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Thomas F. George

Departments of Chemistry and Physics
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ABSTRACT

Relaxation of the density operator of an atom near a four-wave mixing

phase conjugator (PC) is studied. The relaxation operator r can be expressed

in the Cartesian components of the atomic dipole operator and correlation

functions of th ,acuum electromagnetic field. We evaluate these correlation

functions in terms of the Fresnel coefficients for reflection and transmission

of a polarized monochromatic plane wave. Our expression for r includes both

linear and nonlinear interactions in the medium, and it reduces to well-known

results in the limits of a pure dielectric, a mirror, and empty space. The

example of a model two-state atom in combination with a model PC is worked out

in detail. From the rate equations for the populations of the levels we infer

that the relaxation acquires a contribution from both ordinary spontaneous

decay and stimulated transitions which are induced by the PC. It is shown

that an atom in its ground state has a finite probability of being excited,

and that the excited state has a finite population in the long-time limit. We

also work out the case of a degenerate two-level atom in combination with a

realistic model of a transparent PC, and it is shown that our present results
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for the transition rates are consistent with earlier calculations of the

fluorescence yield.

PACS: 42.65.H, 32.80, 52.50.D, 42.50.Kb
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I. INTRODUCTION

An excited atom can decay spontaneously to a lower state, in combination

with the emission of a fluorescent photon, due to the coupling of its dipole

moment 1i with the electromagnetic field of the vacuum. For a model two-state

atom with excited state le> and ground state jg>, and level separation Xov

this amounts to an effective lifetime 1/A of the excited state, where

3

A 3 J<efjusg> 2

A-3 1re 00C3  11

equals the Einstein coefficient for spontaneous decay. This relaxation

constant A pertains to an atom in empty space. When an atom is close to the

surface of a dielectric or a mirror, with the atom-surface normal distance of

the order of an optical wavelength (which is large compared to the atomic

dimensions), then the expression for the lifetime of an excited state changes

dramatically [1-12]. Such an alteration of lifetimes due to the presence of

media was first demonstrated by Drexhage for optical transitions in dye

molecules in thin films [13]. Much later, lifetime measurements were

performed on a single Rydberg atom in a microwave cavity [14,15], and for an

ordinary atom near a mirror or in between parallel mirrors rlo,17]. It

appeared, in agreement with theory, that both an enhancement a ,d an inhibition

of the spontaneous decay rate could be obtained.

In order to understand this phenomenon one merely has to realize that a

photon, which is emitted by the atom into the direction of the surface, has a

probability of being reflected and a probability of being refracted, just as

in classical optics. A reflected wave then interferes with photons which are

emitted in a direction away from the med4 'im, and this can give rise to either
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a reduction or an increase of the fluorescent intensity. Since energy

conservation requires that the energy which is emitted by the atom as

radiation must be provided by that atom, we conclude that a destructive

(constructive) interference of radiation must be accompanied by an increase

(decrease) of the lifetime of the atomic state. From a different point of

view, we can say that the electromagnetic vacuum near a medium is different

from the vacuum of empty space. Without the medium, the electric-field

operator in the Heisenberg picture is a superposition of travelling plane

waves, without any preference for a specific orientation in space. An excited

atom can emit a fluorescent photon in any of the available plane-wave modes,

and these photons travel away from the atom (their superposition being, of

course, spherical dipole radiation). Near an interface, however, this mode

structure is different, and therefore the coupling of the atomic dipole p to

this vacuum field will be different. Since this interaction is responsible

for the spontaneous decay and the emission of fluorescence, the atom will

behave differently near a medium. For instance, the atom cannot excite a

plane-wave mode of the radiation field with a wave vector in the direction nf

the medium, without also partially exciting the mode with its wave vector in

the specular direction.

We consider an atom, with dipole moment u, which is positioned at r -

he , h > 0, on the z-axis, and the plane z - 0 separates the vacuum in z > 0

from a nonlinear medium in z < 0 (not necessarily half-infinite). Two strong

counterpropagating laser beams with frequency w > 0 pump the medium (they

travel parallel to the z - 0 plane), such that a four-wave mixing process

between the pumps and an external field, which is incident from the region

z > 0, is responsible for the reflection of radiation back into the region z >

0. This 'device' is called a phase conjugator (PC). We shall not assume any
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details about the four-wave mixing, nor about the linear properties of the

medium, which keeps the theory very universal. It can be shown in general

[18] that when a plane wave with wave vector k and frequency w > 0 is incident

upon a PC, then there are two plane waves reflected back into the z > 0

region. First there is of course the specular wave with wave vector k and-r

frequency w > 0, due to a dielectric constant which is unequal to unity.

This radiation (when it comes from the dipole) is responsible for a change in

lifetime of excited states, as described above. In addition, there is a

phase-conjugated wave with wave vector k = k, and this wave has the negative-pc -

frequency

w' - w - 2w (1.2)

Hence the phase-conjugated (pc) wave and the incident wave are almost

counterpropagating, in contrast to the propagation direction of the specular

wave (which we shall call the r-wave).

For pure plane waves it does not seem to make much of a difference in

which direction the produced wave emanates from the medium: it is again a

plane wave. Dipole radiation is a spherically-diverging wave, and for

reflection at a linear medium (as r-waves) the total reflected field is again

a diverging spherical wave. The phase-conjugated field (pc-waves), however,

is a converging wave which is focused almost exactly on the radiating atom,

because every Fourier plane-wave component retraces its path after reflection.

Most r-wave photons are scattered away by the medium, but every pc-wave photon

returns to the atom and can again interact with it. Such a process can

therefore be anticipated to give rise to much stronger effects on atomic

lifetimes and on the time evolution of the atomic density operator, as
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compared to the influence of r-wave photons. As it turns out, however, the

situation is more subtle, and simple interpretations as given above for linear

reflection have to be modified carefully in order to picture a consistent

interpretation of the behavior of an atom near a PC.

II. RELAXATION

The interaction of the atomic dipole p with the electromagnetic field of

the vacuum gives rise to both spontaneous decay and the emission of

fluorescence, and energy conservation obviously requires a relation between

both processes. Elsewhere (19] we have derived an expression for the

fluorescence radiation field, as it is emitted by the atom near the PC, and

the result was expressed in terms of M(t), where the t-dependence signifies

the Heisenberg picture. In evaluating quantum expectation values of certain

field properties (like the intensity of emission, or the spectral distribution

of the fluorescence), we can always transform to the Schrodinger picture in

which the time evolution is governed entirely by the time dependence of the

atomic density opertaor pa(t). Spontaneous decay amounts to a relaxation of

pa (t), and in this way is the temporal evolution of the radiation field

determined by the time dependence of the atomic density operator. In this

paper we study the equation of motion for pa (t), and a combination with the

results from our previous paper then completely determines, in principle, the

temporal and spectral properties of phase-conjugated fluorescence.

Since the atom and the radiation field interact, we have to describe

their joint quantum state by a single density operator p(t). However, we are

only interested in the state of the atom, irrespective of the state of the

field. This atomic state is defined by
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Pa(t) - Trrp(t) (2.1)

where the trace runs over the states of the field only. In general, the time

evolution of p(t) is given by

iK do _ IN'p] ,(2.2)

and the Hamiltonian has the form

H - H + H + H , (2.3)a r ar

in obvious notation. Then it is a standard procedure [20-22] to derive an

equation of motion for p a (t) from Eq. (2.2), under the condition that the

radiation field can be considered as a thermal reservoir, which is no

approximation at all for the present problem. Also, we make the Markov

approximation, which is perfectly justified for the interaction between a

dipole and the vacuum radiation field. We shall adopt the compact Liouville

notation, since this appears to be the most convenient framework to describe

relaxation phenomena [231. With the definition of the Liouvillians L.

-I
L.o - ( [Hioj , i - a,r,ar , (2.4)

where a is an arbitrary operator in Hilbert space, the equation of motion

reads

i dt _ (L + L + L )P (2.5)
dt a r ar
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From Eq. (2.5) one then derives the equation of motion for pa(t),

dpa (L - i ,)p (2.6)

dt a a

where the relaxation operator F is found to be

-i(L a+L r)r iLar ( a r
)

Pa - Tr L dr e L e (ap ) . (2.7)a r ar 0ar a

This relation defines the action of r on an arbitrary atomic operator aa and

it involves the thermal-equilibrium density operator p r of the radiation

field. For the present situation we have

r - Ioo>< , (2.8)

which indicates that the electromagnetic field is in the vacuum state. In Eq.

(2.6), the Liouvillian L represents the free evolution of the atom, as ita

would be without the coupling to the radiation field, and the relaxation

operator P accounts for spontaneous decay. Its matrix elements are related to

the lifetimes of atomic states, and they include the time evolution of atomic

coherences. The purpose of this paper is to evaluate F, as it is given by Eq.

(2.7), for an atom near a PC, and to interpret the physical behavior of the

atom from the solution of Eq. (2.6).

III. DIPOLE COUPLING

In order to evaluate expression (2.7) for F, we need to specify the

interaction Hamiltonian H . We write E (rt) for the electric-field operatorar-v-



4 9

of the vacuum, and we take the Schrodinger and Heisenberg representation to

coincide at t - 0. With h the position of the atom, the interaction

Hamiltonian in the dipole approximation then reads

Har - -u.Ev(h,O) . (3.1)

The explicit form of Ev (r,t) is irrelevant for the remainder cf this section.

When we substitute expression (3.1) into Eq. (2.7) and work out the

commutators which define the various Liouvillians, then it appears that r can

be represented by the simpler form

Ea [Ail Qi a  
- aQt] , (3.2)

i

where the summation runs over the Cartesian coordinates i - x,y,z. Here we

have dropped the subscript 'a' on the atomic operator a, as we shall do in the

remainder of the paper. Also, we shall write p for the density operator,

instead of pa, The Hilbert-space operator Qi (not a Liouvillian) is defined

as

r0 - iL r

Q- dr e a fij()j (3.3)

in terms of the nine functions f. .(r). These quantities are the vacuum

correlation functions, which are given by

fi (r) - <OlE (h,r)iE (h,O).IO> (3.4)
ij 2 V i J
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and where ve have used Eq. (2.8) for p r Notice that the right-hand side of

Eq. (3.2) does not contain field Liouvillians anymore, and that the operators

Qi only involve the Liouvillian La of the free evolution and the Cartesian

components Aji of the dipole operator. All necessary information about the

vacuum radiation field is contained in the nine correlation functions f ij().

IV. PLANE-WAVE MODES

Before we write down the expression for the vacuum field ( (r,t), we

briefly summarize the fundamental plane-wave mode solution for a PC, mainly to

set up the notation. The nonlinear medium is assumed to occupy the region

0 > z > -A, with A > 0 the layer thickness. Then we consider a monochromatic

polarized plane-wave as the incident field from the region z > 0, with

positive-frequency part

(+) i(k-r-wt) (4.1)
E.nc(r~t) - Ekaeke - -(41

Here, w - ck > 0 and k is assumed to be real (travelling wave). For later

purposes we allow th3 amplitude factoi Eka to be a quantum operator. For the

unit polarization vector eka we take either a - s or a - p, corresponding to a

surface-polarized and a plane-polarized wave, respectivley. Then it can be

shown [18,24] that the reflected waves, the transmitted waves, and the waves

inside the medium are also plane waves, and they have the same polarization a

as the incident wave. Also, when we write for the wave vector of the incident

field

k - kj + ke , (4.2)
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where the subscript i refers to the plane z - 0, then every other wave must

have a wave vectcr with the same parallel component k II due to the boundary

conditions at z - 0 and z - -A. Therefore, every wave vector can be written

as

k-k" +k.ze , (4.3)

and the value of k. is determined (up to its sign) by the dispersionI,Z

relation for either the medium or the vacuum. For a wave in vacuum with wave

vector k. we take the unit polarization vectors as-I

i

ki s "1 k X e (4.4)

k 1 1

e -- X e 
(4.5)

k i p  k. -4 -k s

The waves in the medium are in general not transverse, and the expressions for

their polarization vectors are more complicated [24]. For the present

probl;m, however, we need only the waves in vacuum, so that we shall not write

down the form of the fields in the medium.

For given values of k - w/c and kl (or the angle of incidence), the z-

component of the wave vector of the incident field is

k - k2 k 2 (4.6)
z 11

As mentioned in the Introduction, there are in general two waves reflected

back into the region z > 0, and they have wave vectors k and k P From theS-r -pc"
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dispersion relation, and the fact that both waves must travel into the

positive z-direction, we find the z-components of these wave vectors to be

k - -k , (1.7)
rz z

k --Z 
2
kT 1 k '1 (4.8)

where we introduced the dimensionless detuning parameter

p - -W'/W , (4.9)

in terms of w' from Eq. (1.2). Then the positive-frequency part of the total

field in z > 0 assumes the form

+) i(k.r-wt) i(k rr-wt)

, - -r
E-rt) Eko)eke + Rkaek e

+EtP* -i(kp • r+pwt)
ka k-k e (40)- .- -pc

in terms of the Fresnel reflection coefficients R k and P k for the r-wave and

the pc-wave, respectively. These Fresnel coefficients contain detailed

information about the linear interaction, the four-wave mixing process, the

layer thickness, etc. They can be found by solving Maxwell's equations for

the given incident wave, although the result depends in a very complicated way

on the various parameters [18,24). It is important to notice the dagger in

the last term on the right-hand side of Eq. (4.10). For an incident field

with frequency w > 0, the pc-wave is emitted at the negative frequency w', and
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consequently this is an E
(
-) field. From the general relation for an electric

field

E(r,t) = (E(r,t)( )t , (4.11)

which follows from the Hermiticity of E, we then obtain a dagger on Eka (and a

star on Pka) in Eq. (4.10). For a classical field this is a complex

conjugation, which is where the term 'phase conjugation' originates from.

Notice that also the spatial part exp(-ik -r) = exp(-ik.r) is the complex-pc - -

conjugate of the spatial part of the incident field, apart from a small shift

in wave number (due to p # 1). In quantum mechanics this complex conjugation

translates into a Hermitian conjugation, as is well known (25-27].

The incident wave travels through the layer and exits the medium at the

interface z - -A. This transmitted wave (t-wave) has wave vector kt, and

obviously we must have

k - k , (4.12)

whereas the frequency of the wave equals w. When this incident wave hits the

boundary z - -A, then a part of it will be reflected back into the medium, and

approximately into the specular direction, just as in linear optics. Inside

the medium this positive-frequency wave will couple to a counterpropagating

negative-frequency wave, due to the nonlinear interaction, and this wave exits

the medium at the boundary z - -A. We call this the nonlinear wave (ni-wave),

and its wave vector k n is approximately equal to k r Taking into account the

frequency mismatch, we find for the z-component of kni
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-i 2 k2 k_ 2 k c

k nz k k1  kC (4.13)

The total positive-frequency field in z < -A then becomes

E(r,t)(+) E T i(kr-t)
- - = ko kaekoe-

-i(k n1r+pwt)

ka ka-kne (4.14)

in terms of the Fresnel transmission coefficients Tka and Nka for the t-wave

and nl-wave, respectively. Notice that we label all Fresnel coefficients with

the wave vector k of the incident wave, rather than with the wave vector of

the corresponding wave. This will turn out to be most practical later on.

For a given incident plane wave we find a total cf five plane waves

outside the medium: three in z > 0 and two in z < -A. It is easy to show

that this is the most general solution of Maxwell's equations (or Heisenberg's

equations for quantum fields), due to the restrictions put on the wave numbers

by the dispersion relation in vacuum, by the causality requirement that all

waves must travel away from the medium, and by the phase-matching conditions

in z - 0 and z - -A. In the same way it can be shown that the most general

solution for the waves inside the medium consists of four sets of two

counterpropagating waves. This brings the total count of the number of waves

to thirteen, which are all present due to the excitation by a single incident

plane wave. By matching these waves across the boundaries at z - 0 and z -

-A, we can derive explicit expressions for the Fresnel coefficients [24]. In

this paper we shall consider these coefficients as given parameters of the

problem. Figure I illustrates the situation.
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V. VACUUM FIELD

With the plane-wave solution from the previous section, we can now

construct the explicit form of the vacuum field E v(rt), and because the

dipole which couples to this field is situated in z > 0, we shall consider E
-V

in this region only. To this end, we first recall that the positive-frequency

part of the electric-field operator in empty space is given by

E(rt)(+ ) - -X k2e1 i(k.r-wt) (5.1)
e c Va -

ko

with w - ck, V the quantization volume, and aka the annihilation operator for

a photon in the mode ka. For the unit polarization vectors ka we take eks

and kp from Eqs. (4.4) and (4.5), respectively. Then we introduce the

operators

- (5.2)

which gives

(r t)
(  kk e i(k-r-wt) (53)

ka

This shows that E (r,t) ( + ) is a summation over ka of plane waves which have

exactly the form (4.1) of an incident monochromatic plane wave. Since the

plane-wave solution from the previous section is the only one admitted by the

Maxwell-Heisenberg equations, we conclude that every ku-term in Eq. (5.3) must

give rise to an excitation of a fundamental plane-wave mode.
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In Sec. IV we considered a plane wave which was incident from the region

z > 0, corresponding to a iiegative value of k . In the summation (5.3), halfz

the number of wave vectors k has a negative z-component, and for these modes

we can simply take Eq. (4.10), summed over ka, for the field in z > 0. The

other half of the terms in Eq. (5.3) have k > 0, and they correspond toZ

incident waves from the region z < -A. In z > 0, these waves generate t-waves

and ni-waves in analogy to Eq. (4.14). Therefore, the vacuum field in z > 0

is

' i(k.r-wt) i(kr.r-wt)
Ev(rt - Ek(ek e - - + R ek  e

-v .t...k - a

ka

-i(k Pr+pwt)

Y P k ekP e
k - - -pc

" E T' ek ei(kr-
w
t)

ka

" ko _- i(kn "r+pcot)

+ E N*en e -i - + H.c. , (5.4)

ka

where a prime (double prime) on a summation sign indicates that the summation

runs over k values with kz < 0 (kz > 0) only. The summations on the right-
- z

hand side of Eq. (5.4) form together the positive-frequency part of the field,

and the addition of the Hermitian conjugate then yields the total vacuum

field. The primes on T ka and N are a reminder that these are the Fresnel
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coefficients for a wave which is incident from the region z < -A, and is

identical in form to expression (4.1). The absolute value of T and T' is of

course the same when both incident waves have the same freuquency, angle of

incidence, and polarization, but their phase will be different. For a

transparent medium (unit dielectric constant) the r-waves and n2-

waves disappear to a good approximation, which gives Rk. - Na - 0 in Eq.

(5.4). The t-waves in z > 0 remain present in this limit, and they were

called 'quantum noise' by Gaeta and Boyd [28], following Caves [29]. For a

transparent medium, and without the nonlinear interaction, we obviously have

T'a - I (because then E M E ) It can be shown [24,30] that the nonlinearko -v -e"

interaction always gives ITk.I > 1, provided that the dielectric constant is

unity.

V1, VACUUM CORRELATION FUNCTIONS

With the explicit expression (5.4) for the vacuum field, we can now

evalute the vacuum correlation functions fij(r) from Eq. (3.6). We set r - h,

and t - r and t - 0 for the i and the j component of E, respectively.

Multiplying both expressions and taking the vacuum expectation value then

yields
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~i(kpc'h+Pwr)

f ij (r) - 2f oW V (Pka k o e

ka - -Pc

ik~h ik .h

+ (e-k- e - - + Rka k e r )e

x (P* e e + ( e -ik-h -ik .h
-p -k PC c !k -r -ku-' k a + e- - + ~k kae

- -Pc -- -r

+ W i(k n'h+pcr) T' e
+ {N'o k~e e - kTka ei1h )

+" 2cW k a -k ai ak

ka

"i~n -ik.h

x (No* e e-i e + e T'*e - - . (6.1)
ko !k nia ka kaJ

Next we have to substitute the values of the various wave vectors, as they

were introduced in Sec. IV. We notice that all wave vectors in the exponents

appear in the combination k..h - hk. , so that we only need their z--i - i,Z

components. At this stage we make a slight approximation. The Fresnel

coefficients Pka and Nk' only deviate considerably from zero when the

frequency w of the incident wave is in close resonance with the pump frequency

W. Therefore, in factors multiplying these Fresnel coefficients we can safely

replace w by W. This amounts to the approximations kpcz z ,z"kz -P
a  pc kzand ennl z

-kZ ek Pa k and ek a 2k a' but the full resonant behavior of the

Fresnel coefficients as a function of w will be retained. Then we obtain
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f () 2 W ek + (e k + R ka !k e -21k -)efiJ (r 2EoWV  ... ..- -r -

ka

* ((P* + 1)ek + R ka 2ikh}

-c -ka+Ra2 - -

(N' -2ik-h ipwor -iWl.
+ 2 e a e - e- + Ti eka e )i

ka Zk a ka -k I

o - -ra-

x (Nl eka e - - +, r ) ek . (6.2)

Notice that we have not set p - I in exp(ipwr), since this would affect the r-

dependence of f. .(r).

As the next step we want to perform the summations over k, with the help

of the identity

I (f )  d3k-(1) , (6.3)

k k <0

and similarly for the double-prime summation. The integral is most easily

carried out in spherical coordinates, for which we have

1 (..) - 7  dk dO d4 k2 sinO (...) (6.4)
Vk 

8m
3  0 fir/2 0

and for the summation over k > 0 we replace the integration limits (X/2,W)

z

for the 0-integral by (0,K/2) For the k-vector we have
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k-ke , (6.5)

and with Eqs. (4.4) and (4.5) we find for the polarization vectors

kks - -e k e (6.6)
- r

e -e ! (6.7)

k p - -e -2sinde , (6.8)

in terms of the standard spherical unit vectors er, e and e@.

When we make the substitutions (6.4)-(6.8) into Eq. (6.2) then we get a

very lengthy expression for f ij(r), and for every one of the nine combinations

(i,j) this expression is different. A great simplification arises from the

fact that the Fresnel coefficients only depend on k and 8 (or the frequency of

the incident wave and the angle of incidence), but not on 0. Therefore, the

only 0-dependence of the integrand enters through the polarization vectors

from Eqs. (6.6)-(6.8), and the integration over 0 can be performed immediately

in each of the nine combinations. We then find that this integral equals zero

whenever i o j, and that i - j - c gives the same result as i - j - y.

Consequently, we can write

fij(r) -
6
ij fii(r) , (6.9)

and for the three nonzero correlation functions we have
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fil(r) - fxx(r) - fyy(r) , (6.10)

fj(r) - f zz(r) , (6.11)

which defines fHj(r) and f±(r). It can be shown [31] that results (6.9)-(6.11)

are not just a lucky simplification for the present problem, but that these

relations can be derived in general from the invariance of the vacuum for

rotations about the z-axis, and for reflections in a plane through the z-axis.

For a spherically-symmetric vacuum (like empty space), we find in addition

that fl(r) must necessarily equal f 1(r).

For the integration over 6 we change the integration variable to the

angle of incidence 8. for a given value of k, and the relation between 9 i and

0 is

- 8 for k < 0

6. -(6.12)

0 for k > 0

Then we know that Fresnel coefficients only depend on 6i through cosB i (or

sinS.), because their angle-of-incidence dependence is purely geometrical and
1

can be expressed in cross and dot products between the various wave vectors,

polarization vectors and e . We write
-Z

Pk " P (w'cos6 i) , (6.13)
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with w > 0 the frequency of the incident wave, and similarly for the other

Fresnel coefficients. For the k- and 6.-integration we then change
1

integration variables according to w - ck and u - cosBi, respectively. For

the two vacuum corr-lation functions we then obtain

f±(r) - 2 0 dw 3 1

8r e~du (1 u )

x {(Pe + (I + R e2 ihwu/c)e'irl(P* + 1 + R*e 2ihw
u / c

p p p

+ W e -2ihwu/c eipw r + T'e- iWr N'*e2ihwu/c + T *) (6.14)
p p ppJ

f 2 16
2 3  

du

2ihu/c -ir -2ihu/c

x {P e + (1 + R e )e (P* + 1 + R*e }
SS S 5

iNe ur +h- iWNc ee2ihwu/c

Ne-hU/s+ T'e )IN'e + T'*)I

5 5 5 sJ

2 3 w3 du u2

h16 u oiC3 Jo du u

× { P e
ipw r + (1 - R e)e 'i)(P* + I - R*e

2 ih
w
u / c

pp p

+ (N'e-2ihwu/c e ipw r Te' iWr (N'*e2ihwu/c - T'*p (6.15)
p p p IJ
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where all Fresnel coefficients have (w,u) as their arguments. These

coefficients depend in complicated way on w and u, in general, and it does not

appear possible to evaluate the integrals in Eqs. (6.14) and (6.15).

VII. LAPLACE TRANSFORM

The vacuum correlation functions f. . (r) only enter the spontaneous-decayii

operator through Qi from Eq. (3.5). When we expand exp(iL r) onto the energy

eigenstates of the atom, then this factor effectively turns into exp(iwr) with

w the energy separation between two levels, divided by X. Consequently, the

vacuum correlation functions only appear as their Laplace transform

(w) - dr e f (r) , a - 1,11 , (7.1)

where w can be either positive or negative. Since the factors in Eqs. (6.14)

and (6.15) which depend on r are all exponentials, we can evaluate the Laplace

transforms with the identity

F dr e i(w±w Yr - X6(w±w') + P W , (7.2)

where P stands for principle value. We shall omit the principle-value part,

since it leads to a small level shift and not to spontaneous decay. After

integration over r we can also perform the w-integration, which finally gives

n(w){x (w) + z (w)) , > 0

f (W) -(7.3)

n(2c-+)(y ay(2+w) + za (2w-w)*) W < 0
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with a - -'-j" Here we introduced

3

(7 M - W - (7.4)

and the six parameter functions

-L W du (l-u2 )ll + R eifu 12 + r Tj 2 (7.5)
4J0 pp

i~w du (j1 + R e iuI 2 +u 2 1- ke ifu, 2

XO 8 f' "

+ 12 iU2 2 
2

2
+ IT's + u21Tp 2 }  

(7.6)

y- fl du (I-u2)(jP I2 + IN'12 ) (7.7)4  
0  p p

Y1(co) f' du {IP 12 + u21P 12 + IN"I2 + u2 IN'I 2  (7.8)8l w 0 s p p

II du (l-u
2
)(P

* 
+ eioU(p*R + T;N *11 (7.9)40 PP p  

P p

(w) du /P* + u2 P* + eiU (P*R - u 2P*R + T'N'* - u 2T'N'*))z,(~l Jo 0 p s s p p s s p p

(7.10)

which are defined for w > 0 only. All Fresnel coefficients have (W,u) as

their argument, and the parameter 0 is defined by
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2c h (7.11)
c

Notice that the atom-surface distance h only enters via the parameter 6, and

therefore the two parameter functions yL(w) and yii(w) are independent of this

distance. Furthermore, the functions x (w) and y (w) are real and non-

negative, but z1 (w) and zii(w) are complex-valued, in general.

VIII. PARAMETER FUNCTIONS

Spontaneous decay of any atom near any linear or nonlinear medium

occupying the region 0 > z > -A is determined completely by the two functions

f±(w) and fii(w), which can be parametrized by the six functions xa (w), ya(w),

z (w). These six parameter functions are again determined by the eight

Fresnel coefficients R , P , T', N' (a - s,p), and the atom-surface distance
a ar a a

parameter 0. As soon as the Fresnel coefficients for a certain configuration

are given as a function of the cosine of the angle of incidence u, then the

integrals in Eqs. (7.5)-(7.10) can be evaluated, in principle. The dependence

on the frequency w is only parametric, where w equals a Bohr frequency of the

atom. In order to illuminate the significance of the parameter functions, we

work out some important limiting cases.

A. Empty space

Without a medium we simply have an atom in r - h, and surrounded by

empty space. Then the Fresnel coefficients obviously are

R - P - N' - 0 , T' - 1 (8.1)
a a a a

and the parameter functions are readily found to be
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x -I , ya -z 0 (8.2)

They are the same for a - ± and a - I, which indicates the spherical symmetry

of the vacuum, and they are independent of w (and of h).

B. Linear medium

Wien the medium is a dielectric, a metal, a thin film or a substrate, or

any composition for which reflection and refraction is induced by the first-

order susceptibility only, then every plane wave has the same frequency as an

incident plane wave, and consequently we have

P - N' - 0 , R 0 , T' 0 , (8.3)
a a a

in general. Then we find immediately

xa ' 0 , y zz - 0 , (8.4)

and the vacuum correlation functions become

- [.( xa(w) W > 0

f a() " 1(8.5)

0 , <0

which will be different for the two values of a. For positive frequencies,

f (w) is real and positive, but for negative frequencies f (w) vanishes

identically. Conversely, f (w) can only acquire a finite value for w < 0 due

to a nonlinear process in the medium.
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C. Perfect conductor

The most simple and nontrivial linear medium is the perfect conductor

(mirror), for which we have

T' - , R -- 1 , R -i , (8.6)0 s p

in addition to Eq. (8.3). Then the integrals over u can be found

analytically, and we get

x - I - 3o
c °-  

- sinB} (8.7)1 0 2 0 3 J

1- i(sn + cosB - sin 1  (8.8)

which is a well-known result. It exhibits the famous oscillatory structure as

a function of h (or f), and in the limit h - - we find x1 - x11 - 1. This is

the empty-space limit from subsection A, and it displays that far away from

the surface the spontaneous decay is not affected anymore by the presence of

the medium.

D. Transparent PC

For most four-wave mixing PC's one uses a transparent crystal (unit

dielectric constant), which has the advantage that the specular wave is

(almost) absent and that the phase-conjugate reflectivity can be high. In

principle, there is no limit on the value of P , i.e.,a
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0 P 2 <(8.9)

and for the specular waves we have

R -N' - 0 (8.10)
a a

The t-waves are always there, and their Fresnel coefficients are related to P

according to

IT012 IPa 2 = 1 (8.11)

where both T and P pertain to the same incident plane wave. It can be

a a

shown [24] that relation (8.11) holds for any angle of incidence and any

frequency mismatch between w and w. In particular, Eq. (8.11) implies

ITal 2 >1 , 8.12)

indicating that the transmitted wave is always amplified in the four-wave

mixer, as compared to the incident wave. Equation (8.9) allows for values of

IP a 2 larger than unity, in which case also the pc-wave is stronger than the

incident wave. Amplification in a four-wave mixing PC has been observed

experimentally indeed [32,33]. It is also worth noting that relation(8.11) is

responsible for the generation of two-photon coherent states in four-wave

mixing [34,35].

For this most important and realistic example we find that x and Yo are

related as
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xa() - 1 + ya(w) (8.13)

with

Yi(W) - 3 du (1 - u2 )IP 12 (8.14)

1 lI I + u2 1 121
y1I() - " J du 2 1)(8.15)

where we have used Eq. (8.11) to eliminate IT 12 in favor of IPI 2. It should

be noted that T' from Eqs. (7.5) and (7.6) is not equal to T in Eq. (8.11),
a a

although their absolute values are equal when they both pertain to the same

angle of incidence. For z we find

Z 3(J) - I du (1 - u
2)P* (8.16)

Zjf(o) - p

4 f

- I f du {P* + u2 P*) (8.17)

In the expression for f? (w), Eq. (7.3), we always get y and z in the

combination y + z . From Eqs. (8.14) and (8.15) we see that y a> 0, and that

also the integrand is non-negative for every value of u. Therefore, the

contributions from all plane waves with different angles of incidence add up

constructively. This in contrast to Eqs. (8.16) and (8.17) where the values

of P* appear, rather than their absolute values. The Fresnel coefficients P
a a

vary rapidly as a function of the angle of incidence [24], and in an

oscillatory fashion around P - 0. Integrated over the angle of incidence, as
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in Eqs. (8.16) and (8.17), this will yield a very small value as compared to

the integrated intensities IP a 2 . A safe approximation is therefore

z () 0 , (8.18)

when used in Ea. (7.3)

E. Ideal PC

When the values of IPs 2 and IP p2 would be independent of the angle of

incidence (and therefore equal to IP s (Wu - l) 2 , because IP I - I for u -

1), then we could take them outside the integrals in Eqs. (8.14) and (8.15),

which would give

y±(c) - yl1(w) -M IP1
2  

(8.19)

For illustrative purposes later on we define an ideal PC as a transparent PC

for which, in addition, Eq. (8.19) holds. The reservoir correlation function

then equals

"(w)(l + ;IPI') , W > 0

f (w) - (8.20)

[1h7(-w)IPI
2  , W < 0

both for a - i and a - . Furthermore we have assumed that IPaI is symmetric

around w, as a function of w, which is quite accurate in general. We like to
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emphasize that Eq. (8.19) is not necessarily a good approximation, and also

that PI 2 on the right-hand side should not be interpreted as the reflectivity

at normal incidence. The value [PI 2 can be viewed as an average of Pa1 2 over

the angle of incidence, where the 'average' is defined by Eqs. (8.14) and

(8.15). The approximation is then that Eqs. (8.14) and (8.15) give comparable

results. In an approximation where P (wu) is assumed to be independent of u,

we would find in addition that z (w) - 4P*, according to Eqs. (8.16) and

(8.17). It is easy to show that this leads to inconsistencies, and that the

appropriate approximation is given by Eq. (8.18). Also note that f a() is

identical in form to the correlation function of a thermal photon reservoir

with an average photon number of PI 2/2.

IX. TWO LEVELS

With the explicit result for the vacuum correlation functions from Sec.

VII, we can evaluate the spontaneous-decay operator r from Eq. (3.4) for any

configuration of atomic levels. In this section we work out the general form

of r for the case of two, possibly degenerate or nearly-degenerate, levels.

With we and Nw as the energies of the excited state and ground state,e g

respectively, the atomic Hamiltonian reads

Ha  w ePe +W gPg (9.1)

in terms of the projectors P and P on both states. The correspondinge g

Liouvillian is

a o[Pe' , ) (9.2)
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with w - w e w as the transition frequency, and where we used the closure
o e g

relation

P + P - 1 (9.3)e g

For the calculation of Q. from Eq. (3.5) we need the expansion of exp(-iLa T)

in projectors

-iL a ri(W 0- )T ~P

e a e PaP (9.4)

which can be proven easily with P2 P , a - e,g. This exponential acts on
aa

the Cartesian component pi of the dipole operator, which gives

-iL r -iW r iW •

e a e 0 PepiPg + e o PgiPe (9.5)

and where we used

PaAP a - 0, a - e,g (9.6)

This relation follows from the fact that an atom cannot have a permanent

dipole moment. Substitution of the right-hand side of Eq. (9.5) into Eq.

(3.5) then yields

Qi 1 fii(-wo)Pei P + fii (Wo)Pg~iPe (9.7)
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For molecular transitions, Eq. (9.6) does not hold since a molecule can have a

permanent dipole moment. Nevertheless, the expression for Qi remains the same

because the terms with P aai.P become proportional to f i(0), which equals

zero.

Then we substitute Q. and its Hermitian conjugate into Eq. (3.4), work

36
out the commutator, and drop the nonsecular terms, which gives for r

Ila - { [P f..(-( ) + P fi (W )]a

- 2+ (P gf ii (- )* + P 
e f i i (

w
O
)*]M

- 21.i[P aP Re f. (-w ) + P eaP eRe f.. (W.)] i . (9.8)I.g g ii o e i. 1

Here we have used identities like

Pe;iPg - Pep i - Ai P , (9.9)

which easily follow from Eqs. (9.3) and (9.6).

In Eq. (9.8) we have expressed r in terms of the Cartesian components

of the dipole operator and the projectors P and P on both levels, which ise g

the most compact representation of r. For many purposes, however, it is more

convenient to express r in atomic lowering and raising operators, rather than

in projectors. The lowering and raising parts of A are

(+) " -PgiPe (9.10)
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PeVP (9.11)- Pg,

respectively, and the total dipole moment is

(+) (9.12)

Then we substitute its i-th component into Eq. (9.8) and use the notation with

± and 11, which gives

1'0 f 0_ )A + ?j() (±)4

" ),U . + fj o0 ), A.j )a

" a(fII.w*~.; ~ ~ -

- 2 ; "i P f o(-w) i2 A Re

i-x,y i-x,y

- 2z( -)&A ( + ) 
Re fL(-o) -2g

(+ )
C
I
A ( - ) Re f1 (wo) (9.13)

zz 0 Z 0

We notice that every term is proportional to "(wo) from Eq. (7.4), but since

there is only one transition frequency for a two-level system we simply write

17.



35

X. TWO-STATE ATOM AND IDEAL PC

In order to discover the physical mechanisms of spontaneous decay near a

PC, and their relation to fluorescent emission, we consider the model case of

a two-state atom, in combination with the ideal PC for which the vacuum

correlation function is given by Eq. (8.20). With Je> and Jg> as the wave

functions of the excited state and ground state, respectively, the projectors

on these states are

P t - Ic><cl I aeg . (10.1)

The raising part of the dipole operator can be written as

(-) eg d , (10.2)

in terms of the matrix element M eg - <eljeg> and the operator

d - je><g , (10.3)

whereas the lowering part is the Hermitian conjugate of p The Einstein

coefficient for spontaneous decay in empty space is for this two-state atom

given by Eq. (1.1), and can be written as

A - 2qJ<eJgJg>J (10.4)

Then expression (9.13) for r can be simplified considerably, and in its most

transparent form it reads
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Ia - A (P a + cP - 2dtad)e e e

+ A (P a + oP -2dadt) (10.5)
g g g

Here we have introduced the real and positive parameters

A - A(l + ; PI2 ) 2 (10.6)e

A - AIPI 2 , (10.7)g

whose significance will become clear in due course.

The equation of motion for the atomic density operator is given by Eq.

(2.6) (with pa - p). Most interesting is the time evolution of the

populations of the two levels, defined by

n (t) - Tr P p(t) , a - eg . (10.8)
aa

When we multiply Eq. (2.6) on the left by P , take the trace, use

Tr P (L aa) - 0 , a - eg , (10.9)

and work out the result for TrP (Pa), as it follows from Eq. (10.5), then we

obtain

dn

- -A n + A n , (10.10)
dt e e g g
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dn--- Z - -A n + A n (10.11)

dt gg e e

First we notice that the right-hand sides of these equations differ only by a

minus sign, and therefore n + n is independent of time. The normalizatione g

is

n (t) + n (t) - 1 , (10.12)e g

which is nothing but Trp(t) - 1. Equations (10.10) and (10.11) relate

populations only, and they have the form of a set of loss/gain equations. The

physical interpretation of these rate equations is that Ae ne equals the number

of le> - Ig> transitions per unit of time, and A n is the number of 16> - le>
g g

transitions per unit of time. Therefore, A and A are the rate constants fore g

je> - Ig> and Ig> - le> transitions, respectively, and they describe

spontaneous transitions by this atom in the vacuum near a PC. In the limit

1PI 2 
- 0 the value of A reduces to A, whereas A vanishes. Then we havee g

ordinary spontaneous decay, with A as the rate constant. Due to the presence

of the PC, the value of A increases to A , which shows that the PC has thee

effect of enhancing the spontaneous-decay rate. More interesting is that Ag

acquires a finite value, which implies that there are spontaneous excitations

of the atom in vacuum, at a rate A n . It is also worth noting that the
g g

increase of both A and A , as compared to their empty-space values, equalse g

2
;AIPI 2  This situation is reminiscent of the coupling of a small system to a

nonzero-temperature reservoir, where the increase of the relaxation constants

due to the finite temperature is also equal for decay and excitation. An

obvious interpretation of Eqs. (10.6) and (10.7) is that the atom will decay
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spontaneously with a rate constant equal to A, but that in addition we have

stimulated le> - jg> and Ig> -le> transitions, which are induced by the PC,

and which increase the rate constants for both down and up transitions by the

same amount.

XI. COMPARISON WITH FLUORESCENT EMISSION

As mentioned in the Introduction, spontaneous decay is intimately

related to spontaneous emission because of energy conservation. For the

present situation, however, this relation is not too obvious as follows from

the fact that there is the possibility of spontaneous excitation. A Ig> - le>

transition requires the supply of an amount of energy equal to Oo, and the

process is of course the absorption of a photon. Only the PC, with its two

pump beams, can provide this energy.

Elsewhere [19] we have derived an expression for the emitted fluorescent

power dW/dt by an independent method (solving Maxwell's equations without an

explicit quantization of the radiation field). We only considered the

emission into the positive z-direction, since only this field can be measured

directly by a photomultiplier in the far zone. For the number of emitted

photons per unit of time into the z > 0 direction we found

1 dW _ -An +An (1.. )
Yw dt e g g

2
with A - AIPI . That the situation is more complicated than for ordinary

g

fluorescence is illustrated with the four diagrams of Fig. 2. The spontaneous

contribution A to A , Eq. (10.6), corresponds to ordinary spontaneous decay,

e

accompanied by the emission of a fluorescent photon. This process happens at
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a rate Ane9 and every transition le> - Ig> produces a photon. However, as

shown in diagrams (1) and (2), only half the number of photons travels towards

the detector in z > 0, and this gives the term ;An on the right-hand side ofe

Eq. (11.1). Then, the stimulated contribution to the relaxation constants

equals AiPI 2 for both up and down transitions. Diagram (3) of Fig. 2

illustrates the stimulated le> - Ig> transition and the corresponding photon

emission. The rate of this process is proportional to n, but the n -term in

Eq. (11.1) is already accounted for. Since energy conservation requires the

emission of a photon, we conclude that this photon must have frequency w, and

is therefore indistinguishable from the w photons already present in the

vacuum. This situation is analogous to atomic decay in a finite-temperature

vacuum, where the emitted photons in a stimulated transition are

indistinguishable from the black-body radiation. The stimulated Ig> - le>

excitations are shown in diagram (4), and they correspond to the term A n -
gg

AIP 2n on the right-hand side of Eq. (11.1). Since this term isg

proportional to n , the atom must be originally in its ground state. Ang

absorption of a vacuum photon with frequency w brings the atom to its excited

state, and a subsequent decay produces a fluorescence photon. It follows from

the rate equations (10.10) and (10.11) that the atom must be in state je>

after completion of the process, and therefore a second photon with frequency

w will be absorbed. This three-photon process gives a fluorescent photon with

frequency 2w-w whereas the spontaneous-decay process from diagram (1)

produces a photon with frequency ' With frequency selective detection it

should be possible to discriminate between the two processes in an

experimental observation of the fluorescence.
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XII. RELAATION

The set of equations (10.l0),(10.ii) is easily solved. For a given

population of the excited state at t - 0, the solution for t > 0 is

A -(Ae+Ag)t A
ne (t) - g + e eg (ne (0) - g-) ,(12.1)

e A + A e A + A "
e g e g

and the population of the ground state follows from Eq. (10.12). For t >> 0

we obtain the steady-state value

A2

n (-) - A 7 (12.2)
e g I + 1P

2

Without a PC the long-time limit is always ne(i) - 0, but due to stimulated

excitations from the ground state there is a finite probability to find the

atom in its excited state. Notice that this probability is determined by the

phase-conjugate reflectivity IPI2 only, and that it is independent of A (and

thereby independent of the dipole moment eg ). It can be shown [37], however,

that this is an artefact of a two-state model. Also notice that the time

constant of the relaxation is the inverse of

A e + A )- A(l + PI 
2 )  (12.3)e g

which is larger than A. Consequently, an atom near a PC relaxes faster than

in empty space.
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In the steady state the photon emission rate from Eq. (11.1) becomes

I dWJ2

(t -. a ) - A IP 2 3 + 2(12 
.4 )

S1 + 1PI 22

which is nonzero for 1PI
2 

o 0. An atom near a PC continuously emits

radiation, both due to ordinary decay (diagram (1) form Fig. 2) and due to

three-photon processes (diagram (4)). From Eq. (12.2) we derive

A gn g() - (2 + JPJ 2)(1 An (-)) , (12.5)

(2 5

which shows that the three-photon processes produce a factor of 2 + PI 
2 
more

photons in z > 0 than ordinary decay from the excited state.

The equation of motion (2.6) is also easily solved for the time

evolution of the coherences. It appears that the equation for <elp(t)g> does

not couple to the rate equations for the populations, and the general solution

is found to be

- (Ae+Ag)t -iwot

<elp(t)lg> - e e g e 0 <ep(O)g> , (12.6)

for a given initial state p(O). The relaxation time for the coherences is

twice as long as the relaxation time for the populations, as could be expected

from the analogy with thermal relaxation.

XIII. DEGENERATE TWO-LEVEL ATOM AND TRANSPARENT PC

Although in certain experiments one can prepare an atom so as to behave

effectively as a two-state atom (38], in general this is an oversimplification
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of the situation. In particular, for an atom near a PC we have the four

processes of Fig. 2 between any set of two states with a nonvanishing

transition dipole moment Aeg" When the excited level is degenerate, for

instance, then there are stimulated excitations (diagram (4)) from a ground

state to any of the excited states. Also, the assumption of an ideal PC is

not very realistic, although it is adequate to study the fundamental processes

from Fig. 2. In this section we consider the realistic situation of a

transparent PC, as discussed in Sec. VIII.D, and we assume that the pump

frequency is reasonably close to an atomic resonance wo, so that y1 (w) and

yl(w) from Eqs. (8.14) and (8.15), respectively, are nonzero for w - w . Then

the vacuum correlation function at w - w and w - -w is
0 0

f (co) - n(Wo)(I + ya(Wo)) , (13.1)

f=(-wo ) - (wodya(wo ) , (13.2)

with a - -L or I. Here it is also assumed that IFI 2 is symmetric around -w in

its frequency dependence. From now on we write n, yL and yi, since the

frequency wo is fixed.

With je and j the angular momentum quantum numbers of the excited level

and ground level, respectively, we can write je m > and Ij m > for their
ee gg

maguetic substates. As the quantization axis for the definition of the

degeneracies we take the normal to the surface (z-axis). The excited level

and ground level are (2j + 1)- and (2j + l)-fold degenerate, and since the
e g

dipole moment matrix element vanishes for j - Jg - 0, the minimum number of

e j - - - 0 or j. " 0, j -
atomic states is four (for J e - or Je i , j -0o 0 )
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The generalization of the atomic raising operator from Eq. (10.3) for a

degenerate two-level atom is defined as

dr - (jgm lrj eme) m , -,0,1 , (13.3)

mm
eg

in terms of which p(-) can be expressed as

(-) <e-I, d e* 
(13.4)

-rr

Here, e ris a spherical unit vector with respect to the z-axis, and 1A(+)

equals the Hermitian conjugate of the right-hand side.

The spontaneous-decay operator F is expressed in the Cartesian

components of A(+) and p(-) in Eq. (9.13), and with Eq. (13.4) and its

Hermitian conjugate we can simplify the result considerably. In analogy to

Eq. (10.5) for a two-state atom, we now obtain

ra - 2 Ae (d dta + adr d t  2dtad

+ A g (dtd a + adtd - 2d adt) (13.5)

The similarity with Eq. (10.5) is even more obvious if we write P - ddte

P - dtd in Eq. (10.5), which holds for a two-state atom (but not for a

g

degenerate two-level atom). In Eq. (13.5) we have introduced the quantities
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Ae _ A(l + y (13.6)

Ag - Ay (13.7)

for r - -1, 0, 1, where

W3 <ie IIj >I 2

A- o e (13.8)37r0o C 3 2j e + I

is the Einstein coefficient for spontaneous decay of this degenerate two-level

atom in empty space. Furthermore, we write

JYi for r - 0

y- (13.9)

y for r -± 1

The quantities A
e 

are A
g 

are identical in form to the relaxation constants A
7 7 e

and A from Eqs. (10.6) and (10.7), respectively, but their interpretation isg

slightly different, as we shall see later on.

The right-hand side of Eq. (13.5) is probably the most compact

representation of the operator r. As the first step towards the evaluation of

its matrix elements, we substitute the expressions for d and d', and use the
7 7

fact that a Clebsch-Gordan coefficient (j m lrjj eme) can only be nonzero if

m + r - m. In terms of thz new constants
g e

A - Ae(jgmglre e  , (13.10)

e m T
g
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Am - Ag(Jgmglr Ieme)2  (13.11)
g

m

e

the operator r attains the form

ra- ) Am (IJeme><Jemela + aIJeme><jemel)

m

e

+ ) Am (I jgmg><j m a + aj m ><J m g)

gm

(ji ~m 9lrIi e me)( &g lIrnm')

eg

e g

e~ j m' >Ij mn ><j M'
* (A j e eoljee g gg

+ Ag<j m gOjmj>Ijeme><Jm'eI) (13.12)
r g g g e e

which allows a direct evaluation of matrix elements of ra in terms of matrix

elements of a.
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XIV. EQUATION OF MOTION

With Eq. (13.12) we can expand the equation of motion (2.6) for p(t) in

matrix elements. This gives the linear set of coupled differential equations

d < j m PIJ m'> - "  
(A + A )< m IPIJ M'>

dt -e e -e e in ine e e e
e e

+ Ag ( j m lj em )(J gglr Je')<J gm mPJ > (14.1)

TJ g e e gg T~eme )gmgIj gg(41
m m'r
mmrgg

d <jgmglph m'> - -"  (A + A m)<j mg P J gM '>

dt gg gg in in gg ggg g

+ A e jm1~ ( (14.2)
+~~ 9 Argmrle e)(gmgl I j e m e ) < J e m e

I P l j e m e >  '
(42

m M'r
e e

d jm Ipjj mn > - -(4(A + A ) + iW )<j em IIj m > , (14.3)
dt eme gg ( Am o ee gge g

d <Jm Iplj m > - -((A + A ) - iw )<j in plj m > (14.4)
dt gg9 e e in i o gge ee g

As a first observation, we notice that Eqs. (14.3) and (14.4) for the

coherences between an excited state and a ground state do not couple with the

rest of the set. The solution of Eq. (14.3) is identical to the solution

(12.6) for a two-state atom, provided that we replace A + A by A + Ae g in i
e g

For the decay of the coherence between two magnetic substates of the excited

level, we have Eq. (14.1) with m o m', and it follows that the time evolution
e e

of <jemel Ij m'> is influenced by the decay of the coherences <j m PIJg M>

between the various substates of the ground level. Note that the condition
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e o m' makes the term with m - m' under the summation sign equal to zero,e e g g

and therefore also the time evolution of these coherences is independent of

the time evolution of the populations. The same conclusions hold for the

coherences in the ground level, as described Eq. (14.2) with m - m'.

g g

When we set m' - m in Eq. (14.1) and m' - m in Eq. (14.2), and then
e e & g

perform the summations over m' and m', resnectively, we get
g e

<j m pjj m > - -A <j i pJ nm >
<t ee ee m ee ee

e

+ A igfl1lrlj <j) <j IP jgmg-,>  (14.5)
g g eme gg

m •

g

d <in mP Mn> -A <j IPl M >

+ < A ej 2i<i e e) m > (14.6)
Ae (j gmglrlIjeme) 2<e e e lee> 1.)

m T

e

This set only contains the populations of the various substates, and it has

the form of a set of rate equations. The first term on the right-hand side of

Eq. (14.5) accounts for the loss of population of IJem e >, due to transitions

to the various ground states, and every m9 -term in the summation gives the
g

gain of population of Jeme 
> , 

due to stimulated excitations to this level and

from this particular ground state. This is in complete analogy to Eq. (10.10)

for a two-state atom. The same interpretation holds for Eq. (14.6), but with

the role of I e m > and I J m > reversed. Now that we have identified the

structure of Eqs. (14.5) and (14.6), we can interpret the significance of the

relaxation parameters A , Am , A and A
g . 

From Eq. (14.6) it follows that

e g
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A e (jgmg I j e m e ) 2 is the rate constant for the transition IJeme> - Ii m >,

and the transition rate equals this constant times the population of lijem>.

The appearance of the Clebsch-Gordan coefficient signifies the dipole

selection rule. When we sum this rate constant over m we get A , as defined
& me

by Eq. (13.10), and from Eq. (14.5) we see that A must equal the ratem
e

constant for the loss of population of Ijeme>, and independent of which ground

state this population ends up in. This makes the interpretation of both rate

constants consistent. Similarly, Ag(jgmglr jemj ) 2 is the rate constant for

the Ij m > - IJ m > transition, and summed over all values m of the final
gg ee e

state this gives the rate constant A for the loss of population of jg m >.
mg

It is interesting to sum Eqs. (14.5) and (14.6) over m and me g'

respectively. This yields

dn

dt e Am <JemelplJeme > + iAm  gP m> (14.7)

m
e g

dn

-- A <j m Ipl" m > + Am >ee (14.8)dt - m gm 9 gg 9 <eme ,lem

m g m e

g e

where

n- <Jm Ipljm a> , - e,g (14.9)

m

a

are the populations of the two levels, independent of how this population is
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distributed over the various substates. Only the relaxation constants A and

e
A appear in Eqs. (14.7) and (14.8), as is consistent with our earlier

m
g

interpretation of these parameters. It also follows immediately that n (t) +
e

n (c) is independent of time, as it should be.

XV. MICLAE

A. Sum rules and symmetry

With the well-known properties of Clebsch-Gordan coefficients, we derive

from Eq. (13.10)

1 A A e le 2e

2j + I Am e j3A -jAi+A , (15.1)e e
m

e

where the 1 and 11 notation is related to r-values as in Eq. (13.9). Since

there are 2 e + I values of me and three values of r, the first equality
are

states that the average value of Am equals the average value of Ae. Then the

e

second equality expresses that there are twice as much parallel degrees of

freedom (x and y) for the orientation of the dipole moment than there are for

the perpendicular direction (only z). When we sum A over m we findm g
g

2Je +i Am - 3  A- 3 A A A (15.2)
m g

m

g

Here, the left-hand side is not the average value of Am  when j j We

g
shall show in Sec. XV.C why the factor in front of the summation sign in Eq.

(15.2) must be 1/(2j e- 1), and not 11(2j + 1).
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Another intersting relation, which follows directly from the properties

of Clebsch-Gordan coefficients, in combination with Eqs. (13.10) and (13.11),

is

A - A , A - A (15.3)-m m -m5 m
e e g g

It can be shown [31], that the sum rules (15.1) and (15.2) and the symmetry

relations (15.3) are entirely geometrical. They can be derived from the

symmetry of the vacuum field for rotations about the z-axis and reflections in

a plane through that axis. Since these symmetries hold quite generally near a

flat surface, these results are independent of the details of the four-wave

mixing process.

B. Fluorescence

For a degenerate two-level atom, the number of emitted photons per unit

of time in the z > 0 direction equals [19]

1 dW _ ;i A Trp(t) (drdt + 2ydd) . (15.4)

Wo dt

When we substitute the expressions for d and dt, evaluate the trace, and use
r r

the definition of A , then Eq. (15.4) reduces to
mg

-dW - An + A <jgmgplIjm> , (15.5)
Xo dt e m g g gg

m
g
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where n is the total population of the excited level. We find again that thee

first contribution, An , is ordinary fluorescence, which is emittede

independent of the presence of the PC. Every term under the summation sign

corresponds to the occurrence of a three-photon process between the particular

state 1igm > and the excited level. It appears that the contributions from
-'g g

the various excited states combine in the sirgle rate constant A , and
9g

therefore the rate of emission of fluorescent photons due to a population of

IJ m> is equal to the rate of spontaneous transitions from Ij gmg> to the

excited level, as could be expected.

C. Ideal PC

For the case of a degenerate two-level atom and a transparent PC, we can

find the limit of an ideal PC by setting

YL " Yl "1 - h1P 2  (15.6)

With Eqs. (13.6) and (13.7) we then obtain Ae and Ag , which become independent

of r. In Eqs. (13.10) and (13.11) we can then perform the summations, and it

follows that A and A become independent of m and m , respectively. Henceme In e g
e g

we define A and A as
e g

A - A , A - A , (15.7)
e me g m

e g

and they are found to be
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A - Ae - A(1 + 1Pi ) (15.8)
e r

2+ 1[i

A - e A 6 AIPI
2 2e +1 (15.9)

g 2j + i r 2j + 1g g 2g

Equation (13.5) reduces to

ra - A (P a + P - 2 dtad

2j +1l

+ A (P o + aP -2 2 j 7 drad) r (15.10)
g g g 2je T

in terms of the projectors

Pa - I lJma><Jml a -e,g (15.11)

m
a

For the populations we now find

dn
e A n + A n , (15.12)

dt e e gg

dn
- - -A n + A n , (15.13)
dt gg e e

which is identical in form to Eqs. (10.10) and (10.11). This shows that Ae

and A are the rate constants for the depopulation of the excited level and
g

the ground level, respectively, irrespective of how this population is

distributed over the various states. Notice that the excited level and the
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ground level have the same relaxation constant as their individual states

Ii eme> and Ij gmg>, as follows from Eq. (15.6). It can also be shown that the

coherences between the two levels decay with (Ae + A ) as inverse relaxation

constant, and that the fluorescence rate duces to

1 dW
I _ An + A n (15.14)

jo dt e g g

We conclude that in the limit of an ideal PC this degenerate two-level atom

behaves similarly as a two-state atom, at least as far as the time evolution

of the atomic density operator is concerned, or the fluorescent yield. Notice

that also the expression (10.6) and (15.8) for the relaxation constant of the

excited state are identical in form, but that A in Eq. (15.9) acquires an
g

additional factor (2j + 1)/(2jg + 1), as compared to A in Eq. (10.7). This

factor equals the ratio of the number of excited states and the number of

ground states, and it also appears explicitly in expression (15.10) for r and

in the sum rule (15.2) for the average of A . It takes into account the
mg

difference between the number of excited states and the number of ground

states, and it leads to the correct form of the set of rate equations

(15.12),(15.13).

XVI. CONCLUSIONS

We have studied the relaxation of an atom in the vicinity of a PC. It

appeared that the atomic relaxation operator r could be expressed in the two

vacuum correlation functions fL(w) and fii(w), which contain all necessary

information about the medium and the four-wave mixing process. We were able

to express these functions in terms of the Fresnel reflection and transmission
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coefficients for plane waves, and the normal distance between the atom and the

surface of the medium. These coefficients depend in a complicated way on both

the linear and nonlinear interactions, the polarization and the angle of

incidence. For instance, it was shown in a recent experiment [39] that even

the Fresnel coefficient for the reflection of the specular wave is strongly

affected by the nonlinear interaction. We found that the correlation

functions could be expressed in terms of the parameter functions x., y and

Z , with a - ± or 11.

Subsequently we worked out the model case of a two-state atom, in

combination with the approximation of an ideal PC. The relaxation operator r

then assumes the simple form (10.5). We obtained the relaxation constants Ae

and A for the excited state and the ground state, respectively, and weg

identificed the four processes which are responsible for the relaxation (Fig.

2). Ordinary spontaneous fluorescent emission in combination with an le> -$

I g> transition gives the usual contribution to A (equal to A). Furthermore,e

stimulated le> Ig> transitions in combination with the emission of a photon,

and stimulated three-photon processes which excite the atom contribute to the

relaxation. The rate constants for both (down and up) stimulated processes

are identical, at least in the limit of an ideal PC in combination with a two-

state atom. This could be expected from the analogy with stimulated thermal

transitions, although the physical mechanism is different. These stimulated

processes always increase the values of the relaxation constants, thereby

decreasing the relaxation time of the system. The three-photon processes are

responsible for a finite population of the excited state in the limit t - -.

We found that both A and A are independent of the atom-surface distance,e g

which resembles similar predictions by Agarwal (40] and Cook and Milonni

[411.
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FIGURE CAPTIONS

Fig. i. A plane wave is incident upon a layer of nonlinear material with

thickness A. At the boundary z - 0 this wave partially reflects into the

specular direction (r-wave), and partially tiavels into the medium. At z - -A

there is again partial reflection and partial transmission, which gives rise

to multiple reflections irside the medium and the t-wave in z < -A. These

waves are indicated by the solid arrows, where the arrow head indicates the

propagation direction. These waves are already present for a linear medium.

Due to the nonlinear interaction, the two waves inside the medium couple each

with a counterpropagating negative-frequency wave (provided that the incident

field has a positive frequency), which leave the medium at the boundaries z -

0 and z - -A as the pc-wave and the ni-wave, respectively. These negative-

frequency waves are shown as broken arrows. For a dielectric constant equal

to unity, the r-wave and the ni-wave, including the two corresponding waves in

the medium, disappear to a good approximation. The figure illustrates the

situation for which the incident wave comes from the positive z-direction. As

explained in the text, there are also vacuum waves incident from the region

z < -A, and they give rise to ni-waves and t-waves in z > 0.

Fig,2. Illustration of the four processes which contribute to the atomic

relaxation and to the emission of observable fluorescence. The rates for the

processes are indicated, and the wiggly arrows show pictorially the

propagation direction of the photons involved. Diagram (1) represents

ordinary spontaneous decay, together with an le> - Ipg transition of the atom.

The fluorescent photon travels into the direction of the detector and

contributes to the fluorescent yield, whereas the atomic decay gives rise to

relaxation. The same process is shown in diagram (2), except that the photon

here travels towards the PC. Therefore, this process contributes to the
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relaxation, but not to the observable fluorescence. Diagram (3) looks the

2
same as diagram (I), except that the rate is multiplied by IPI . We identify

this process as stimulated decay combined with the emission of a photon. This

photon also travels into the positive z-direction, because it is a t-wave, but

it does not contribute to the fluorescence. In the three-photon process from

diagram (4) the atom makes the transitions Ig> - Ie> - Ig> - le>, where the

first and the last transitions are accompanied by the absorption of a photon

with frequency W. During the decay in between these absorptions, the atom

emits a photon with frequency 2w-0 in the positive z-direction. Notice that0

emitted photons in a stimulated transition always travel in the positive z-

direction.
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