the neighborhood of the end walls.
In a middle range of Re, the despin moment assumes a maximum, and a wavy distortion of the
void scems to indicate a cellular structure of the fluid motion. This cellular motion can, in
principle, originate from hydrodynamic instability of the basic flow with respect to axially
periodic disturbances. At sull higher Reynolds numbers, the despin moment decreases with
increasing Re in a manner not clewly defined by the few available data points. The void obser-

vations indicate, however, that thie motion ulimately becomes turbulent.

The second observation is the appearance of the nutation rate and angle as a small param-
eter in the cquations for the deviation {rom solid-body rotation. The {orcing term due to nuta-
tion can be considered small enough for lincarization of the equations in the situations of pras-
tical interest.

Consequently, our research focused on three topics. First, theoretical analysis of "simple”
fluid motions at low Reynolds number that satisfy the linearized equations for the deviation
from rigid body rotation. Second, analysis of inviscid and viscous inertial modes and their
relevance for the occurrence of a maximum despin moment at moderate Reynolds numbers.
Third, the design of a small-scale, low-cost cxperiiment for visualization of the intérior fluid

motion. Tle results of these efforts are discussed in sections 2.2, 2.3 and 2.4, respectively.

2.2. The Deviation from Solid Body Rotation

A formal analysis of the equationst for the deviation of the velocity ficld from solid body
rotation suggests that (1) the equations can be lincarized without introducing major errors, (2)
at low Reynolds numbers Re * the velocity field 1s independent of the axial direction over a
considerable part of the relatively long (4 = 14.3) cylinder, and (3) the flow is in the axial
direction and wrns at the ends. Application of these conceptud! assumptions turned out very

t Detailed equations arc given in Appendix A
s We use the notation introduced in Appendix A




fruitful. A detailed description of the results and comparison with computational and experi-
mental data is given in the paper *Viscous ['iuid Motion in a Spinning and Nutating Cylinder’
{Appendix A 1), submitted for publication in the Journal of Fluid Mechanics. A sample pro-
gram with the relevant subroutines for reproducing the theoretical results is given in Appendix

B. Here, we report only the main conclusions.

The model o1 a two-dimensional unidirectional flow in a finite segient of an infinite
cylinder yields the solution of the linearized equations in analytical form. The disregard of the
end walls has some obvious consequences: the turning flow near the ends and the associated
contributions of pressure and shear stresses to the moments cannot be obtained from this
model. Nevertheless, we gather understanding as well as quantiwaiive information. The velocity
field of the core flow agrees well with computational results { Vaughn et al. 1985} for low Rey-
nolds numbers. The analytical result is an evident example for the formation of boundary
layers. The cc ¢ low can be utilized as & basic flow in studies of hydrodynamic instability with
respect to cellular motions. The parametric excitation of such cells by the azimuthally periodic
deviation has bLeen discussed by Herbert (1984). The core flow also represents the lowest-order
approXimation to the solution of the nonlinear equations and can be exterded by higher-order

erms.

The roll moment agrees well with measured and computed values, and can also be found
at Reynolds numbers too large for successful numerical simulations. The roll moment ori-
ginates from Coriolis forces. While the direct calculation of the yaw moment suffers from
neglecting the pressure contribution, the yaw moment can be found from the roll moment
using the relations given by Murphy (1981, 1985). The pich moment remains an open issue.
The average rate of change of temperaturc is found to be proporticnal to roll moment and spin

rate. This estimate needs further verification once more detailed data become available.

The simple form and scaling relations of our results provide guidance for sorting and
evaluating the experimental data base. The results also suggest various improvements in the
experimental procedures. First, the changes in temperature and viscosity should be carefully
monitored. With the e{Tective viscosity known, a closer agreem=nt between theory and obser-
vation is to be expected. Second. the yet neglected variation of the roil moment with 'he spin
rate 1s considered relevant and in fact provides the roll moment in some range of neynolds
numbers. Instead of recording the roll moment as a function of Re by using numerous viscosi-

tics at fixed spin rate, very similar data can be generated by varying the spin rate for a few

e i
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fluids. For directing the research efforts within this project, it has been most revealing that the
characteristic variation of roll moment versus Reynolds number, in particular the sharp max-
imum at Re = 10 is a property of the unidirectional model low. This result contradicted the
earlicr working hypothesis which attributed the occurrence of this maximum to hydrodynamic

instability and the onset of cellular motions.

2.3. Cellular Structure of the Motion

Aithough not as relevant to the moments as earlier thought, the cellular motior. at
surprisingly low Reynolds rumbers is in itsell an interesting physical phenomenon. In our
anslysis, we superpose to the steady basic flow v, = (0,r,v,), 9, disturbances v = (u,v,w), p
sufficienty small for linearization. Substitution into the governing equations and neglect of

products between disturbances and terms of order 0(¢?) provide the following stability equa-

tions:
[%%Jr%- 214700+ S 9 L - & - f_za%:']
+ [v,%:- + 2ryw| =
[%‘;— + % 4+ 2(1 + r,)u+i-g£- - 7}:[ My - 7"2. + %..g_;_]
+ iv.%— 9r,w) = 0
%1:’ "Z% % Fl-[ w| - (%L:- 274)u
| l-l-%g--r”r,)v-r v,%w,r—
| lr%(ru)+l—%+‘;—’:’==o
Three groups of terms have been scparated by square brackets in taese « The

first group, il set to zero, represents the equations for inviscid inertisd modes

~eexp(imé + faz +at), where m s the (inwger) azimuthal wavenumber, o the axial
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wavenumber, and ¢ = o, + 1o, provides the amplification rate o, and [requency o;. Usually, E
an equation for the pressure 1s used for obtaining the analytical solution (Stewartson 1959).
We have derived an alternative system in terms of u,v and appiied a spectral collocation
method to be used for more general cases in order to check the numerical results against the 1

evact values,

The programs are designed to provide results for arbitrary values of the azimuthal and
axial wavenumber. A typical spectrum {or m = 1, o = 1 is shown in figure 1. In the complex s
s-plane, s = o + im, stable (s, < 0) eigenvalues are located to the left of the vertical s;-axis,
while cigenvalues in the right half-plane ndicate instability. In the inviscid case, the eigen- 3
values are located on the ¢g-axis (s, = 0) and are neutral. The eigenfunctions associated with
the eigenvalue of maximum frequeney are shown in figure 2. Note that only the no-
penetration condition for the radial velocity component is satisfied, while v and w slip at the

cylinder walls.

The second group of terms in the stability equations is multiplied by 1/Re¢ and represents
the viscous correction to the incruial modes. By eliminating w and p, a system of ordinary
differential equations for v and v has been derived. Due w the higher order of this system, all
boundary conditions can be satisfied. Programs have becn developed for calculating spectra of
(complex) eigenvalues, for tracing single cigenvalues as a function of Re, o, and for obtaining
the eigenfunctions. At high Re, the results follow the trends predicted by asymptotic theories.
Our analysis, however, also covers the range of low Reynolds numbers, where the inertial

modes suffer rapid decay (s, <0).

Spectra of eigenvalucs for viscous inertial nodes at m = 1, o = 1 in an infinite cylinder
are shown in figure 3 for Re = 1000 and in figure 4 for Re = 100. All cigenvalues move to
the left as Re decreases. indicating stabilization of the niodes. The eigenfunctions fer the least

stable mode at le = 100 arc shown in figure 5. Note that all velocity components vanish at ‘

the cylinder sall.

The most interesting aspect of the stability cquations is the third group of terms. The
coefficients in this group, v., 7,, and 74, ave of order O(¢) and periodic in ¢. The periodicity in
® leads to a coupling of the mode ¢quations for m and m£ 1, and may cause primary resonance
between incrtial modes. In view of viscous damping, this resonance is likely to occur as e

exceeds a critical value that decreases as He increases.
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The analysis of this parametrical instability has been prepared by solving the full set of

LSS AR
-3

stability equations with the coupling terins between modes artificially set to zero. A spectrum
of eigenvalues in the c-plane for m = 0, a = 1 and Re = 100 is shown in figure 6. This
spectrum consists of the superposition of the spectra for m = 0, + 1 of the viscous equations.
As the coupling terms are taken into account, the spectrum drastically changes, as shown in

figure 7. Most remarkable iz the appearance of a small number of eigenvalues in the unstable

R P AP}

right half-plane. These eigenvalues are either real or appear as complex conjugate pairs. This

.
[

.
0

reflects the fact that the physical solution must be real. Instability at lower values of the axial
. wavenumber a can be found at low Reynolds number. Figure 8 shows an example of instabil-

ity at Re = 20. A single par of complex conjugate eigenvalues appears in the unstable

domain; the amplification rate decreases with the Keynolds number.

)

R TR B - ST

The analysis of the parametric instability of the azimuthally periodic flow is rather costly
in terms of computer time. Within the framework of this contract, we were not able to com-
plete a systematic parameter study that could provide a lower limit or critical Reynolds number
for the onset of cellular motion; neither were experimental data available for a comparison of
- eigenfunctions. It has been shown, however, that cellular motions can appear at low Reynolds

‘ numbers as a result of resonant coupling beetween inertial modes.

2.4. Flow Visualization

Although theoretical (Herbert, Appendix A.4) and computational (Vaughn et al. 1985)

work provides some insight into the interier fluid motion, the nature of the phenomena

remaians largely in the dark. This is especially true for the range of medium and high Reynolds

A
%t

numbers where finite-amplitude ccllular motions and, ultimately, turbulence are expected to

T

. occur. This range is barely within the scope of computational methods nor can it be fully

£

ol i
-

explored with the theoretical means of sections 2.2, 2.3,

Ny
I

K
3
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Previous experiments (Miller 1081) using a partially filled full-scale cylinder revealed
some axial nonuniformity of the fow at higher Re without showing details of the flow ficld.
Later attempts to use flow tracers (Miller & Oberkampf, personal communication) had little
success due to the high spin rates {accclerations) combined with minute density differences
between working fluid and tracer particles. Bven carelully centiifuged and sclected particles

failed to follow the hquid path, peobably due w changes of icmperature during the run.

SIS 5NN

a

tad
T
Y

"
M,

Bty oy PO A o YA A AT AL CAR A AR DA e S it LR A Y N L A B AN iy i S M i i AN £ g Ly o et e 2 it ot £ BN (0 L2 b i



Y s 1
d Ao AL

i
.

4

AR AEN
4-'-

S T AT

"

NN Y
LI e T

3

-

.
.

.
DR )
s a4 1 v A

L

T
a

vl!l’
L0

|"CY -
0

%

Attempts to employ laser-induced fluorescence (Miller 1084) were partly successful after chang-
ing the time scale, i.e. to lower spinrate, nutation rate, and viscosity at fixed values of the
dimensionless parameters. These efforts have been discontinued, however, due to continuing

lighting problems.

Evaluation of the e:..perimental attempts to visualize the fluid flow clearly reveals the
extreme full-scale conditions as evil. Conclusive experiments can be conducted by exploiting
the principals of dynamical similarity and appropriate scaling laws. These aspects have been dis-

cussed in earlier work (Herbert 1982) and extended by the analysis in Appendix A 4.

Between the three reference quantities, radius a, spinrate w, and density p for length,
time, and mass, respectively, the density of dilferent fluids offers little variability. However,
length and time scale can be easily changed. For dynamical similarity, the following dimension-

less quantities must be fixed:

A=c¢/a aspect ratio
6 nutation angle
r=1{]/w frequency

Re = pwai/u Reynolds number

The nutation angle must remain the same in a scaled setup. Radius ¢ and half-length ¢ of the
cylinder must be scaled by the same factor in order to keep the aspect ratio fixed. A second
factor can be applied o both spinrate w and nutation rate {1, in order to preserve the fre-
quency. [Keeping Re fixed requires changing the kinematic viscosity v == i/p by the same fac-
tor as wa® Since the desired tendency is toward smaller radii and spinrates, we require less

viscous fluids than those used in the full-scale ¢xperiments. Such fluids are easy to find.

It is obvious that the main thrust of an experiment may requirc specific optimuin condi-
tions. Flow visualization requires low velocities, i.e, low values of ws. Measurements of
moments require optimum values of w?a® Minimizing the rate of change of temperature

2

requires a minimnum of w%s?. A good setup for flow visualizaiion, therefore, may produce

moments in a hardly measurable range.
The goal of our efforts was to show that a low-cost device (==%500) can be designed for
flow visualization. Details had to be kept simple. Accuracy and convenience had to comprom-

ise. The results of these elforts arc shown in figures 9 and 10.
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A one-inch inner diameter cylinder of aspect ratio A = 4.3 is used. The cylinder is cut
from a pyrex glass tube with the inner diameter accurate within 1/5000 inch, but with varying
wall thickness that afTects the optical quality. The cylinder is filled with mixtures of water and
glycerin. The mixing ratio is used to vary viscosity. On top, the cylinder is closed with a
screwed-in plastic plug. A center hole allows access to the interior, especially for removing air

bubbles. The hole can be closed using a toothpick.

The cylinder is glued to a drive plug and axis machined from a single piece of aluminum.
The one-sided support allows easy (optical) access to the cylinder and permits using cylinders of
different length. One-sided support is affordavle due to the moments being approximately five
orders of magnitude smaller than in the full-scale experiments., The axis is twice supported by
ball bearings. The cylinder and shaft are driven via timing belts over exchangeable sets of pul-
leys. The most expensive piece of the spin arrangement is a <24V d.c. motor with sufficient
torque in the range of 500 - 5000 rpm. Motor and cylinder support are mounted to an alumi-
num frame that can be inclined to the vertical axis by 5, 10, 15 and 20 * using different support

holes and struts.

The horizontal support plate is machined to leave the certer position free for access and is
screwed to a commercial record player (Garrard model 775). The plate can be offset in order o
align the center of mass of the cylinder with the nutation axis. The record player provides
nutation rates of 33, 45, and 78 rpm. The hollow axis is only utilized to provide prwer to the
spin motor. A lU-contact slip ring of high quality has been kindly denated by Poly-Scientific,
Blacksburg, VA, but has been saved for more sophisticated experiments. A nail with a smooth

top and a brush fixed to the turntable proved sufficient for transmitting a single voltage.

The remaining components of the experiment are: a Heathkit regulated power supply for

the spin motor, a strobelight for controlled pulsed lighting, and suitable flow tracers.

As flow tracers we use Afllair 100 Silver Pearl, kindly donated by EM Chemicals,
Hawthorne, NY. The material consists of very fine and shiny plastic platelets commercially
used for cosmetic purposes. Although of specilic weight different from that of the fluid, the
low accelerations in the scale model permit practically buoyant behavior of the platelets over
considerable time. The strobelight ( General Radio Strobotac) with adjustable frequency is used

for lighting as well as for measuring the spin rate of the cylinder.

At the slow time scale of the experiment, the fluid motion can be visually inspected while

running the apparatus. At high viscositics, the apparatus can also be suddenly stopped, with the

R R N N O R e L AU S T Y
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flow tracers ‘‘frozen’’ in the restng fluid. The platelets align with surfaces of constant shear.
Therefore, by manually rotating the evlinder forth and back, the three-dimensional structure of
the field can be inspected. This crude obscrvation is very helpful in developing the visualiza-
tion technique. A detailed account of the technique {appropriate particle density, pitfalls such

as the history of particle distribution and alighment} will be given by Pierpont (1985).

A typical view of the ““frozen’’ pattern is shown in figure 11. Note, however, that the
stereoscopic view by eye reveals the spatial diswibution of the particles which is here projected
into a single plane. The photograph also shows some undesirable reflections from the cylindri-
cal surfaces. Visualization of the frozen pattern can be essentially improved by using a light
sheet parallel to the spin axis. Sheet lighting also enables photographic recording of the flow

structure while the apparatus is in operation.

A continuous light sheet is produced by a Spectia Physics model 120 (15 mW) helium-
neon laser and a cylinder lens. In order to avoid the need for accurately firing the camera (35
mm Pentax with 50 mm lens) at a certain time, a cylindrical card board screen with a vertical
slot and a 90° offset opening is fixed o the circumflerence of the turntable. The shutter is
manually opened and closed after the laser sheet of light (lashed through the slot. Some photo-
graphs taken with the apparatus in motion are shown in the figures. The figures show the pat-
tern in the z,z-plane (the planc spanned by spin axis and rutation axis) as seen at ¢ = 0'in
the y-direction. The series of figures 12,13,14 is for different nutation rates of 33, 45, 78 rpm,
respectively at otherwise fixed parameters. The figures roveal the changing pattern and forma-
tion of cells at a Reynokls number Re == 40. At slightly higher Re, additional cells appear as
shown in figure 15. At the high value of Re = 8000, the flow is highly unsteady and irregular
(turbulent) with a superposed large-scale cellular motion. This cellular motion accumulates the
platelets in streaks around the cylinder wall, as shown in figure 16. Number and position of the
streaks depends sensitively on the parameters, see figure 17. The distortion of the bright line
near the axis is very similar to the distortion of the void in Miller's (1981) photographs at low
viscosity.

Specification of accurate Reynolds numbers suflers from some uncertainty in monitoring
and measuring the wide range of viscosities for the hygroscopic water-glycerin mixtures exposed
to uncontrolled thermal conditions. Falling-sphere viscometry is the casy way out, but requires

a whole variety of splieres, dilferent in diameter and specific gravity. To within this uncer-

tainty. however, the figures clearly reveal the cellular structure of the flow and the changes of
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the structure as Reynolds number and rate incrcase. Perhaps the most striking result of this
visual study of the flow structure is the manifold of pattern at higher Reynolds numbers. A
systematic analysis of these patterns cannot be conducted within the ongoing senior project.
Neither can a coarse sampling of pattern in the y,z-plare be completed before submission of
this report. However, the feasibility of flow visualization with simple means by proper sealing
has been clearly demonstrated. A manifold of cellular motions in the laminar range has been

observed as well as turbulent flow at high Reynolds numbers.
Some improvements are suggested from experience with the present experiment:

(1) More accurate measurements of viscosity and spinrate in order to reproduce experimental

conditions.

(2) Redesign of the spin drive plug: a steel axis should be fixed to the bearings with an easy-
to-detach cylinder bowwtom plug snug-fit 1o the axis.

(3) Refined laser-light sheet (thinner, piane can be rotated) and more sophisticated shutter
release for the camera (controlled by timing pulse at proper turntable position).

(4) Higher precision of the cylinder for improved optical quality.

(5) Replacement of the record player by a turntable with continuously variable rate of rotation

and heavier duty bearings.

Various of these improvements can be achieved with minor efforts and expenses, but not
within the time frame of this contract. Moreover, we are confident that using photochromic
dye exposed to a pulsed laser beam would allow visualization and - with some effort - quantita-

tive analysis of velocity profiles.
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gS Abstract

Evaluation of the sparse experimental data and analysis of the equations

o for the fluid motion in a spinning and nutating cylinder suggest a theoretical
o analysis in three steps: (1) analysis of the viscous flow in an infinitely
iﬂ long cylinder, (2) hydrodynamic stability analysis of this hasic flow, and (3)

study of the end effects. A status report is given on the first of these
tasks. The purely axial basic flow is governed by ordinary differential
equations, Analytical and numerical solutions show the different character of
N this flow at low and high Reynolds numbers. The resulting moments are
consistent with experimental data.

Introduction

!’ Spin-stabilized projectiles with 11quid payloads can experience a severe
flight instability that is characterized by a rap  yaw angle growth and a
simultaneous loss in spin rate, Experiments with « full-scale 1iquid-fiiled
cylinder (Miller 1982) have shown that this instability originates from the
internal motion of fluids in the range of high viscosities. We have initfated
2 theoretical analysis of this problem in order to support the ongoing experi-
ments and to obtain independently insight into the flow phenomena. The
init1al steps of our approach are reported elsewhere (Herbert 1982): evalua-
tion of the experimental data base, dimensional analysis, scaling aspects, :
governing equations, and discussion of various simplifying assumptions, Two -
ocbservations in this earlier work Yed to the results presented here, First, ;
{f the despin moment data and void ohservations (Miller 1981) are correlated
with the Reynolds number, at leuast three regions can be distinguished. At low

»

- . |
£ AR S
= al LIS ATES SRR

=<

A

ii Reynolds numbers Re, the despin moment increases proportional to Re, and the
= void 1n an incompletely filled cylinder {s parallel to the spin axis, 1In a

- middle range, a maximum of the despin moment exists that seems to be associ-
:;. ated with the onset of a void distortion due to a cellular motion of the
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fluid., At higher Reynolds numbers, the despin moment decreases in a manner
that is not clearly defined by the few available data points. The void
observations indicate, however, that the motion ultimately is turbulent. In
the theoretical approach, the initial increase in the despin moment is
attributed to a simple basic flow that can be studied disregarding the end
effects. The occurrence of a cellular motion at higher Reynolds numbets and
tre reduced despin moment can, in principle, be associated with a hydrodynamic
instability of the basic flow. Accounting for the end effects should provide
the final polish of the results. The second observation was the appearance of
a parameter in the equations for the deviation from solid body rotation that
can be considered small enough for linearization in the situations of practi-
cal and experimental {nterest.

In the following, we describe the development of a simple system of
equations for the basic flow and discuss asymptotic solutions and numerical
results. A comparison 1s made with computer simulations of the flow (Vaughn
1983) and with experimental data (Miller 1982).

The Basic flow

We consider the motion of a8 fluid of density p and viscosity y in a
cylinder of radius a and Yength 2c, The cylinder rotates with the spin rate o
about 1ts axis, the 2-axis, The z-axis {s inclined by the nutation angle ¢
with respect to the inertial Z-axis and the Z,z-plane rotates with the nuta-
tion rate o about the Z-axis. The two rotatfon axes intersect in the center
of mass of the cylinder, 1In contrast to the experimental procedures (Miiler
1982), we consider w»0, £20, and 0>0 as constant. We describe the motion by
the Navier-Stokes equations, written in the aeroballistic or nutating coordi.
nate system x,y,z, where x 1s norma) to z in the Z,z-plane:

%,
elgr <Y +ax(axp)]= =W, + uVAY_
i (1)

1n s the velocity measured in the nutating system, p. the pressure, and [
the

posttion vector, The body force due to gravity is neglected. Equations
(I%Iare subject to the no-s1ip and no-penetration conditions at the cylinder
walls,

In the next step, we split the velocity and pressure fields according to

!n " aY-s + .Y,d' pn - ps + pd (2)

where Y.,p, describe the state of pure solid body rotation, whereas N
describe the deviation from solid body rotation. 1t 1s obvious that dzg,
Pygz0 1f either one of the following conditions 1s satisfied: w=0, Qa0, as0
or us» (solid fi11),

The equations for Y4 are written in terms of non-dimensional quantities,
using a, w, and p for scaling length, time and mass. Note that this choice fs
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smbiguous (Herbert 1982) and excludes the case of no spin. The problem then
depends on four non-dimensional parameters:

A= c/a aspect ratio

g = sing

T = f/w frequency

Re = pwa2/y Reynolds number.

The aspect ratio 1s only contained in the boundary conditions,

Finally, cylindrical coordinates r,4,2 are introduced. The equations for
the (non-dimensional) components VeeVyeV of the velocity deviation and the
pressure deviation p' are given as equat?ons (4.22) by Herbert (1982)., The
most remarkable fact ahout these equations 1s the appearance of a 7orce term
2tgrcosy in the z-momentum equation, If this term vanishes, the equations
support only 2 trivial solution. 1t is obvious, therefore, that the deviation
velocity is of order O(xo). At close analysis, to = (n/stine turns out to
be a rather small parameter, Even a conservative estimate with n<S00 rpm,
w>3000 rpm and 8<200 provides values ¢0<0.057. It seems well justified,
then, to l1inearize the equations in to. 1t 1s also worth noting that this
1inear{zation imposes no restriction on the Reynolds number Re.

The resulting system of linear equations 1s sti11 quite difficult to
solve, mainly owing to the boundary conditions. Use of the boundery layer
approximation would simplify the task, but sccems inappropriate in tne inter-
esting range of Reynolds numbers. The equations suggest, however, that a
solutfon can be found when the boundary conditions at the end walls of the
cylinder are relaxed. As a first step, therefore, a steady Tlow (basic flow)
1s sought disreyarding the end walls, 1.e, for an infinftely long cylinder,
Desplite other initial thoughts, the force term in the z-momentum equation
causes a deviation velocity that 1s purely axial,

Vg= (0, 0, wav )}, py= 0. (3)

It 13 also consistent with the equatfons to assume 2 solution in the form

v, = 2to[f(r)coss + glr)sing) (4)
where
fn_’_}‘_fl_%‘?f_gegu-ﬂer (52)
g* + %-g‘ - %7 g+Ref=0 (55)

0 at r s}

.9 { finite at r = Q, (5¢)

The prime denotes d/dr. These equations seem to call for an analytfical
solution, but our attempts were not yet successful. For low Reynolds numbers.
it s obvious that
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f = 0(Rn), q = O(RR?) (k)
and in more detail
f =R (r - r3) + 0(Re?) (7a)
Re2 3 5
9 =157 (2r - 3r3 + r5) + O(ReY). (7b)

A series Including higher order terms 1n Re has been constructed but converges
only for Re<l2. other interesting 1imit can be easily obtained fcr Reww:

40

g+t } as Re + «, (8)

Owing to the lToss of the highest derivatives this solution cannot satisfy the
boundary conditions and is valid only outside the thin boundary layers near
the cylinder sidewall,

Without any detatled knowledge of the solution in the medium range of Re,
{1t can be seen that the basic flow exhibits characteristically different
behavior at low and high Reynolds numbers, At 1ow Re, the component f in the
plane ¢=0 (Z,z-plane) is dominating. At high Re, f is negligible (except in
the boundary layer), and the component g i1n the plane ¢=9N0 is dominating.

In the medium range of Re, we have applfed a spectral collocation method
for numerical solution., This method is especially capable of resolving the
steep gradients tn the boundary layers at large Re., Figure 1 shows the numer-
fcal results in the form of contour lines of equal axfal velocity. The flow
to the right or above the (thicker) zero-velocity line 1s toward the reader.
The shift of the velocity maximum from 4»0 at Re=0.01 to ¢4=90° at R=1000, and
the pronounced boundary layer formation in the latter case is clearly visible,

LALLTR )

T Sal.te AR LI )
.

pd

Afs 0,10 LLrELs. 00010 Ale 10.80 VT8 0.1000 Afe 1000.00 LUTeLy: 0.7000

ORI 1)

Figure 1. Contour 1ines of equal axial velocity, v,/(2xg) = const,, for
Re=0.01, 10 and 1000. The difference tetween levels is 0,001, 0.1 and 0.7,
respectively, '
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) For supporting the relevance of our solution, Figure 2 shows the compari-
son with computational results for the velocity distributions in the center
cross-section (2=0) of the cylinder. The data were kindly provided by Nr,
Vaughn, Sandia National Laboratories. The agreement for Re=14.9 is considered
representative for the range of lower Reynolds numbers. At the higher Re=45.,7,
a2 minor but systematic deviation between our solution and the Sandia results
exists that seems to be due to & superposed cellular motion., This cellular
motion is not yet incorporated into in our analysis and will be subject to
further study, The axial flow considered here will provide the basic flow for
an analysis of the hydrodynamic stability. It is encouraging, though, that
our simple theory yields results in essential agreement with the computational
. solution of the full Navier-Stokes equations for & finite-length cylinder. The
computational effort for solving the ordinary differentfal equations (5) is
rather small, typically 25 msec (IBM 3081) per solution.
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. Figure 2, Radial distribution of the axial velocity (in fps) at 2=0 for

- Re=14.,9 and Re=45,7, The symbols show the solution to the full Navier-Stokes
0 equations (Vaughn, personal commuxication),

i Moments

In order to compare with the experimental data for the despin moments, we
have analyzed the moments that arise from the deviation velocity Vg, disre
garding the contribution of pure solid body rutation. Conservation of angular
momentun for the fixed cylindrical control volume R (surface S) requires

"+l _T_Y_ v, C_t
X

% P (e Xgdodr = J 1) [g = (28 = ¥g) JocR

. o wTe

S g Y ol - e - D g
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where M 1s the resultant torque on the system, The tirst term on the right-
hand side vanishes for steady Y4. The second term originates from Coriolis
forces in the nutating system, The third term describes the net rate of
angular momentum flux through the rontrol surface with the outer normal n,
The contribution from £ x Y4 vanishes since V4 has only an axial component.,
The last term gives the moments due to the shear forces at the cylindrical
surface, There i1s no pressure contribution since pd-O.

ol MR ST S

; Substitution of Y4 and v, provides the following expressions for the

i components of M:

é M, = mz(ZDasine)(ma).{ﬂééll -njl r2¥dr} (10a)
A

i "y = ml(ZQas{na)(ua) [ - I%éll -DJ‘ r2gdr} {10b)
. M, = m,(2n2s1ne)?2 {ojl refdr} (10c)

where m, is the 1iquid mass in the cylinder. The derivatives g', f' in Mo
origina%e from the shear forces at the cylinder, whereas the integra's provi
the rate of angular momentum flux, The despin moment M, is due to Coriolis
forces. Note, however, that the interpretation of M, w¥11 be different 1f the
flux through the cylinder end walls is prohibited.

LA T T

Using the differential equatfons (5a,b) and integration by parts, the
integrals in (10a,b,c) can be expressed as

1 . 1 r, 1
Dj r2fdr = - .ﬂnjel)_. DJ r2gdr -—wé—)-*r I (11)

The moments can therefore be written as

W XU RS R

= v Y = 1 .g—.
My ml(ZQasine)(ma) My, Hy -T- T f'(1) (12a)
" - “ 1
= 2 ® - Q'
E Mz mz(znasine) M, Mz %e 9 (1) (12b)
= ©
. " Wt 2t (12¢)

;-; Since f'(1) <0, 9'(1) < 0 for all finite Rex#0, the moment M, about the spin
[ ] axis 1s always posit1ve. whereas M, < 0, For small Reynolds number, the

P series solution (7) provides

Wo.Ll_Re2 § _Re (13)
: y & " T6B* "z T&

>
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which allows. a quick estimate of the moments for Re < 10, say. The linear
increase of M, with Re §s consistent with the experimental data.

The values of and ﬁﬁ from numerical solutfons are given in Figyre 3.
It s interesting to note that M, has a pronounced maximum at Re=19, M
varies between 1/4 and -1/4 with“a sfign change at Rex31. A comparison &1th
experimental data for "z (Miller 1982) 1s giyen in Figure 4 on a doubly
logarithmic scale, The“data are reduced to M, using the initial spin rate
=4000 rpm. For Re < 10, the experimental po%nts agree with the simple law
M, = Re/36. The systematic deviatfon for higher Reynolds numbers Re < 200
seems to be due to the occurrence of a cellular motfon that is likely to
;fduce the moment M,. The two data points for Re » 103 indicate turbulent
ow,

R-2

t e R The

Figure 3, The nondimensfonal coefficients ﬁy and ﬁz in the moments (12a,b)
versus the Reynolds number Re,

l ™~

A

! . Figure 4. Comparison @f the
theoretical values of M

L m-D

) with the experimental data of
o mumme Miller (1982). The straight
1ine shows the asymptotic law
M, = Re/96.

é

-

! L0G 1Ay '

Conclusions

The theory developed here 1s a first but virtually essential step toward
understanding and predicting the gross features of the fluid motion in a
spinning and nutating cylinder., The axial basic flow »1lows for an analysis
of the hydrodynamic instability with respect to a celluiar motion and provides
the basis for refinements of the theory.
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HIGHLY VISCOUS FLUID FLOW
IN A SPINNING AND NUTATING CYLINDER

Thorwald Herbert
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT. Spin-stabilized projectiles with liquid payloads can expert-
ence a severe flight instability characterized by a rapid yaw angle growth and
a simuitaneous loss in spin rate. Laboratory experiments and field tests have
shown that this instability originates from the internal fluid motion in the
range of high viscosity. Evaluation of the experimental data and analysis of
the equations for the fluid motion in a spinning and nutating cylinder suggest
a theoretical approach in three major steps: (1) analysis of the steady vis-
cous flow in an infinitely long cylinder, (2) hydrodynamic stability analysis

of this basic flow, and (3) analysis of the end effects. The basic flow has

been found in analytical form. At low Reynolds number, this flow agrees well
with computational results for the center section of a cylinder of aspect
ratio 4.3. The despin moment caused by this flow largely agrees with experi-
mental data for a wide range of Reynolds numbers. Curreat work aims at the
stability of this flow.

1. INTRODUCTION., It is well-known that spin-stabilized shells carrying
1iquid payloads can suffer dynamical {instability. For cylindrical cavities
and low viscosity of the liquid, the instability due to basically inviscid
inertial waves can be predicted by the Stewartson-Wedemeyer theory {1,2}.
This theory rests on the boundary-layer approach and is, therefore, restricted
to the range of sufficiently large Reynolds numbers. The instability of cer-
tain shells 1ike the XM 761 {3,4], however, escaped such a prediction and is
also distinguished in character owing to the rapid 1oss in spin rate. Experi-
ments with a full-scale liquid cylinder [5] and subsequent field tests (6]
established that this new flight instability is most pronounced for 1iquid-
fills of very high viscosity.

We conduct a theoretical analysis of this problem in order to support the
orgoing experiments and to independently obtain insight into the anatomy of
the flow phenomena, The inttial steps of this analysis are reported elsewhere
[7): evaluation of the experimental data base, dimensicnal analysis, scaling
aspects, governing equations, and discussion of various simplifying assump-
tions. Two observations in this earlier work led to the building-block
approach discussed in the foilowing. First, if the despin (negative roll)
moments [5] and void observations [8] are correlated with the Reynolds number
Re, at least three regions can be distinguished. At low Re, the despin moment
increases proportional to Re, and the void in an incompletely filled cylinder
is parallel to the spin axis. This suggests a simple fluid motion that fis
essentially independent of the axial coordinate, except in the neighborhood of
the end walls. In a middle range of Re, the despin moment assumes a maximum,
and a wavy distortion of the void seems to indicate a celiular structure of
the fluid motion. This cellular motion can, in principle, originate from
hydrodynamic instability of the basic flow with respect to axfally periodic
disturbances. At still higher Reynolds numbers, the despin moment decreases
with increasing Re in a manner not clearly defined by the few available data
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points. The void observations indicate, however, that the motion ultimately
becemes turbulent.

The second observation was the appearance of the nutation rate and angle
as a small parameter in the equations for the deviation from solid-body rota-
tion. The forcing term due to nutation can be considered small enough for

linearization of the equations in the situations of practical and theoretical
interest.

In the following, we describe the development of a simple system of equa-
tions for the basic flow. Analytical solutfons are given for the flow field
and for the 1iquid moments. A comparison {s made with computer simulations of
the flow [9] and with experimental data [S]}. The properties of tnertial modes
at low Reynolds numbers and the possibility of {instability due to primary
resonance is discussed.

2. GOVERNING EQUATIONS. We 4
consider the motion of a fluid of
density o and viscosity uy in a cyl-
inder of radius a and length 2c that
rotates with the spin rate o about
its axis of symmetry, the z-axis.
We consider the motion with respect
to the nutating coordinate system
X,¥,2. This system {s obtained from
the inertial system X,Y,Z by a rota-
tion with the nutation angle ¢ about
the axis Y=y. Therefore, x {s in
tne Z,z-plane, and this plane
rotates about the Z-axis with the
nutation rate n. The two axes of
rotation intersect in the center of
mass of the cylinder, as shown in
Fig. 1. In contrast to the experi-
mental procedures (5], we consider
w>0, 8, and 0so<n/2 as constant. The spin  nutation
fluid motion {is governed by the 8xis axis
Navier-Stokes equations written in
the nutating coordinate system: Figure 1. ODefinition sketch.

ov
Dlﬁ%n* 20 « Vo + 8« (n x [)l . -an +uvV

b2

(1)

V°!n = 00

yn is the velocity measured in the nutating frame, Pn the pressure, and r the
position vector. The body force due to gravity has been disregarded. Equa-

tions (1) are subject to the no-slip and no-penetration conditions at the
Cylinder walls.

It is convenient (7] to split the velocity and pressure fields according
to ’
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A,

where yS.P describe the state of pure solid body rotation, whereas V,,P
represent the deviation from solfd body rotation. The advantage of this is0-
lated view on the deviation is obvious: V, and the reduced pressure P, are
responsible for the observed flight 1nstagil1ty. A glance at the equations
" shows that V=0 and P4=0 if either one of the following conditions 1s satis-
fied: w=0, Q=0, 6=0 or == (solid fill),

[ S T TR U |

Tl

- )

]

v

The equations for V4, Py are then written in terms of nondimensional
quantities v4, py. We use a, w, and o for scaling length, time, and mass. .
Note that thqs éioice is ambiguous 17] and excludes the case w=0 (which lacks
practical d{nterest). The problem then depends on four nondimensional

The aspect ratio e.ters the solution only through the boundary conditions. The
boundary conditions on v, are homogeneous.

parameters:
) A =c/a aspect ratio
o=sing
o T = 0/w frequency
ii Re = pwa?/y Reynolds number.

-
0
LN

In cylindrical coordinates r,¢,z, the equations for the nondimensional
deviation velocity vy = (Vr'vo'vz) and pressure py take the form

. 1 Y v, :
< rar (V) + 7 e Tz -0 (22)
Yo
D'v_ - —=-2(1 ¢+t )) v + 2tV
ror 2/ e 02 (2b)
p v av
:_—d-+é—[[)"v _._r....z— ]
- ar e roe2 p2 39
= VeV,
. O'v, + +2(1 + ) v, -2t v
i r 2/ 'r rz
= ¢ _ (2¢)
D W T WP S il 3
= ras Re ® L2 p2 3¢
:-: D'v, + 2v v, - 2tV =-ﬁ--2rr + L opuy (24)
o 2 or z r Re "z
= where
" 2 ) p Ve 2 3
(r\ V' = - — — — — -_—
}\: D at+ao+vrar+r ao*vzaz
~
5
Pl
5;2 D":.a..z_-+l_3_+l_£+i
T arz T y2 ge2 322
-

a
™
e
4
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and

T, = -eCOSe, 1, = esineg, v, = 1C0s8, ¢ = tsine (3)

The primary effect of nutation is contained 1in the e¢-periodic force term
-2rt,. = 2crcose in the 2z-momentum equatfon (2d). If this term vanishes
- throughout, ¢=0, equations (2) support a trivial solution v4=0, pg=0. For

sufficiently small ¢eG, 1t is obvious ‘that the deviation velocCity is of order
O(¢). In the situations of practical interest, ¢ - (n/w)sine turns out to be
a rather small parameter. Even & conservative estimate with @ < 500 rpm,
w2 3000 rpm, and e s 209 provides values of ¢ s 0.057. Consequently, 1t
seems well justified to linearize the equatifons in e. This linearization
imposes no restriction on the Reynalds number.

3. THE BASIC FLOW. The system of equations after linearization is stil]
quite difficult to solve. Any serious attempt to satisfy all boundary condi-
tions leads directly to a purely computational approach. Use of the boundary-
layer approximation would simplify the task but seems {inappropriate in the
interesting range of low Reynolds numbers. Recalling that the flow in a rela-
tively long cylinder (aspect ratio a=4.3) at low Re exhibits 1little axial
variation over much of the cylinder length [7], we have relaxed the boundary
conditions at the end walls. As a first step, we seek for a steady flow in an
infinitely long cylinder.

At closer analysis, the z-independent force term in eq. (2d) can only be
balanced by a purely axial deviation velocity. It is consistent with the 1in-
earized equatfons to assume a solution in the form

!d - (09 0, Vz)i pd = 0 (4)
and moreover,

v, = v (re) = 2¢[f(r)cose + g(r)sine] (5)

Substituting (4),(5) into the 1inearized equations provides

welog 1
frecf-FGf-Rege-Rer (6a)
P TP |
9"+ 29 -5 9+ Re f =0 (6b)
f=0, =0 at r=1 (6¢)
f, g finite at r=0 (6d)

The primes denote d/dr. Ffor Re-0, the solution of these equations can be
found in the form of series

F=f(ror) B8 (e 12 4 6rs - r) s ORes)  (72)
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g = %%% (2r - 3r3 + rs) + O(Rev). (7b)

With higher terms included, these series converge for Re < 12. In the 1imit
Re - =, one obtains

. f+0, g~r  as Re « =, (8)

o Owing to the loss of the highest derivatives, however, this solution cannot

o satisfy the boundary conditions (6c) and is valid only outside the thin bound- '
i ary layers near the wall at r=1. Even without any knowliedge of the solution

!' in the intermediate range, the different character of the basic flow at low

\ and high Reynolds numbers 1s evident. At low Re, the component f in the z,x-

plane ¢=0 s dominating. At high Re, f is negligible in the core of the
cylinder while ¢ in the z,y-plane ¢=900 is dominating.

N In earlier work [10], we have applied a spectral collocation method for

HI numerical solution of eqs. (6). Here, we derive an analytical solution by

o introducing the complex function F=g+if. Eqs. (6) can then be written in the
form

raf" + vf' - (1 + iRe r2)F = - iRe r? (9a)
F=0 at r=1 (9b)
' F finite at r =0 (9¢)

tu A particular solution of the inhomogeneous equation (9a) 1s Fy=r, whereas the
o homogeneous part of (9a) is the equation for the modified Besse1 functions
[\ I,(qr) and K (qr) of the complex argument qr with q = /Re/2 (1 + {)r. For
(9c). K, (qr) 'cannot contribute to the solution. Finally, (9b) provides

F(r) =g+ if =r - Il(qr)/ll(q). (10)

Expressing the solution in terms of Kelvin functions of real argument is of
little advantage for the numerical evaluation. The solution is valid for
arbitrary Re but may be unstable as Re exceeds some critical value. It 1s
stra1ghtforward to derive the approximations (7) from the ascending serfes for

(and to explain the convergence problem for larger Re). The asymptotic

o expansion for large arguments provides ;
For - /7edlr-1) (11) .

li This expression agrees to within 1% with (8) provided that r <1 - &, The -

te” boundary iayer thickness & can be obtained from the transcendental equation

: = /2/Re 4.605 - 5 tn (1 - &)1, (12)

?ﬁ e.q., 6=0.223 for Re=1000. The characteristic changes in the flow structure

}a‘ with increasing Re, in particular the shift of the velocity maximum from ¢s0

m at Re=2 to =900 at Re=200 are shown in fig. 2.
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Figure 2. Contour lines of equal axfal velocity, v,/(2¢) = const., for Res=2,
20, and 200. The difference between levels 15- 0.02, 0.1, and 0.2,
respectively. The + marks the velocity maximum.
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Figure 3. Radial distribution of the axial velocity (in fps) at z=0 for

Re=14.9 and Re=45.7. The symbols show the solution to the full Navier-Stokes
equations. :
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Fig. 3 compares the dimensional velocity distributions obtained from (5),
(10) with computational results fcr the center cross-section (z=0) of the
cylinder.* The agreement for Re=14.9 is considered representative for the
range of lower Reynolds numbers. The numerical simulation provides very smatll
components v., v, and hence verifies our estimates. At the higher value
Re=45.7, a systemgtic deviation between the two results seems to be due to a
supernosed cellular motion that is not yet incorporated into our analysis. It
is encouraging, however, that the simple theory of the basic flow ylelds
results in essential agreement with the computational solution of the full
Navier Stokes equations for a finite-length cylinder.

4, MOMENTS. With the deviation velocity V, = (0.0.uavz) and v, given,
the moments on a finite-length section of the cyﬁqnder can be calculated, We
consider a control volume R (surface S) formed by the solid cylindrical wall
and liquid surfaces at both ends. Conservation of angular momentum requires

Mo (zn By = 55 [fT( = VgdooR + (I [1 = (22 « Yy JoR

' 13)
L e Yol - S + [ (2 5 YdolYy - m)as ‘

where n i1s the outer unit normal. On the left-hand side, M {is the resultant
torgque on the control volume. The second term accounts for the momants due to
the shear force F, and vanishes owing to the solid sidewall and cancellation
of the contributions from both ends**, On the rigkt-hand side, the first term
vanishes for steady V4. The second term originates from Coriolis forces in the
nutating system. The third term vanishes since V, has only an axial compo-
nent. The last term then provides the net ratg of angular momentum flux
through the control surface,

Substitution of V4 leads to the following expressions for the cartesian
components of M: N

1
M, = m (20asine)(wa) m , m = ~of rifdr (14a)
- - f!
My = mz(Znasine)jwa) Moo M, " r2gdr (14b)
. i
M, = m (202sine)? m , m = of rafdr = -m (14c)

where m, is the 1iguid mass in the cylinder. In this form, the components
Moo My represent the net rate of angular momentum flux through the 1iquid end-
wdlls, whereas the roll moment M, fs solely due to Coriolis forces. A close

*The data were kindly provided by Dr. H. Vaughn, Sandia National Laboratories.

**[mproper account of the sidewall conditions introduced an incorrect factor
of two in earlier results for M , My [10].
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relation between roll moment M, and yaw moment Mx has also been found by
Murphy (11} for the range of higﬁ Reynolds numbers.

A oifferent interpretation can be derived us{ng the differential equation
(9a), integrating by parts, applying (9b), and separating real and i.aginary

part:

m_=-m = fl rifdr = - (1) (152)
o -

m =- [' rigdr = -

Y 0

Re

o (15b)

In this form, the moments are directly related to the shear forces at the

cylindrical sidewall, r=l. Since f'(1)<0, ¢'(1)<0, the roll moment M

always positive (even for n<0), while M

i
is negative for a<0 and changes §1gn

-

with a. For small Re, the series (7) provide the approximations

Re
mz L] ﬁ' my

. -g% (16)

that can be used for quick estimates up to ReslO. The linear increase of m,
and M, with Re 1s consistent with the experimental data. From the analyticdl

solution (10), we obtain

Fr(l) = g'(1) + if'(1) = 2 - ql(q)/I (q). (17)

Substitution into (15) provides the varfation of m,, m, with the Reynolds
number shown 4n Ffig. 4. The coefficient m, assumes a pxonounced maximum at

| 4

-, 88k
fig. 4. The -nondimensional coef-

ficients m,, m_, in eq. (14) versus
the ReynoIés anber, Re.

8390
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Re=19. The coefficient my 1s negative and reaches &n asymptotic value of
my - -1/4 as Re « =, ence, for a>0, My reduces the pitch moment due to
t%e solid body rotation. This result is consistent with ccmputations [9]. A

- comparison of theoretical and experimental [5] results for m, is given in Fig.
5 on a double logarithmic scale. The initial spin rate »=34000 rpm was used
for reducing the experimental data., For Re<l0, the experimental points match
the analytical result as well as the asymptotic lawm, = Re/96. The
occurrence of a maximum of m, is found to be a property of ﬂhe basic flow.
Only the systematic dev1at§on for higher Reynolds numbers Re<200 may be
attributed to a cellular motion. The two data points for Re>103 probably
indicate turbulent flow.

The basic flow, hence, can be considered a first but essential step
toward understanding and predicting the gross features of the fluid motion in
8 spinning and nutating cylinder. Some observations, however, such as the
virtual {independence of the despin moment on the spin rate require further
analysis, especially of the end effects. The occurrence of a cellular motion
may be due tc hydrodynamic instability of the basic flow.

LN RS Y LY D TR S AL S SR
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§, STABILITY ANALYSIS. The stability analysis is currently cot..ucted
and only a brief outline is given here. We superpose to the steady flow
vp=(0,r,v2), Pn disturbances v'=(u,v,w), p sufficiently small for lineariza-
tion. Substitution into eqs. (2) and neglect of products between disturbances
and terms of order 0(e?) provides the following stability equations:

A S SO R

au , au B, 1 guy .4 o2 av
5T * 30 2(1 + < )v + 3} - g (0% et Ty
(18a)
. au -
- + (vz 2z ¥ 2r°w} 0
s 1 1 2
v, av 13p, _ wy oV L2 3
% 3t * 3 2(1 + rz)u + < a¢) e (D"v > + ” 30)
! (18b)
. v _ =
:: +(v232 erw) 0
o av av
":. a_w _31 32 _1 " .__z._ l—z
-~ Gt * 3t 32 ~Re O+ UGF - Znu+ (R 537+ 2 )y
£ (18c)
L
g +VZE} 0
:¥ 1 1
- la_ lav  aw_ )
- rar (TU) *+ ¢ TIEY: 0 (18d)
W
! Three groups of terms have been separated by braces in eqs. (18a-c). The
) first group, if set to zero, represents the equations for inviscid fnertial
) modes -~exp(ime + {az + st), where m is the (integer) azimuthal, a the axial
g wavenumber, and s = sy + isy provides the amplification rate s, (=0) and fre-
nl yuency s4. Usually, an zquation for the pressure 1s used for obtaining the
i analytical solution. lle have derived an alternative system in terms of u,v

and applied the spectral method to be used for more general cases in order to
check the numerical results agains*t the exact values.
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The second group of terms multiplied with 1/Re represents the viscous
correction to the 1inertial modes. By eliminating w and p, a system of
ordinary differential equations for u and v has been derived. Due to the
higher order of this system, all boundury conditions can be satisfied. Pro-
grams have been developed for calculating spectra of (complex) eigenvalues,
for tracing single eigenvalues as function of Re, o, and for obtaining the
efgenfunctions. At high Re, the results follow the trends predicted by
i asymptotic theorfes. Our analysis, however, also covers the range of low

Reynolds numbers, where the inertial modes suffer rapid decay (s,.<0).

PR RE e e an JCRLY

The most interesting aspect of the stability equations (18) 1s the third
group of terms. The coefficients in this group, vz, tr, &nd t,, are (1) of
order O(c) and (2) periodic in ¢. The periodicity in ¢ leads to a coupling of
the mode equations for m and mtl, and may cause primary resonance between
inertial rodes. In view of viscous damping, this resonance is Tikely to occur
as ¢ exceeds a critical value that decreases as Re increases. The analysis of
this parametric instabiiity is currentiy in preparation.
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On the Viscous Roll Moment
in a Spinning and Nutating Cylinder

Thorwald Herbert

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24081

Abstract

Spin-stabilized projectiles with liquid payloads can experience s severe flight instability character
izsed by a rapid yaw angle growth and a simultaneous loss in spin rate. Laboratory experiments and feld
tests have shown that this instability originates from the internal fluid motion in the range of high
viscosity. We have developed a simpie modei of this internal motion that provides the flow field and the
liquid moments in analytical form. A detailed comparison of the roll moment with data from spin-down
equipments is given. New experimental procedures are suggested.

1. Introduction

It is weli-known that spin-stabilized shelis carrying liquid payloads can suffer dynamical instability.
For cylindrical cavities and low viscosity of the liquid, the instability due to basically inviscid inertial
waves can be predicted by the Stewartson-Wedemeyer theory. The instability of certain shells like the
XM7681, however, escapes such a prediction and is also distinguished in character by the rapid loss in
spin rate. Experiments with a full-scale liquid-filled cylinder {1] and subsequent field tests [2] establish
that this new flight instability is most pronounced for liquid fills of very high viscosity.

We have conducted a theoretical analysis of the problem with special attention to the range of
high viscosity. Two observations have permitted the development of a simple model of the internal
fluid motion. First, the nutation rate and angle appear as a small parameter in the nondimensional
equations for the deviation from solid-body rotation (3]. Therefore, the forcing term due to nutation
can be considered sufficiently small for linearization in the situation of practical interest. Second, in a
sufficiently long cylinder, the velocity field consists of primarily an axial component that is independent
of the axial position [4]. The other components are of the same order only in the neighborhood of the
end walls. Therefore, essential features of the internal fluid motion can be obtained by studying the
flow in a finite segment of an infinitely long cylinder.

Although the agreement of the theoretical and experimental results on the roll moment is surpris-
ingly good, there seems to be an essential discrepancy: while the theoretical result depends (via the
Reynolds number) on the spin rate, Miller [1] found that "the despin moment was not a function of the
canister spin rate, provided a sufficient spin rate is present. With more detailed data available in a wide
range of Reynolds numbers, we shed some light on this virtual disagreement. The experiments' data
follow in fact the theoretically predicted trends. A systematic deviation persists in the range of
extremely high viscosities. This deviation is likely to originate from changes in temperatures and con-
sequently in viscosity. It also turns out that a survey of the roll-moment versus Reynolds number
curve can be obtained in very few experimental runs at different viscosity.
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2. Analysis of the Flow Field

We consider the motion of a fluid of density p and viscosity u in a cylinder of radius a and length
2¢ that rotates with the spin rate w about its axis of symmetry, the z-axis. We consider the motion
with respect to the nutating coordinate system z2,y,2. This system is obtained from the inertial system
X,Y,Z, by a rotation with the nutation angle 6 about the axis Y=y. Therefore, z is in the Z,>plane,
and this plane rotates about the Z-axis with the nutation rate 3. The two axes of rotation intersect in
the center of mass of the cylinder, as shown in Fig. 1. In contrast to the experimental procedures 1],
we copsider w>0, (1, and 0<8 <" /2 as constant.

It is convenient [3] % split the velacity and pressure fields according to

2w RS At e SO

N

vl=v.+vdr Pn'=Po+ Pl (l)

AL

where V,, P, describe the state of pure solid body rotation, whereas V,,P; represent the deviation from
solid body rotation. The advantage of this isolated view on the deviation is obvious: V, and the reduced
pressure P, are responsible for the observed flight instability. A glance at the equations [3] shows that
Vi= 0and P, = 0if either w=0, 1 =0, §=10, or y—oo (solid £il1).

The effect of nutation and hence the deviation velocity is of order 0(¢) where ¢ = (2 /w)sind. In
the situations of practical interest, ¢ turns out to be rather small: a conservative estimate provides

e e

values of ¢ <0.054. Consequently, it seems well justified to linearize the equaiions in ¢. This lineariza-
tion imposes no restriction on the Reynolds number Re = pwa?/u . Recalling that the flow in a rels
i tively long cylinder (aspect ratio A = 4.3) at low Re exhibits litde axial variation over much of the
-~ cylinder length [3], we have relaxed the boundary conditions at the end walls.
;E In eylindrical coordinates r,8,z, we obtain [3] in an infinitely long cylinder
N
V¢ = (0,0,wav,), Pg=0 (2)

E where

v = v,(r,8) = 2¢[f(r)cosd + g(r)sing]. (3)

and ¢ and f are the real and imaginary parts, respectively, of

F(r) =g +df = r- L(gr)/Ii(q). (4)

LA A SO

where I, is the modified Bessel function, and ¢ = (1 + ¢) (Re/2)'/2. This solution is valid for arbi.
trary Re but may be unstable as Re exceeds some critical value. Comparison of the velocity distribution
with computational results {5| for Re = 14.9 has shown excellent agreement in the center section of
the cylinder. At the higher Reynolds number Re = 45.7, the agreement is stll satisfactory, with sys-
tematic deviations due to a weak cellular motion not yet incorporated in our analysis.

.
el
G
-
«
'
.
3

?; 3. Moments
- With given deviation velocity V,, the moments on a finite-length section of the cylinder can be
I calculated. We consider a control volume R (surface §) formed by the solid cylindrical wall and liquid
o surfaces at both ends. Conservation of angular momentum requires
g M+ Y (rxF,) = %ffj(rxv,)pm + [ [ [ irx(20 xV,)]pdR (5)
> R R
¥
; + [ [ (rXV)(Vin)pdS+ [ [ (rXV,)(Vin)pdS

s S

I.'
«
;
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o
b
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-
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where n is the outer unit normal. On the left-hand side, M is the resultant torque on the control
volume. The second term accounts for the moments due to the shear force F,. This term vanishes
along the solid sidewall and the contributions from both ends cancel. On the right-hand side, the first
term vanishes for steady V,. The second term originates from Coriolis forces in the nutating system.
The third term vanishes since V, has only an axial component. The last term then provides the net
rate of angular momentum flux through the control surface.

Substitution of V, leads to the following expressions for the components of M:

M, = m(20 asinf)(wa) m,, my == - [ r2fdr (6a)
0
1
M, = m(20 asinf)(wa) m,, m, = - [ rigdr (8b)
()
M, = m(20 asind)? r,, m, = j rfdr = -m, (8¢)
0

where m; is the liquid mass in the cylinder. In this form, the components M,, M, represent the net
rate of angular momentum flux through the liquid endwalls, whereas the roll moment M, is solely due
to Coriolis forces.

A different interpretation can be derived using the differential equation for F [4]:

1 ! 1 t
fn‘ == — "]‘ = f rqldr = - .’_(l).' m’ == _f 'Qﬂdf == - _f_(_l_)_ .1— (7)
0

° Re Re 4.

In this form, the moments are directly related to the shear forces at the cylindrical sidewall, r = 1.

Since f'(1)<0, g'(1) <0, the roll moment M, is always positive (even for 0 <0). From (4), we
obtain

Fi1) = (1) + i '(1) = 2 - olo(q)/I\(q). (8) ‘

For small Reynolds numbers, use of series expansions for the modified Bessel functions provides the
approximations m, = Re /986, m, =5 ~ R¢?/1536, that can be used for quick estimates up to Re <10.
These results disregard the effect of the solid end walls of the cylinder, where the axial low reverses
direction. We expect that the effect of this flow reversal will be primarily on the pitch moment M,. We
also expect that the result for the roll moment M, is rather accurate, and slightly overestimates the
effect of Coriolis forces. Experimental data for a verification of our results are scarce. Only the roll
moment has been reliably measured in spin-down experiments with a full-scale cylinder [1}.

4, Compaerison of the Roll Moment with Experiments

Figure 2 shows the comparison of theoretical and experimental results for the roll coefficient m,
on a doubly logarithmic scale. The initial spin rate w = 4000 rpm has been used for reducing the
experimental data. For Ke < 10, the experimental data match the analytical data as well as the asymp-
totic law m, == Re /66. The coefficient m, assumes a pronounced maximum at Re =z19. Whereas this
maximum was earlier thought to originate from hydrodynamic instability with respect to a cellular
motion. we find a simple explanation in the properties of the axial velocity component [ in the
z,2- plane. The systematic deviation for Reynolds numbers 20 < Re < 200 may be attributed to either
the effect of a cellular motion or to the neglect of the end walis. The two data points at Re > 10°% are
likely to be for a turbulent internal flow.
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ABSTRACT
Spin-stabilized projectiles with liquid payloads can experience a severe flight instability charac-
t2rized by a rapid yaw-angle growth and a simultaneous loss in spin rate. Laboratory expen-
ments an field tests have shown that this instability originates from the internal fluid motion in
the rany f high viscosity. After evalustion of the experimental data and analysis of the equa-
tions for “ .e fluid motion in a spinning and nutsting cylinder, we have developed a simple
model of this low. Disregarding the finite length of the cylinder, this model provides the flow
field and the viscous conwibution to the liquid moments in analytical form. At low Reynolds
number, the flow field agrees well with computational results for the center section of a cylinder
of aspect ratio 4.3. The roli moment caused by this flow largely agrees with experimental data
for a wide range of Reynolds numbers. Estimates of the temperature variation indicate that
discrepancies at very low Reynolds numbers may originate from associated changes of the

viscosity during the experiments.
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1. Introduction

It is welkknown that spin-stabilised shells carrying liquid payloads can suffer dynamical
instahility. For cylindrical cavities and low viscosity of the liquid, the instability due to basically
inviscid inertial waves can be predicted by the Stewartson-Wedemeyer theory (Stewartson 1859;
Wedemeyer 1966). This theory rests on the boundary-layer approach and is, therefore, ree-
tricted to the range of sufficiently large Reynolds numbers. The instability of certain shells like
the XM761 (D'Amico 1977; 1978), bowever, escapes such a prediction and is also dis-
tinguished in character owing to the rapid loss in spin rate. Experiments with a full-acale
liquid-filled cylinder (Miller 1982) and subsequent ficld tests (D'Amico & Miller 1979) estab-
lish that this new flight instability is most pronounced for liquid fills of very high viscosity.

We conduct a theoretical analysis of this problem in order to support the ongoing experi-
ments and to independently obtain insight into the anatomy of the low phenomena. The initial
steps of this analysis are reported elsewhere (Herbert 1982): evalustion of the experimental
data base, dimensional analysis, scaling aspects, governing equations, and discussion of various
simpliflying sssumptions. Two observations in this earlier work led to the approsch discussed in
the following. First, if the despin (negative roll) moments (Miller 1982) and void observations
{Miller 1981) are correlated with the Reynolds number Re, at least threc regions can be dis-
tinguisbed. At low Re, the despin moment increases proportional to Re, and the void in an
incompletely filled cylinder is paralle]l o the spin axis. This suggests a simple fluid motion that
is essentially independent of the axial coordinate, except in the neighborhood of the end walls.
In 8 middle range of Re, the despin moment assumes s maximum, and a wavy distortion of the
void seems to indicate s cellular structure of the fluid motion. This cellular motion can, in
principle, originate from hydrodynamic instability of the basic flow with respect to sxially
periodic disturbances. At still higher Reynolds numbers, the despin moment decreases with
increasing Re in a manner not clearly defined by the few available data points. The void obser-

vations indicate, however, that the motion ultimately becomes wrbulent.

Tae second observation is the appearance of the nutation rate and angle as a small param-
eter in the cquations for the deviation from solid-body rotation. The forcing term due to nuts-
tion can be considered small enough for linearization of the equations in the situations of prac-

tical interest.

In the following, we describe the development of a simple system of equations for the

basic flow. Analytical solutions are given for the flow field, for the liquid moments, and for the
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rate of change of temperature. A comparison is made with computer simulations of the flow

(Vaughn et al. 1883; 1985) and with experimental data for the moments (Miller 1882).

2. Governing Equations

We consider the motion of a fluid of density p and viscosity u in a cylinder of radius a
and length 2¢ that rotates with the spin rate w about its axis of symmetry, the z-axis. We con-
sider the motion with respect to the nutating coordinate system z,y,z. This system is obtained
from the inertial system X Y,Z, by a rotation with the nutation angle § about the axis Y=y.
Therefore, z is in the Z,»plane, and this plane rotates about \he Z-axis with the nutation rate
{1 . The two axes of rotation intersect in the center of mass of the cylinder, as showu in figure
1. In contrast to the experimental procedures {Miller 1282), we consider w>0, 1, and

0<8<x /2 as constant.

The fluid motion is governed by the Navier-Stokes equations written in the nutating coor-

dinate system:

- voyTT
R
-

DV, :
Plap— +20 X Vi + 0 X (A X1)] = -9P+uv?V,, (1a)

vY.,=0. (1b)

)
g; V. is the velocity measured in the nutating {rame, P, the pressure, and r the position vector.

::': Thke body force due to gravity has been disregarded. Equations (1) are subject to the no-slip

N' and no-penetration conditions at the cylinder walls.

! It is convenient (Herbert 1982) to split the velocity and pressure fields according to

e

R

5 Vo=V, +V,, ,=PF + P, (2) ;
: |
a

=

. where V,, I, describe the state of pure solid body rctation, whereas V,, P, represent the devis

tion from solid body rotation. The advantage of thia isolated view on the deviation is obvious:

v . . .

| | V. and the reduced pressure P, are responsible for the observed flight instability. A glance at

the equations shows that V, = 0 and P, = 0 if either one of the following conditions is
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Viscous Flued Motion in a Spinning and Nutating Cylinder 3

satisfied: w =0, 1 = 0,80 = Oor u — oo (solid fill).

The equations for V,,P, are written in terms of nondimensional quantities v,,p;. We use
e .w, and p fo- scaling length, time and mass. Note that this choice is ambiguous (Herbert
1982) and excludes the case w=0 which lacks practical interest. The problem then depends on

four nondimensional parsmeters:

A= c¢/a aspect ratio
8 nutation angle
r=0/w frequency

Re = pwa®/u  Reynolds number.

The aspect ratio enters 3= solution only through the boundary conditions. The boundary con-

ditions on v, are homogeneous.

In cylindrical coordinates r,¢é,z, the equations for the nondimensional deviation velocity

vy = (v,,v,,v,) and pressure p, take the form

1 8 1 a“'. 30,
TEMYT T T m Y (3)
v
D'y, - - - 2(1 + 7,)vy + 214y, = (3b)
9py 1 " v, 9 Ovy
T TR E T
D'vy + u,:‘ +2(L + 1)y, - 2r,vy, = (3¢)
1 9pe | [ vy 2 9y,
-r6¢+Rc[Dv‘ r"’+r23¢]'
Dy, + 2r,v4 - 27,0 =_f_p4__ 2rr, + ——D"y (3d)
(] rYe ¢Vr a: r RG 1
where
=9 .0 L,08 .0
D=t as e Yo
prof 18 18 &
ar?  ror  f?og? 97
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and

T, = -¢cosd , ry == €sing , v, == rcosf , ¢ == roind . (4)

The primary effect of nutation is contained in the @-periodic lorce term — 2rr, == 2¢rcosé in
the z-momentum equation (3d). If this term vanishes throughout, ¢ == 0, equations (3) sup- .

port a trivial solution v, m 0, p, = 0. |

The system (3) of equations is similar to the system numerically solved by Vaughn et al.
(1983, 1985), but simplified by introducing the reduced pressure p,. We also note that this sys-
tem supports certain symmetries. Let v,,v,,v, and p; be the solution at point r,¢é,z, then the
velocities and pressure at the corresponding point r,¢ + x,~ z are v,,v,,- v, and p;. These sym-

metries can be exploited for essential savings in computational work.

2.1 Lineansed equations

For sufficiently small ¢ p& 0, it is obvious that the deviation velocity is of order O(e). In the
situations of practical interest, ¢ = ({1 /w)2inéd turns out to be a rather small parameter. Even
a conservative estimate with {3 < 500 rpm, w2 3000 rpm, and < 20° provides values of
¢< 0.054. Consequently, it seems well justified to linearize the equations in ¢. This linearizs

tion imposes no restriction on the Reynolds number.

While the continuity equation remains unaffected, linearization of the momentum equs

tions provides

3 , 9
D'y, - 2(1+7')”0="Tp:'+%¢'[p""r“ ":2"' '3779%] ) (6a)
] v 2 Ov,
D'v, +2(1 + 7,)u, = - Lr'é%‘ + -}%:[D"vo - '7‘ + 77-%'-] ) (5b)
27 1
D'v, = - T - 2rr, + -RT‘-D"V, . (SC)

The system (3a), (6a)-(5c) of equations is still quite difficult to solve. Any serious attempt to

satisfy all boundary conditions leads directly to a purely computational approach. Use of the

APPENDIX A




' g
A

‘r’

A-37

L4 “'

-._j.la ',

Viscons Fluid Motion in ¢ Spinning and Nutating Cylinder 5

L ]
=

‘-".

M

boundary-layer approximation would simplify the task but seems inappropriate in the intereating

range of low Reynolds numbers,
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3. The core flow

p‘_t:.f We recall that the flow in a relatively long cylinder (aspect ratio A = 4.3) at low Reynolds
B

f— & number is expected to have a rather simple structure and to provide a roll moment proportional
o to Re (Herbert 1982). Closer analysis of the equations suggests that this flow exhibits litde

axial varistion over much of the cylinder length. The effect of the end walls will be essential

‘.',:_’f“, A

ko only over an axial distance of O(1) from the ends. Therefore, we have relaxed the boundary

I~ .
.1} conditions at the end walls. In this way, we seek a steady How in a finite segment of an

e i

2y infinitely long cylinder.

The z-independent force term in eq. (5¢c) can be balanced only by a purely axial deviation

velocity. It is consistent with the linearized equations w assume a solution in the form

E Yy = (0,0,03) y P4 = 0. (6)

Moreover, since v, is of order O(¢) and periodic in ¢, we write

a

v, = v(r,¢) = 2¢[f(r)cosd + g(r)sing] , (7)

a = K
R e
e

v

where f and g are the imaginary and reai parts, respectively, of the complex function

x

2,

x -
A X

v

F(r) = g(r) +i/(r) (8)

Substituting (8)-(8) into the linearized equations and the no-slip conditions at the cylinder wall

provides

rPF" 4+ ¢vF'- (1 +iRer®)F = -iRer®, (9a)
F=0ar=1, {8b)
F finite at r =0, (9¢)

T Y rT rer

> .
1 4

where (9¢) is necessary for a physical solution. The primes denote d/dr.
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-
iy For Re¢~0, the solution of equations (9) equations can be found in the form of series
! expansions in Re,
o
N
% — Re 3 Re® 3 5 _ Lt 5

/= 3 (r-r%) 5516 (7r- 12° + 6r° - ¢’) + O(Re®), (10a)

Re? s Lb ‘
g=~l9—2(2r—3r +f)+O(R¢). (lOb)

With higher terms included, these series converge for Re <12.

In the limit Re—o0, one obtains
] =0, g—=r as Re — oo (11)

Owing to the loss of the highest derivatives, however, this solution cannot satisfy the boundary
conditions (9b) and is valid only outside thin boundary layers near the wall at r = 1.

Even without any knowledge of the solution in the intermediate range, the different char-
acter of the basic low at low and high Reynolds numbers is evident. At low Re, the component }
/ in the z,z-plane ¢ = O dominates the solution. At high Re, f is negligible except near the
wall of the cylinder whiie g in the y,z-plane ¢ = 80’ is dominating. One might well expect
that the initial linear increase of f with Re and the change in the flow structure is related to the

observed properties of the roll moment.

3.2 Solution for arbilrary values of Re

In earlier work (Herbert 1983), we have applied a spectral collocation method for numeri-

b cally solving a rcal system of equations for f and ¢ equivalent w egs. (9). Series in odd Che-
3 byshev polynomials for the interval 0 € r <1 provide accurate solutions at rather low trunce-
tion. This experience together with the minor effect of harmonics in the azimuthal direction at

r <
] small ¢ suggests the use of spectral methods for efficiently solving the nonlinear equations (3).
L2

Here, we derive an analytical solution for the core flow in a sufficiently long cylinder. A
particular solution of the inhomogeneous equation (9a) is Fg = r, whereas the homogeneous
part of (9a) is the equation for the modified Bessel functions /,(¢r) and K,(¢r) of the com-
plex argument gr where ¢ = (1 + )(Re/2)'”2. In order w satisly (8¢), K,(qr) cannot contri-

bute to the solution. Finally, (9b) provides
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Th. Herbert 8

F(r) =g+ if =r- Ii{gr)/I\(q) . (12)

This solution is valid for arbitrary Re but may be unstable as Re exceeds some critical value.
Although expressible in simple form, the resulting flow field exhibits very interesting proper-
ties,

Rewriting the solution in terms of Kelvin functions of rezl argument is of little advantage
for the numerical evaluation. We have used a combination of ascending series and asymptotic
expansions for large erguments (Abramowits & Stegun 1872} for evaluating F(r). With the
solution (12) at hand, it is straightforward to derive the approximaticns (10) from the ascend-
ing series for I, (and to explain the convergence problem for larger Re¢). Complementary to
(11), the asymptotic expansion for large arguments, i.¢. large Reynolds numbers provides the
boundary-layer behavior

Frer - /fr ¢t™) (13)

This expression agrees to within 1% with (11) provided r <1-§. The boundary layer thickness

& can be obtyined from the transcendental equation

6 = V2/Re [4605 - —g—ln(l - 8), (14)

e.g., 6 = 0.223 for Re = 1000.

3.3 The velocity field

We have chosen three different graphical representations in order to illustrate the charac-
teristic changes of the velocity distribution over the eylindrical cross zection with increasing Re.
Figure 2 shows the components f (in the z,z-plane) and g (in the y,z-plane) for a wide range
of Reynolds numbers. The opposite sign of the velocity at diametral puints assures zero net
flux of mass through the cross section. The curves represent cuts through the contour plots of
these functions of r and Re in figure 3 at the tick marks Re =1, 10,100,and 1000. Up w0

n is governed by f. Thie component never sxceeds a value of
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Viacons Fluid Motion in a Spinning and Nulating Cylinder 9

0.4, assumes a maximum at Re¢ == 20 and retains significant size only in a shrinking neighbor-
hood of the wall as Re increases. The component ¢ rapidly increases from negligible values as
Pe > 5 and spproaches the linear increase with r according to (11) except near the wall at
r = 1. In figure 4, the data of figure 2 are combined into contour plots of the axial velocity
v,/(2¢) over the cylindrical cross section. These plots clearly show the shift of the velocity max-
imum (marked by + ) from ¢=<0 at Re = 1 to ¢ =00° at Re = 1000. Figure 44 also illus-
trates the ramp-like velocity distribution over most of the cross section and the boundary layers
with § = 0.228.

Superposition of the deviation velocity V, and the solid body rotation V, accordirg to eq.
{2) leads to an asimuthally periodic velocity field V, which is steady in the nutating frame. The
paths of fluid elements are circular orbits about axes iLat are inclined o the z-axis. The incli-

nation depends on radius and Reynolds number.

Figure 5 compares the dimensional velocity distributions obtained from (7), (12) with
computational results for the center cross-section (5 = 0) of a cylinder of aspect ratio 4.3.¢ The
sgreement for Re == 14.8 is considered representative for the range of lower Reynolds
numbers. We have repeated the numerical simulation of the flow at this Reynolds number with
a modified version of the Sandia code and obtained very small components |v, | < 0.005 m/s,
lve] < 0.05 m/s at 2 = 0. These results verify our estimates and justify the use of linearized
equations. Moreover, disregarding the presence of end walls seems to have little effect in the
center portion of the cylinder. The radial distribution of V, in the range -3.5 < z <3.5 is
nearly identical with the data shown in figure 5.

Figure 6 shows a similar comparison for Re = 45.7. At this higher Reynolds number, we
find a systematic deviation between the theoretical result and numerical resuits at different axial
positions. We attribute this deviation to a superposed cellular motion that is not yet incor-

poraed into our analysis.

oThe data were kindly provided by Dr. H. Vaughn, Sandia National Laboratories.
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Th. Herbert 10

4. Moments

With the deviation veloeity V, == (0,0,wav,) and v, given, the moments on a finite-
length section of the cylinder can be calculated. We consider a control volume R (surface §)
formed by the solid cylindrical wall and liquid surfaces at both ends. Conservation of angular

momentum requires

M+ 3 (r XF)) = %j&j(rxv,)pm +J [ [ex(20 xVa)lpdR (15)

+ fsj(r XV )(Ven)pdS+ jsj(rxv,)(v,-n)pds,

where n is the outer unit normal. On the left-hand side, M is the resultant torque on the con-
trol volume. The second term accounts for the moments due to the shear force ¥y and van-
ishes owing to the solid sidewall and cancellation of the contributions from both vnd:. On the
rightthand side, the first term vanishes for steady V,. The second term originates from
Coriolis forces in the nutating system. The third term vanishes since V, has only an axial com-
ponent. The last term then provides the net rate of angular momentum flux through the con-

trol surface.

Substitution of V4 l2ads to the following expressions for the cartesian components of M:

1

M, = m(2Q asinb)(wa} m, , m, = -Jf rifdr (18a)
0
!
M, = m (2 asinf)(wa) m, , m, = —j r2gdr , (16b)
0
1
M, = m{20 asmb)’ m, , m, —= f rifdr = -m, , (18¢)
0

where my = 2mpa’e is the liquid mass in the cylinder. In this form, the components M,, M,
represent the net rate of angular momentum flux through the liquid ends, whereas the roll
moment M, is solely due to Coriolis forces. A close relation between roll moment M, and yaw

moment M, has also been found by Murphy (1984, 1683).
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A different interpretation can be derived using the differential equation (9a), integrating

by parts, applying (9b), and separating real and imaginary parts:

1 [}
myo= -1 = [ Pfdr = - L (17a)
0 |

m,=—frzgdr=—‘!—1—l)-—-:—. (17b)

In this form, the moments are directly related to the shear forces at the cylindrical sidewall,
r= 1. Since f'(1)< 0, g'(1)< 0, the roll momment M, is always positive {even for (1 < 0),
while M, is negative for {1 > 0 and changes sign with (1. For small Re, the series (10) pro-

vide the approximations

Re . Re?
et R A T T (18)

that can be used for quick estimates up to Re <10, The linear increase of m, and M, with Re is

consistent with the experimental data. From the analytical solution (10), we obtain
F'(1) = ¢'(1) + ¢ 7'(1) = 2 - qlo(q)/11(q). (19)

Substitution into (17) provides the varistion of m,, m, with the Reynolds number shown in
figure 7. The coeflicient m, a= raes a pronounced maximmum st e =19. The occurrence of
this maximum was earlier thought to originate from hydrodynamic instability with respect to a
crllular motion. Here, we find a simple explanation in the properties of the axial velocity com-
oonent f o the z,z- plane and the derivative ¢'(1) The coeflicient m, is neglgible for
Ke <%, ¢« wuply decreases with increasing Ke ani reaches an asymptotic value of m, — -1/4
as Re — o0, Hence, for {1 > 0, M, tends w reduce the pich moment due w the solid body
toation. We nole, however, that these moments represent ouly the eflect of viscous shear at

the cylindriend side wall. Shear at the end walls und the contribution of the pressure are
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neglected.

The data base for the yaw and pitch moments is scarce. Computations by Vaughn et al.
(1985) indicate, however, that the pressure contributions to these moments are larger (and
opposite in sign) than the viscous components. Only the viscous component can be estimated
from our solution. Therefore, we concentrate in the follov ‘ng on » detailed comparison for the

roll moment.

In figure 8 we compare the asymptotic law (18) and the theoretical result (17) with exper-
imental deta (Miller 1982} and computatonal results (Vaughn et al. 1985) for the roll
coefficient m, on a doubly logarithmic scale. The initial spin rate w == 4000 rpm has been used
for obtaining the nondimensional values from the experiment. For Re < 10, the experimental
data maich the analytical result as well as the asymptotic law m, == Re/08. The deviation
between theoretical and computational results is probably due to a larger axial extend of the
end eflects at very low Reynolds numbers. Good agreement with the computational results is
obtained near the maximum of m,. The point at Re == 113 ia close to the Reynolds number
where the numerical simulation fails to converge to a steady solution, and may not be very
accurate. The experiments find the maximum roll moment at slightly iower Reynolds numbers
than the theoretucal value. In fact, this discrepancy will increase as lower spin rates w are used
for data reduction. In view of the agreement between theoretical and computational results, the
discrepancy can not arise from the approximations employed in our analysis. A first possible
source may be the effect of unsteadiness in the spin-down experiments. More likely, however,
the shift ie caur 1 by changes of temperature and viscosity during the experiments. A moderate
increase in temperature would reduce the viscosity of the working Auids (silicor.e oii, corn
syrup) and hence shift the maximum o higher Reynolds numbers. Miller (personal commuri-
cation) observed a temperature increase by == 2.5'C per run up to = 10*C above ambient tem-
perature after repeated runs. Vaughn et al. (1985) used these valuee for correcting the results,
with some improved agreement. We waive such a correction but discuss the teiapersture

increase in more detail in the next chapter.

Ay a final observaton in figure 8, we note the change in tendency for the twe experimen-
tal data pointa at K¢ > 10% It is hkely that the internal flow become. unsteady and ulumately
turbulent as the Reynolds number increases. Preliminary results from flow visualization in s
small-scale experiment (Pierpond 1085) indicate that these two points are for a turbulent inter-

nal flun
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Viscovs Fluid Motion in a Spinning and Nutating Cylinder 13

In figure 9 we recast experimental, computational and theoretical results for the dimen-
sional roll moment M, in different form. Whereas the asymptotic properties are concealed, the
linear scale for M, reveals the pronounced maximum of the roll moment for viscosities near
v = 105 ¢St and more clearly indicates that theory and computation yield larger maximum
values thap the despin experimenta with the old test fixture (Miller 1982). More recent meas-
urements with a new test fixture at higher spin rates {Miller, personal communication) provide

larger maximum values slightly in excess of the theoretical result.

For the roll moment as a function of nutation angle and rate, Herbert (1983} derived
from Miller's data (1982, fig. 12) the empirical relation M, = 0.00814 (0sind)> Nm. The
theory provides M, in the same form but with a somewhat larger factor of 0.0111. This com-
parison for a fluid of kinematic viscosity v = 2:10% cSt is likely to be biased by ‘emperatuie
effects. A notable feature of the roll moment as a function of nutation rate at different spin
rates is shown in figure 10. For these parameters in the range of the maximum roll moment,
the dependence of M, on w is non-monotonic, e.g. the data for w = 9000 rpm are in between
those for w = 3000 and 9000 rpm. This puziling behavior has been observed by Miller in
experiments with the new test fixture. From the theoretical result it is obvious that M,
decreases (increases) with w for sufficiently small (large) viscosities to the left (right) of the

maximum in figure 9.

The interpretation of the experimental results has been hampered by the observation of
Miller (1882) the ‘‘the despin moment was not a function of the canister spin rate, provided a
sufficient spin rate is present’’. In conuast, the theoretical result (14c),(15a),(19) depends on
the spin rate since ¢ ~ Re'’? and He ~ w for fixed ¢ and v. Figure 11 shows the uieoretical
results for M, as a function of the spin rate w for viscosities v = 10%, 10%, and 10% ¢St on linear
scales. Note thai in some range of w, M, appears indeed nearly independent of the spin rate,
eapecially for v = 10° ¢St where the maximum of Af, stretches out over most of the observed
range (3000 < w < 9000 rpm) of spin rates. Figure 11 also shows different prototypes of
behavior that ars, distinguished by the position of the maximum roll moment along the w axis.
Experimental data for similar conditions are slown in figure 12 and verily tl.e theoretcally
predicted behavior. Moreover, these data suggest majr simphfications in the experimental pro-
cedures. Whereas the experimental data in figute 8 were oblained by using numerous working
fluids of different viscosities, 8 more complete set of data can be generated by carefully moni-

wrnng the spin-down for & few runs with fluids in the range of low, medium, and high viscosi-

ties as 1n figure 12
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5. Temperature effect

The comparison of theoretical and computational results with experimental data seems to
be biased by the effect of increasing temperature on the viscosity of the working fluid. These
eflects appear more pronounced at high viscosities and high spin rates. For an estimate of the
rate of change of the average temperature T, we consider a contol volume R (surface §)
formed by liquid surfaces along the cylinder’s side and end walls. The material properties are
assumed to be consiant and heat transfer through the surface is disregarded. Balancing the rate
of change of energy with the work done on the control volume, we obtain after some

simplifications

where ¢, iz the specific heet, r the vector of tangential stresses, and V; the velocity measured
in an inertial frame. Since V, is independent of z, the contributions from the cylinder ends

cancel. The only conuibution is due o the shear stress

d(wav,) i yar
Th = H—p" lemy =200 asind{f'(1)cosd + g'(1)sing) (21)

in the axial direction. The relevant axial component of the velocity ({} + w) Xr of some point

on the surface S is given by - {} asinfsing. Integration over the cylindrical surface yields
m,c,-%—-—- ~ p (20 asind)?rac g'(1) . (22)
After substituting for m; and introducing the Reynolds number, this result can be written as

ar _ w_ ing)2(- L) (2
YT 2‘:.(20 asinf)?( P ) . (23)

Comparison with eq. (15a) shows that the rate of change of temperature can be directly

expressed in terms of the roll moment,

o

M asind)im, = ="M, . 24
7 2:,( {lasind)*m, e, M, (24)

This result immediately shows that the temperature rise per run cannot be specificd as a single
number, nor should a uniform carrection he applied W the experimental data. Moreover, the

temperature changes increase with the apin rate, and consequently are quite different for the
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experiments with the old (Miller 1982) znd the new test fixture. Using the maximum value
m, = 0.0854, we obtain for the 1982 experiments (¢ = 60.3 Tam, w = 4000 rpm, 0 = 500
rpm, 8 = 20°) with silicone oil (¢, = 1800J/(kg’C) a temperature rise of
dT/dt = 0.055°C/s. Using the same fluid in the new test fixture (a = 55.4 mm, w = 10

rpm, 1 = 600 rpm, § = 20°) leads to a temperature increase of dT/dt = 0.158°C/s.

A single run concists of three phases (Miller, personal communication). The spin-up
period of 2= 30 & is followed by a sudden start of the nutation and a period of = 30 s in order
to reach steady conditions. Finally, the shutdown of the spin drive is followed by a spin-down
period of & 15 s. The second period ai nearly swady conditions and maximum spin rate
appears most relevant to the modification of the viscosity. At the start of the third phase, the
average temperature may have increased by = 1.56°C in the 1982 experiments, and by
7~ 4.75°C in the more recent experiments at higher spin and nutation rates. These values are
for conditions of maximum roll mon.ent, and msy be considerably lower in other cases. The
value of 2.5°C meansured in the new fixtnre is well within the estimated range. Our result (24)
indicates, however, that a single measurement is insufficient for evaluating the temperature

effects. especially those in a diferent experimental setup.
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8. Coacluding remarks

We have developed a simple model of the viscous fluid motion in a spinning and nutating
eylinder. The disregard of the end walls has some obvious consequences: the turning flow near
the ends and the associsted contributions of pressure and shear stresses to the momeats cannot
be obtained from this model. Nevertheless, we gather understanding as well as quantitative
information. The velocity field of the core flow agrees well with computational results for low
Reynolds numbers. The analytical result is an evident example for the formation of boundary
layers. The ccre flow can be utilized as a basic low in studies of hydrodynamic instability with
respect to cellular motions. The parametric excitation of such cells by the azimuthally periodic
deviation has been discussed by Herbert (1884). The core flow also represents the lowest-order
approximation to the solution of the nonlinear equations (3) and can be extended by higher-

order terms ip ¢,

The roll moment agrees well with measured and computed values, and can also be found
st Reynolds numbers too large for successful numerical simulations. The roll moment ori-
ginates from Coriolis forces. While the direct calculation of the yaw moment suffers from
neglecting the pressure contribution, the yaw moment can be found from the roll moment
using the relations given by Murphy (1984, 1985). The pitch moment remains an open issue.
The estimates for the change in average temperature need further verification once more

detailed data become available.

The simple form and scaling relatisns of our results provide guidance for sorting and
evalualing the experimental data base. The results also suggest various improvements in the
experimental procedures. First, the changes in temperature and viscosity should be carefully
monitored. With the effective viscosity known, a closer agreement between theory and obser-
vation is to be expected. Second, the yet neglected variation of the roll noment with the spin
rate is considered relevant and in fact provides the roll moment in some range of Reynolds
numbers. Instead of producing the data for figure 9 by using numerous viscosities at fixed spin

rate, very similar data can be generated by varying the spin rate for & few fluids.
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FIGURE CAPTIONS
Figure 1. Definition sketch

Figure 2. Components f and ¢ of the axial velocity v, /(2¢) for various Reynolds numbers:
0, Re =1; O, 10; 4, 10% +, 10%.

Figure 3. Contour lines of the components f and ¢ of the axial velocity v,/(2¢) as a func-
tion of radius r and Reynolds number Re. Intervals are 0.05; the tero level is

given by the heavy line.

Figure 4, Contour lines of equal axial velocity, v,/(2¢) = const., for (a) Re = 1; (b) 10;
(c) 10% (d) 10%. Intervals are 0.01, 0.1, 0.2, 0.2, respectively. The sero level is

given by the heavy line, the velocity maximum is marked by +.

Figure 5. Radial distribution of the dimensional velocity V, at z = 0 for Re = 14.9. The
symbols ahow the numerical solution to the Navier-Stokes equations (Vaughn
1983, personal communication). Parameters: s = 60.3 mm, c¢/s = 4.3,

6 = 20°% w = 3000 rpm, {i; = 500 rpm, p = 1400 kg/m°>. q

Figure 6. Radial distribution of the dimensional velocity V, at 2z = 0 for Re = 45.7. The
symbols show the numerical solution to the Navier-Stokes equations (Vaughn
1983, personal communication). Parameters: a = 603 mm, c¢/a = 4.3,

§ = 20° w = 3000 rpm, 3 = 500 rpm, p = 1400 kg/m>.
Figure 7. The nondimensional coefficients m,,m, in eq. (17) vs. the Reynolds number Re.

Figure 8. Comparison of the theoretical result for m, with: X , experimental data (Miller
1982), O, computational results (Vaughn et al. 1985). The straight line shows the

asymptotic law m, = K¢ /06.
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Viscone Flusd Motion tn a Spinning and Nutating Cylinder 21

Comparison of the theoretical result for the roll moment M, at w = 3000 rpm vs.
kinematic viscosity & with: X, experimental data (Miller 1982) for
w == 2000~ 4000 rpm; O, computational results (Vaughn et al. 1985) for
w == 3000 rpm. Parameters: ¢ = 60.3 mm, c¢/o = 4.20, 6 = 20°, 0} = 500
rpm, p = 1000 kg/m?.

Theoretical results for the roll moment M, vs. nutaticn rate {1 for different spin
rates: A, w = 3000; O, 8000; [], 9000 rpm. Parameters: ¢ = 50.4 mm,
c/a = 4.5, 0 = 20°, v == 10° ¢St, p = 1000 kg/m?.

Theoretical results for the roll moment M, vs. spin rate w for different kinematic
viscosities: J , v = 10% O , 10, A , 10° ¢St. Parameters: ¢ = 50.4 mm,

¢/a = 45,8 =20° ) = 625 rpm, p = 1400 kg/m?>.

Experimental results for the roll moment M, vs. spin rate w for different
kinematic viscosities: [J , v = 10%;, O , 10%, A , 10° ¢St. Parameters: ¢ = 50.4
mm, ¢/a = 4.5, § = 20°, 1 == 600 rpm, p = 1400 kg/m>.
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Appendix B

This appendix gives listings of a sample program, subroutines, and input/output. Subrou.
tine PARAM converts dimensional quantities as prompted inw English and SI units snd into
nondimensional parameters. If the input line starts with a siash (/}, the displayed default value
is used. If a value of zero is given for the viscosity, the program prempts for the value of the
kinematic viscosity. Subroutine EVALA calculates the functions f and g¢ in Appendix A 4, eq.
(12) at r=k/K, k =0, .K il K >0, as well as f'(1)/Re and 9'(1)/Re used in Appendix
A4, eq. (19) for calculating the moments. Subroutine EVALA uses subroutines BESI! and
BESIO in order to calculate the ratios of Bessel functions in Appendix A .4, eqs. (12), (19).

Additional information is given by comments within the programs.

The sample run provides results for the run of the Sandia code at Re = 14.95 used in the

comparison Appendix A 4, figure 5.
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RN C #xwnxxrvenex FLUID FILLED CYLINDER & SAMPLE PROGRAM Se#sstsrsses

hy C+ LLINEARIZED EQUATIONS, Z-INDEPENDENT FLOW *

YeeX C o+ WRITTEN BY THOSWALD HEREERT, VFI & SU %
T C » *
i&;. C # SHOWS THE USE OF THE SUBRNUTINES FOR OBTAINING A LIST OF *

o C# (1) PARAMETERS *

- o (Z) VALUES 0OF F(R), G(R), F'(1)/RE, G'(1)/RE *

o C* (%) DIMENSIONAL VELGCITIES AND MOMENTS *

1‘ ‘; C (2222222222222 222322 R332 X222 2232222222222 222X L2 E

. ¢
COMMON /FLOW/ REY b, R(101),F(101),%(101),F51,GS!

N COMMON /ENGL/ RIN,ZIN,05R,0NR,THD,SG,DENO,VISO,VIKO, VFT

o * yMLO UMGO X
-, COMMON /METR/ RMM,ZMM,OS,ON, TH, 0% ,0Y,0Z, 0P ,DEN, VIS, VIK, VM5

e * JML UMD

COMMON /PARM/ AR, TAU,EFS,RE
REAL ML,MLO

- CHARACTER+1 FF

. FF=CHAR(1Z)

¢
SN C### READ AND PRINT PARAMETERS
RN ¢
e PRINT 2000, FF
At 2000 FORMAT (A1,'LIN_S 07/25/285 #%# SAMPLE PROGRAM')
o CALL FARAM (1)
p REY=RE
20 ¢
- (##+ SPECIFY NUMEFR OF RADJAL STEFS KK (<101)
C
- =20
5 C
- Ce#% EVALUATE AND PRINT F,G AT RADIAL POSTTIONS
o $.-t‘ c
;151 FRINT 2001, FF
Lo 2001 FORMAT (A1)
S Py =MIN(KE . 100)
3 caLl EVALA(D
R (#%» CONVERT F,G INTC DIMENSIONAL VELOIITY (M/5)
o ¢
< FRINT 2002, FF
. 2007 FORMAT (A1 ,&4,'r, m', 7%, 'VELOCITY, m/s'/
m:- # 153, 'v,z-plane y,z-plane'/)
o DO 1 K=0,KF
- DR=RMMaR (1 +1)/1E2
> DVA=VMS#Z #EPSHF (K1)
-3 DVY=VMS#2#EFSHG (1 +1)
¥ ! FPRINT 200%, ¥ ,DR,DV%,DVY '
3 200%  FORMAT (14,7F10.4)
wt 2
- Cexe  CONVERT M SUE Z, M SUL Y INTO DIMENZIONEL FORM
- ‘
) DMZ =-UMC# $4EFS#5 28G5 1
AL DMY = -UMCi% Z#EFS* (FS1+,25)
- FEINT 2004, DMT ,DMY
. L0048 FORMAT (/20,'VIGOOUS ROLL  MOMENT:' JF3f..,' Nem'/
v * 2%,'VISCHUS PITCH MOMENT: ' JF11.4,' N#m'/)
;; FRINT 2001, FF
[, 5T0F
b o EMI)

k- APPENDIX B
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C

ranaeresar FLUID FILLED CYLINDER ###% PARAMETERS #4845 52sRussts
WRITTEN BY THORWALD HERBERT, VFI & SU

SUBROUTINE FOR READING AND CONVERTING DIMENSIONAL VALUES
INTD METRIC UNITS AND DIMENSIONLESS PARAMETERS.

PRINT VALUES IF 10>0

AT I I ST I I A0 2003 I AR I I3 000000 30 0TI FE IO T I R A

* k % k %

SUBROUTINE PARAM (10)
COMMON /ENGL/ RIN,ZIN,OSR,ONR,THD,SG,DENO,VISO,VIKO,VFT

* MLO , UMGO
COMMON /METR/ RMM,ZMM,0S,ON, TH,0X,0Y,0Z,0P,DEN,VIS,VIK,VME
* ,ML,UMO

COMMON /PARM/ AR, TAU,EPS,RE

REAL ML ,MLO

CHARACTER#*4 ID(18)

DATA PI,RAD1,RAD2/%.14159,57.2958,9.54930/,1FIRST/1/

C
Cexx SET PHYSICAL PARAMETERS TO DEFAULT VALUES
C
IF (IFIRST.EQ.0) GO TO 1
RIN= Z2.375
ZIN=10.3575
0SR=3000
ONR=500
THD=20
SG6=1.4
DEN=SG#977 .34
V13=1.07EOS
VIK=1000#VIS/DEN
C
Cx## READ ACTUAL PARAMETERS
C
1 PRINT 2000

2000 FORMAT (/'PARAM 09/25/84 sx% PARAMETER CONVERSION'//'ID:‘')
READ 1000, ID

1000 FORMAT (18A4)
FPRINT 2001, RIN

2001 FORMAT (/'RIN = radius (inch) : /' F6.3)
READ #, RIN
PRINT 200z, ZIN

2002 FORMAT (/'ZIN = half-length (inch) & /' ,F&.%)
READ #, ZIN
PRINT 2002, OSK

2003 FORMAT (/'0SR = spin rate (rpm) : /' F6.0)
READ *, OSR
PRINT 2004, ONR

2004 FORMAT (/'ONR = nutation rate (rpm): /' ,F&,0)
READ #, ONK
FRINT 2005, THD

2005  FORMAT (/'THD = nutation angle (deg): /',Fé.1)
READ #, THD
FRINT 2004, SG6

2006 FOFMAT (/'SG = specific gravity (-): /' ,F&,3)
READ #, SG
DEN=SG#97%.84
FRINT 2007, VIS

2007 FORMAT (/'VIZ = viscosity/zero (cp): /',F2.0)
READ #, VIGC
VIH=VIS#1000/DEN

APPENDIX B
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2003

Cunn

2012

2017

014

IF (VIS.6T.0) 60 TO 2
PRINT 2002, VIK

FORMAT (/'VIK = kin. viscosity (cs): /',F3.0)

READ #, VIK

VIS=VIK#DEN/1000

CONVERT PHYSICAL PARAMETERS

RFT=RIN/LZ

REM=RIN*Z5.4

ZFT=ZIN/12

ZMM=Z2 IN#25.4

AR=Z7IN/RIN

0S=0SR/RAD2

ON=0ONR/RADZ

TAU=0ONR/JSR

TH=THD/RAD1

0Z= DON*COS(TH)

OY= ON#SIN(TH)

0X=-0Y

OF=DS+07

EPS=0Y/0S

VFT=RFT#0S

VME=VFT#0,304%

VEL=VFT#Z*EFZ

DENO=1.94%5G

V1iSO=VIS#Z,08%E-05

VIKO=VI50/DENO

ML=Z#Pl1&RMM#RSHARSDEN*1E-9

MLO=Z2#P I ¥RF T##3# AR#DENO

RE=VFT#RFT/VIKO

UMO=ML* (RMM#0S) #w2#1E-4

UMOO=MLO* (RFT#0S) #%Z

IF (I0.LE.O) RETURN

OUTPUT SECTION: LIST OF PARAMETERS

FRINT 2010

FORMAT (/18('=---=")/)

PRINT 2011 ,1D,RIN,RMM,ZIN,ZMM,AK

FORMAT (/'1D: ',1GA4/
* /10X, 'A =", F10.3,' IN'F16.,3,' MM’
* J10X,'C =' ,F10.3,"' IN',F16.3,' MM' ,8X,'C/A =',F10.4)
FRINT 21Z,03K,0%,0NR,0N,TAU

FORMAT (/%4,'05 =',F10.1,' RPM' F15.2,' /S'

» /9%,'ON ="' F10.1," RPM',F15.2,' /5',8%,'TAU =',F10.4)
FRINT 2013,VFT,VMS THD,TH,EPS

FORMAT (/8%,'VEL =',F10.3,' FP3',F15.3,' M/S'//76%, 'THETA =' F10.2Z,
* * DEG',F1%5.4,' RAD',7X,'EPS =',Fl10.4)

FRINT 2014 ,DENJ,DEN,SG,MLO ML

FCRMAT (/%¥,'DEN =',0PF10.3,' SLUG/FTZ',F10.1,' KG/M3',EX,
* 'S@ = ,F10.3/9%, "ML =' JOFF10.4,"' 3LUG' ,F14.3,' KG')
PRINT 201%,VIS0,VIS,VIKO,VIK,RE

FORMAT (/%4,'VIS =',1PE10.3,' LOS/FTZ' ,E11.32,' CF',/

* JT%,'VISK =' 1PEL10.3,' FT2/S',E13.3,' C€S',8X,' RE =',E10.3)

PRINT 2016 ,UMOG UMD

FORMAY (/£3,'U-MOM =' IPE10.3,' FT-LBE',E1Z2.3," N#M')

PRINT 2010
RETURN
END
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C

SUBROUTINE FOR CALCULATING:

#eennexees FLUID FILLED CYLINDER # F,G AND DERIVATIVES #####uts

WRITTEN BY THORWALD HERBERT, VPl & SU

F AND G AT KK EQUIDISTANT POINTS IF KK>O,
FSi= F'(1)/RE, GS1= G'(1)/RE
THE VALUES ARE PRINTED IF 10>0

* Kk & k¥

LA 2SS 24 LRI IR 2222822222 2228322222222 2222

SUBROLTINE EVALA(10)

COMMON /FLOW/ RE,KK,RR(101),FF(101),GG(101),FS1,GS1
COMPLEX Z,20,5,S0

DIMENSION SS(2)

EQUIVALENCE (S,S8(1))

IF (10.GT.0) PRINT 2000

2000 FORMAT (/'EVALA 09/25/84 ##% FUNCTIONS F,G AND DERIVATIVES')

¢

C CALCULATE F AND G

2001

2002

NOOOR

20073

X0£SQRT(RE/2)
CALL BESI1(X0,Z0,50)

IF (KK.LE.O) GO TO 2

IF (10.GT.0) PRINT 2001

FORMAT (/3X, "K' BX,'r' 9K, ' ,9%X,'g"/)

K=0

RR(1)=20

FF(1)=0

G6(1)=0

IF (10.GT.0) PRINT 2002, K,RR(K+1) ,FF(K+1),GG(K+1)
FCRMAT (14,3F10.6)

DR=1. /KK

DO 3 K=1,KK
R=K#DR

RR(K+1) =R

CALL BESI1(R#X0,Z,S)

S=S#EXP(Z-20) /50

FF(K+1)= -85(2)

G6G(K+1)=R-8S(1)

IF (10.GT.0) PRINT 2002, K,RR(K+1) ,FF(K+1),GG(K+1)
CONT INUE

EVALUATE F',G' AT k=1

CALL BESIN(X0,Z,%)

3=t2- °/°0)/RE

FE1=55(2)

681=88(1)

IF (10.GT.0) PRINT 2002, FS1,G%1

FCRMAT (/BX,7Hf'(1)/Re=,F10.6/5X,5Hg' (1)/Re=,F10.&/)
RETURN

END

APPENDIX B
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wxnnpnwrex FLUID FILLED CYLINDER # BEZSEL FUNCTIONS #3555
* WRITTEN BY THCRWALD HERRERT, VPl & SU *
+* *
# SUBRDUTINE FOR CALCULATING THE MODIFIED BESSEL FUNCTION *
* ILEZHY/ENPLTY, Z=Xe(1+]) *
* *
FESSTZIRZIIZE SIS IR IZZ2TI2TZI AL S 22T ITSIIIS ISR ILILE R 2 X2

SUEBROUTINE EBESII(X,Z,S

(OMFLEX 2,272,S

DATA Fl/3, 14157265/

Z=CMFLX (W)

=1

IF (X.GE.10,) GO 70 1
ASCENDING 3SERIES

I12=I%2/4

DO 2 L=1,25

K=Z&-L

S=CS#ZZ/ (L (K+1))+1

S=CSHl#EUF(-21/2

RETURN
ASYMPTOTIC SERIES

2Z2=54%Z

DO L=1,173

b=19-L

S=SH((C#E-1)%22-4)/(K#ZZ)+1

5:=CS/5QRT(Z#FI+Z

RETURN

END
APPENDIX B
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SUBROUTINE BESIO(X,Z,S)
COMPLEX Z,2Z,S

DATA FI1/3.141592¢5/
Z=CMPLX (X, %)

8=1

IF (X.GE.10.) GO TO 1

( ASCENDING SERIES

e XeNe)

I=7#7/4
DOz L=1,25
K=Ze-L
S=S#ZZ/(K#K)+1
S=S#Z*EXP(-2)
RETURN

ASYMPTOTIC SERIES

Z2=8%2Z

0 2 L=1,18

K=19-L

SR (2#-1)1 282/ (K#ZZ) +1
S=S*SQRT(Z/(2%P1))
RETURN

END

APPENDIX 8

VPl & SU

SUBROUTINE FOR CALCULATING THE MODIFIED BESSEL FUNCTION
ZHJOCZV/ENP(Z) y Z=Xx(1+])

#eannrdnprs FLUID FILLED CYLINDER # BESSEL FUNCTIONS #ass®iesys
WRITTEN BY THORWALD HERBERT,

* ok % X

(22222 2222222222 R T 22X T2 S X2 2222322 S 2222

B-7



B-8 |
LIN_S 07/25/85 ##% SAMPLE PROGRAM
FPARAM Q09/25/54 #+» PARAMETER CONVERSION
1D: 5
Sandia run at Re=14.95 i
RIN = radius (inch) = / Z2.375
/
ZIN = half-length Cinch) ¢ /10.275
/
QSR = spin rate (rpm) : / 3000.
/ = i
ONR = nutation rate (rpm): / S00.
/
TiiD = nutatien angle (deg): / 20.0
/

SG = gpecific gravity (-): / 1.400

VIS = viscosity/zero (¢p)s 7/ 107000,

e e T K L i RO R

ID: Sandia run at Re=14,95
A = 2.375 IN 60.325 MM
C=  10.375 IN 263.525 MM C/A = 4.3684
0S = 3000.0 RPM 314,16 /S
ON = 500.0 RPM £2.36 /S TAU = 0.1667
VEL = 42,177 FPS 18.952 M/S
G THETA = 20.00 TEG 0.3491 RAD EPS = 0.0570 |
&g DEN = 2.71¢ SLUG/FT3  1399.8 KG/M3 6 = 1.400 ' %
o M. = 0.5779 5LUG 5.434 KG
%; VIS = 2.2356+00 LES/FTZ 1.0TOF+0S CF T
o VISK = 8.230E-01 FT2/S  T.444E+04 CS RE = 1,495E+01
gi U-MIM = Z.Z34E+03 FT-LBS  3.029E+03 NaM ‘ 1
T |
i APPENDIX B
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P B-9

2 EVALA 09/25/84 #x» FUNCTIONS F,G AND DERIVATIVES
;1 k r f g

Q.000000 0,000000 0.000000
0.050000 0.032883 0.051961
0.100000 0.065817 0.103001
0.150000 0.098628 0.152194
0.200000 0.131880 0.193616
0.250000 0.164852 0.241340
0.300000 0,197510 0.275443
0.350000 0,.229474 0.312012
0.400000 0.2601%1 0.338160
0.450000 0,288%10 0.357039
0.500000 0,314655 0,367869
0.550000 0.336197 0.36%9971
0.600000 0,.352040 0.362801
0.650000 0.360400 0.346007
0.700000 0.359201 0.319480
0.750000 0.346067 0.283427
0.800000 0,318339 0.238448
0.850000 0.273092 0.185618
0.900000 0,207172 0.12¢587
0.95000C 0,11781 0.063679
1.000000 0.000000 0.000000
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f'(1)/Re= -0.176700
. g'(1)/Re= -0.038401%
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ry m

0, 000000
Q002016
Q,0048033
0,.00%049
Q,0120858
0,015021
0.0182058
0.0Z1114
0.024130
0.02714¢
0.030142
0.03217¢%
12 0.03A1%%
13 0,039211
14 0.042227
15 0.045244
16 0.048260
17 Q.081274
18 0.0542%3
19 0.087309
20 0.050325

l=]

— s
= O 0 MW N0 N LWL e

viSOUs ROLL

VELOCITY, m/s
xyZ-plane y,z-plane

0.000000  0.0000Q00
0.071047 0.112268
0.142206 0.222%4%
0.213529 0.322833
0.284%41 0,429133
0.35818C 0.521444
0.426743 0.603749
0.498c0% 0.&74139
0.562172 0.730623
0.624224 0.771423
0.879348 (,794504
0.72683%2  0.799304
0.760622 0.782873
0.773¢85 0.747537
0.7760%4 0,690272
0.747718 0.612377
0.687308 0.515194
0.590047 (0.401049
0.447622 0.273508
0.283279 0,1375¢6
0.000000 ©.000000
MOMENT ¢ 2.307994 N#m
-25.315350 N#m

VISCOUS FITCH MOMENT:
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