

Acknowledgment: The documentation and validation examples for FEDEASLab were supported
by NEESgrid subcontract award 04-344 from the NEESgrid SI under NSF grant CMS-0117853

Technical Report NEESgrid-2004-22

w w w .neesgrid.org

Last modified: August 31, 2004

FEDEASLab

Getting Started Guide and

Simulation Examples

Filip C. Filippou and Margarita Constantinides1

1 Department of Civil and Environmental Engineering

University of California, Berkeley

Feedback on this document should be directed to filippou@ce.berkeley.edu

This report is also published as SEMM report 2004-05

 FEDEASLab Getting Started Guide and Simulation Examples

 i

Summary

The Matlab© toolbox FEDEASLab is a user-friendly, versatile and powerful tool for the
simulation of nonlinear structural response under static and dynamic loads, which has been
used successfully for the development of new elements and material models, as well as for the
simulation of the response of small structural models in research and instruction. Its
development started in 1998 for the support of instruction of the basic graduate courses of linear
and nonlinear structural analysis at the University of California, Berkeley. To date FEDEASLab
has evolved into a powerful framework for research in the nonlinear analysis of structures.

The toolbox consists of several functions that are grouped in categories and are, consequently,
organized in separate directories. These functions operate on five basic data structures which
represent the model, the loading, the element properties, the state of the structural response,
and the parameters of the solution strategy. A sixth data structure is optional and carries post-
processing information that can be used for response interpretation and visualization.

FEDEASLab supports path-dependent static or transient response under multiple force and
displacement patterns. Transient response under multiple force patterns, displacement patterns,
and acceleration patterns with uniform or multi-support excitation is also supported.

The nonlinear response analysis of structural models under static or transient conditions is
decomposed into logical steps. Each step is represented by a separate function with one or
more basic data objects as input and output arguments. In this way the definition of the model,
the specification of element properties, the definition of applied force and displacement patterns
and corresponding load histories, and the analysis of the model under the loading becomes a
sequence of function calls that are organized in script files. With Matlab's scripting language it is
easy to customize the analysis sequence and conduct parameter studies. The modular
architecture of the toolbox and the compact organization of data allow for the easy addition of
new functions for providing new capabilities. It is equally easy to access the data objects and
enhance the information stored in them. A well defined interface for element, section and
material models permits the user to add custom components to the available element, section
and material libraries.

Post-processing is accommodated with a data object that carries all important material, element
and structural information for plotting or printing. Several functions that address basic post-
processing tasks are provided. The user can easily enhance and extend the current capabilities.

Berkeley, July 31, 2004

 FEDEASLab Getting Started Guide and Simulation Examples

 ii

Acknowledgements

The evolution of the Matlab© toolbox FEDEASLab from 1998 to 2004 started with the primary
objective of supporting the instruction of the basic graduate courses of linear and nonlinear
structural analysis at the University of California, Berkeley, and progressed to a powerful
framework for research in the nonlinear analysis of structures.

The most significant contribution to FEDEASLab came from program FEAP developed by
Professor Robert L. Taylor at the University of California, Berkeley. The original version of
FEDEASLab set out to emulate a portion of FEAP's capabilities for teaching and research.

Former doctoral student Remo Magalhaes de Souza was present at the birth of the program,
and was instrumental in the organization of the solution strategy data structure and the creation
of the transformation functions for linear and nonlinear geometry. Recently the contributions of
doctoral student Afsin Saritas have expanded the element and material library of the toolbox.

Discussions with Professor Gregory L. Fenves have stimulated the object-oriented organization
of the toolbox without resorting to the use of objects. His criticism of early versions of the
program has helped in its improvement.

The contribution of these colleagues over the course of FEDEASLab's growth is gratefully
acknowledged. Their input can be found in various functions of the toolbox. Any errors and
omissions are, however, entirely the fault of its creator.

After its inclusion as simulation component of NEESgrid in late 2003, FEDEASLab received
financial support for documentation, validation, and example preparation through NEESgrid
subcontract award 04-344 from the NEESgrid System Integrator at the University of Illinois,
Champaign-Urbana under NSF grant CMS-0117853. Special thanks go to Professor Bill
Spencer for his vision and leadership toward the inclusion of simulation capabilities in NEESgrid
and to Professor Gregory L. Fenves for championing FEDEASLab's inclusion as one of the
simulation components of NEESgrid.

 FEDEASLab Getting Started Guide and Simulation Examples

 1

1. Introduction

The objective of this report is to provide a brief overview of FEDEASLab's data structures
and functions by describing their use in typical nonlinear static and transient analysis situations
for a small structural model. A thorough discussion of the toolbox' architecture and its
capabilities is provided in NEES Technical Report TR-2004-50.

It is assumed that the reader is familiar with Matlab©, in particular with numeric arrays and
array operations, and with data structures and cell arrays. In addition to the excellent on-line
help of the program the reader is referred to chapters 5 through 7 of the book Mastering Matlab
6 by D. Hanselman and B. Littlefield published in 2001 by Prentice Hall.

The toolbox functions require Matlab© version 6.x or later.

 FEDEASLab Getting Started Guide and Simulation Examples

 2

2. Installation

FEDEASLab toolbox functions are contained in a self-extracting zip file that can be
downloaded from the website: http://fedeaslab.berkeley.edu. Execution of the file will unzip the
functions into several subdirectories under the directory containing the executable. The
subdirectory organization is shown in Fig. 1.

FEDEASLab Function

Categories

Section_Lib

Element_Lib

Output

Utilities

Geometry

General

Examples

Solution_Lib

Material_Lib

Figure 1 Directory organization of FEDEASLab functions

The execution of file Adjust_Path.m will add these subdirectories to Matlab's directory

search path. Each subdirectory contains a Contents file with a brief description of each

function. This can be invoked directly from Matlab's command line by typing help

directory_name.

 FEDEASLab Getting Started Guide and Simulation Examples

 3

3. Data structures

The Matlab© toolbox FEDEASLab consists of several functions. These operate on five
basic data objects that carry information about the structural model geometry, the element
properties, the applied loading, the solution strategy parameters, and the response state. A sixth
data object called Post is optional and carries post-processing information for response
interpretation and visualization. These data structures are summarized in Fig. 2. In this report
data structures are identified with a double vertical border in figures and with bold type face in
text.

Figure 2 Data structures in FEDEASLab

Detailed information about the basic data structures and the toolbox function architecture is
provided in NEES Technical Report TR-2004-50.

 FEDEASLab Getting Started Guide and Simulation Examples

 4

4. The key role of function Structure

Each function in the FEDEASLab toolbox has a single purpose, which can often be

surmised from the function name. The only exception is the function Structure which

accomplishes several tasks by operating on all elements in the structural model, or only on a

group of them, as specified in the optional input argument ElemList. The type of action that

the function performs is specified by character variable action which can assume one of the

four letter keywords on the leftmost column of Fig. 3. The function syntax with the order of input
arguments along with a short description of the function purpose for every action keyword is
shown in Fig. 3. The output of the function is either a data object, or a printing or plotting action
with an empty output argument list. In the figure printing is identified by the symbol IOW and
plotting by the deformed shape of a structural model.

Figure 3 Syntax and input/output argument list of function Structure

 FEDEASLab Getting Started Guide and Simulation Examples

 5

5. Organization of typical simulation script

A typical simulation script performs the following tasks:

1. Definition of model geometry and creation of data object Model.

2. Specification of element properties and creation of data object ElemData.

3. State initialization (creation of data object State).

4. Specification of one or more load patterns and creation of data object Loading.

5. Creation of data object SolStrat with default solution strategy parameters.

6. Initialization of solution process and application of one or more load steps with
corresponding structural response determination.

7. Storage of response information for immediate or subsequent post-processing.

Because of the importance of Model and ElemData in subsequent tasks, tasks 1 and 2
must be arranged in this order at the start of the analysis script. In fact, it may be convenient to
isolate the model definition and the element property specification in separate script files, as
was done in the examples of this report. Fig. 4 shows the sequence of FEDEASLab function
calls and the input and output arguments for tasks 1 and 2.

Figure 4 Model definition and ElemData specification

 FEDEASLab Getting Started Guide and Simulation Examples

 6

In Fig. 4 functions are identified by square boxes with double vertical borders and are
arranged in the middle of the figure with an arrow depicting the sequence. The input arguments
to every function are collected in the box pointing toward the function on the left hand side of
figure. The key data objects have a double vertical border, while arrays specified by the user
have a single border and a rounder outline. The output of every function is typically a single data
object. It is arranged in a box on the right hand side of the figure with an arrow pointing away
from the function. This graphic convention is followed consistently in this report.

In Fig. 4 the function CleanStart clears the workspace memory and initializes a couple of

global variables. Upon specification of the node coordinates in array XYZ, the boundary

conditions in array BOUN, the element connectivity in cell array CON and the element type in cell

array ElemName the function Create_Model generates the data object Model with fields

carrying information about the model geometry and the degree of freedom (dof) numbering. In
the next step the user specifies the element properties in cell array ElemData and the function

Structure with action keyword 'chec' checks the element property data for missing

information and supplies default values, if necessary. The data object completion process is
indicated in Fig. 4 by the darker background of the ElemData data object upon exit from the

function Structure. Optional functions for printing model information and displaying the model

geometry are shown on the right hand side of Fig. 4 enclosed in a lighter gray background. The

optional invocation of function Structure with action keyword 'data' prints the element

properties in the output file.

With Model and ElemData defined, tasks 3 through 5 can be accomplished in any order.
The necessary function calls and input arguments are shown in Fig. 5.

Loading

Initialize_SolStrat

Initialize_State

SolStrat

State

Model

ElemData

Create_Loading

Model

Pe(1:nn,1:ndfx,1:npat)

Ue(1:nn,1:ndfx,1:npat)

Figure 5 Loading definition and initialization of State and SolStrat

 FEDEASLab Getting Started Guide and Simulation Examples

 7

It is important to note, however, that the initialization of State is typically done only once in
an analysis, while Loading and SolStrat can be specified several times in the script for
describing load sequences and changes to solution strategy parameters. Consequently, the
order of Fig. 5 should be adhered to, if possible.

It is worth noting that the data object SolStrat emerging from function Initialize_SolStrat

only contains default values for the solution strategy parameters. The user should supply
solution specific values for the case at hand.

Task 6 is made up of several function calls, as shown in Figs. 6 and 7 for static and transient
response analysis, respectively

Figure 6 Nonlinear static response analysis with several load steps

Upon specification of the solution strategy parameters the call to the Initialize or

TransientInitialize function sets to zero the pseudo-or real time parameter and the load

factor(s) in State and stores any resisting forces of the structure as initial forces for the next
analysis. It is assumed that these resisting forces are in equilibrium with the applied loading

 FEDEASLab Getting Started Guide and Simulation Examples

 8

before the application of the new load sequence. Following the initialization, several steps of
load incrementation with equilibrium iterations can be performed. Upon convergence of the

iteration process in each load step the function Update_State or Update_TransientState

can be used to update the response state variables in State. To prepare for the eventuality of
lack of convergence during a particular load step it is advisable to copy the last State to a data
object TempState before the start of a new step. TempState is then used instead of State as
input and output argument of the incrementation and iteration functions. Upon convergence
TempState serves as input argument to the state updating function with State as the output
argument. This approach allows for switching to alternative solution strategies in case of
convergence failure, such as time step subdivision or change of solution strategy parameters.

Figure 7 Nonlinear transient response analysis with several time steps

It is worth noting that SolStrat is required as input argument to Update_TransientState

in Fig. 7 because it carries the time integration constants needed for updating the dof velocities
and accelerations at the end of the time step.

 FEDEASLab Getting Started Guide and Simulation Examples

 9

Structural response information for post-processing can be requested with a call to function

Structure anytime after State is created. This permits information to be stored for each

iteration within a load step of the solution process. Such profusion of information may result in a
very large data object Post for a model with many elements under many load steps. In such
case it is advisable to limit the storage of information to a few relevant steps, or to write the data
object Post to the hard disk and clear it from memory. The syntax for generating post-
processing information is shown in Fig. 8.

Structure (‘post’,…) Post

Print_State

Structure (‘prin’,…)

Structure (‘defo’,…)

Plot_ForcDistr

Plot_CurvDistr

Plot_IPVarDistr

Model

ElemData

State

ElemList

Figure 8 Generation of post-processing information in data object Post

Fig. 8 shows that it is possible to limit the generation of post-processing information to

elements in an ElemList. The figure also shows that a few post-processing functions do not

require Post. These functions precede the function call to Structure in Fig. 8. Print_State

sends structural response information like global dof displacements and resisting forces, which
is stored in data obejct State, to the output file. The same is true for element response

information with a call to function Structure with action keyword 'prin', while the call to

function Structure with action keyword 'defo' plots the deformed shape of the structure

under the current state. Once Post is available, the functions Plot_xxDistr can be used to

plot the distribution of certain variables along the element axis.

The syntax of the distribution plotting functions is shown in Fig. 9. Additional details about
function syntax are available in NEES Technical Report TR-2004-50 and in the on-line help file
that accompanies the functions.

 FEDEASLab Getting Started Guide and Simulation Examples

 10

Plot_ForcDistr

Plot_CurvDistr

ElemList

Component

Model

ElemData

Post

Plot_IPVarDistr

ElemList

Model

ElemData

Post

ElemList

Component

Model

ElemData

Post

Scale

Figure 9 FEDEASLab functions for plotting element variables

 FEDEASLab Getting Started Guide and Simulation Examples

 11

6. Simulation examples

The following examples present the necessary steps for performing a linear or nonlinear
static or dynamic analysis of the two-story steel frame model in Fig. 10. Some of the applied
loads are also shown in Fig. 10. In addition, the following simulation studies cover the case of
imposed support displacement as well as support acceleration. The model consists of eight
elements: one for each column and two elements for each girder. Nodes are represented by
little squares in the figure.

Because the model geometry is the same for the simulation studies it is specified in a

separate script file called Model_TwoStoryFrm.

144

144

300

20

40

0.35

0.50

40

20

W14x193 W14x193

W14x145 W14x145

W27x94

W24x68

Figure 10 Two-story steel frame model used in the simulation examples

Figure 11 shows the schematic representation of the process and the actual contents of file

Model_TwoStoryFrm. The model definition for a two-story, one-bay 3d braced frame is

shown in the Appendix and in the FEDEASLab website.

 FEDEASLab Getting Started Guide and Simulation Examples

 12

Create Model

% all units in kip and inches

Node coordinates (in feet!)

XYZ(1,:) = [0 0]; % first node
XYZ(2,:) = [0 12]; % second node, etc
XYZ(3,:) = [0 24]; %
XYZ(4,:) = [25 0]; %
XYZ(5,:) = [25 12]; %
XYZ(6,:) = [25 24]; %
XYZ(7,:) = [12.5 12]; %
XYZ(8,:) = [12.5 24]; %
% convert coordinates to inches
XYZ = XYZ.*12;

Connectivity array

CON {1} = [1 2]; % first story columns
CON {2} = [4 5];
CON {3} = [2 3]; % second story columns
CON {4} = [5 6];
CON {5} = [2 7]; % first floor girders
CON {6} = [7 5];
CON {7} = [3 8]; % second floor girders
CON {8} = [8 6];

Boundary conditions

% (specify only restrained dof's)
BOUN(1,1:3) = [1 1 1]; % (1 = restrained, 0 = free)
BOUN(4,1:3) = [1 1 1];

Element type

% Note: any 2 node 3dof/node element can be used at this point!
[ElemName{1:8}] = deal('Lin2dFrm_NLG'); % 2d linear elastic frame element

Create model data structure

Model = Create_Model(XYZ,CON,BOUN,ElemName);

Display model and show node/element numbering (optional)

Create_Window (0.70,0.70); % open figure window
set(gcf,'Color',[1 1 1]);
Plot_Model (Model); % plot model (optional)
Label_Model (Model); % label model (optional)

Figure 11 Contents of file Model_TwoStoryFrm

 FEDEASLab Getting Started Guide and Simulation Examples

 13

Even though ElemName is specified as a 2d linear elastic frame element, the actual element

type is modified later with the element property information. During model creation the function

Create_Model requires the number of nodes and the number of dofs per node for each

element in the model. Because all 2d frame elements in the current library have two nodes and
3 dofs per node, it is irrelevant what 2d frame element type is specified at this stage. The output

of functions Plot_Model and Label_Model is shown in Fig. 12.

1

2

3

4

5

6

7

8

1 2

3 4

5 6

7 8

Figure 12 Output from Plot_Model and Label_Model

The next stage involves the specification of element property data. These data are also
specified in a separate script file. There are three types of element in the simulation studies: a
linear elastic 2d frame element, a nonlinear one-component 2d frame element with concentrated
plastic hinges at the ends, and a distributed inelasticity 2d frame element with 5 integration
points along the span and discretization of each section into layers with uniaxial material
response. Correspondingly, three separate script files are provided, one for each case:

LinearElemData, SimpleNLElemData and DistrInelElemData. The contents of these

files are provided in Figs. 13a-c. By invoking the function Structure with action keyword

'chec' the element property data are checked for missing information and default values are

supplied, if necessary.

 FEDEASLab Getting Started Guide and Simulation Examples

 14

Define elements

% all units in kip and inches

Element name: 2d linear elastic frame element

[Model.ElemName{1:8}] = deal('Lin2dFrm_NLG');

Element properties

Columns of first story W14x193

for i=1:2;
 ElemData{i}.E = 29000;
 ElemData{i}.A = 56.8;
 ElemData{i}.I = 2400;
end

Columns of second story W14x145

for i=3:4;
 ElemData{i}.E = 29000;
 ElemData{i}.A = 42.7;
 ElemData{i}.I = 1710;
end

Girders on first floor W27x94

for i=5:6;
 ElemData{i}.E = 29000;
 ElemData{i}.A = 27.7;
 ElemData{i}.I = 3270;
end

Girders on second floor W24x68

for i=7:8;
 ElemData{i}.E = 29000;
 ElemData{i}.A = 20.1;
 ElemData{i}.I = 1830;
end

Default values for missing element properties

ElemData = Structure ('chec',Model,ElemData);

Figure 13a Element property specification for 2d linear frame elements

 FEDEASLab Getting Started Guide and Simulation Examples

 15

Define elements

% all units in kip and inches

Element name: 2d nonlinear frame element with concentrated inelasticity

[Model.ElemName{1:8}] = deal('OneCo2dFrm_NLG'); % One-component nonlinear 2d
frame element

Element properties

fy = 50; % yield strength
eta = 1.e-5; % strain hardening modulus for multi-component models

Columns of first story W14x193

for i=1:2;
 ElemData{i}.E = 29000;
 ElemData{i}.A = 56.8;
 ElemData{i}.I = 2400;
 ElemData{i}.Mp = 355*fy;
 ElemData{i}.eta = eta;
end

Columns of second story W14x145

for i=3:4;
 ElemData{i}.E = 29000;
 ElemData{i}.A = 42.7;
 ElemData{i}.I = 1710;
 ElemData{i}.Mp = 260*fy;
 ElemData{i}.eta = eta;
end

Girders on first floor W27x94

for i=5:6;
 ElemData{i}.E = 29000;
 ElemData{i}.A = 27.7;
 ElemData{i}.I = 3270;
 ElemData{i}.Mp = 278*fy;
 ElemData{i}.eta = eta;
end

Girders on second floor W24x68

for i=7:8;
 ElemData{i}.E = 29000;
 ElemData{i}.A = 20.1;
 ElemData{i}.I = 1830;
 ElemData{i}.Mp = 177*fy;
 ElemData{i}.eta = eta;
end

Default values for missing element properties

ElemData = Structure ('chec',Model,ElemData);

Figure 13b Element property specification for 2d nonlinear one-component model

 FEDEASLab Getting Started Guide and Simulation Examples

 16

Element name: 2d nonlinear frame element with distributed inelasticity

[Model.ElemName{1:8}] = deal('NLdirFF2dFrm_NLG'); % NL iterative force
formulation

Element properties

Columns of first story W14x193

for i=1:2;
 ElemData{i}.nIP = 5; % number of integration points
 ElemData{i}.IntTyp = 'Lobatto'; % Gauss-Lobatto Integration
 ElemData{i}.SecName= 'HomoWF2dSec'; % type of section
 for j=1:ElemData{i}.nIP
 ElemData{i}.SecData{j}.d = 15.48; % depth
 ElemData{i}.SecData{j}.tw = 0.89; % web thickness
 ElemData{i}.SecData{j}.bf = 15.71; % flange width
 ElemData{i}.SecData{j}.tf = 1.44; % flange thickness
 ElemData{i}.SecData{j}.nfl = 4; % number of flange layers
 ElemData{i}.SecData{j}.nwl = 8; % number of web layers
 ElemData{i}.SecData{j}.IntTyp = 'Midpoint'; % midpoint integration rule
 end
end

Columns of second story W14x145

………………

Girders on first floor W27x94

………………

Girders on second floor W24x68

………………

Material properties

for i=1:Model.ne;
 for j=1:ElemData{i}.nIP
 ElemData{i}.SecData{j}.MatName = 'BilinearHysteretic1dMat'; %
material type
 ElemData{i}.SecData{j}.MatData.E = 29000; % elastic modulus
 ElemData{i}.SecData{j}.MatData.fy = 50; % yield strength
 ElemData{i}.SecData{j}.MatData.Eh = 0.1; % hardening modulus
 end
end

Default values for missing element properties

ElemData = Structure ('chec',Model,ElemData);

Figure 13c Element property specification for 2d distributed inelasticity elements

With the model geometry and element specification complete, it is now possible to apply
different types of loading for linear or nonlinear, static or transient response analysis. This is
discussed in the following examples.

 FEDEASLab Getting Started Guide and Simulation Examples

 17

6.1 Example 1- Linear elastic analysis with superposition of results

In this example the two story steel frame is subjected to three types of loading: (a) uniformly
distributed element loads in the girders, as shown in Fig. 10, (b) horizontal forces, as shown in
Fig. 10, and, (c) a horizontal displacement of 0.2 units at the left support. Three separate linear
analyses are conducted and the results are then superimposed with load combination factors,
as required by LRFD. The sequence of function calls is shown graphically in Fig. 14

Create_Loading Loading

StateLinearStep

Structure (‘post’,…) Post(1)

Create_Loading Loading

LinearStep State

Structure (‘post’,…) Post(2)

Create_Loading Loading

LinearStep State

Structure (‘post’,…) Post(3)

Plot_ForcDistr

Print_State

Structure (‘defo’,…)

Print_State

Structure (‘defo’,…)

Plot_ForcDistr

Print_State

Structure (‘defo’,…)

Plot_ForcDistr

1.2*Post(1)+1.5*Post(2) Post_Combi Plot_ForcDistr

Figure 14 Function call sequence for the analysis steps of Example 1

 FEDEASLab Getting Started Guide and Simulation Examples

 18

It is noteworthy that a single analysis function called LinearStep is available in this case.

The function syntax is shown in Fig. 15.

Figure 15 Input and output arguments for function LinearStep

The moment distribution under factored gravity element loads and horizontal forces is
shown in Fig. 16, while Fig. 17 contains salient excerpts from the script file Example_1. It is
worth noting in Fig. 16 the necessity to zero the distributed element load before defining the
loading for the horizontal forces. It is equally necessary to specify an empty force vector in the
third load case, so as to set to zero the horizontal forces before defining the loading for the
horizontal support displacement.

Finally, the distributed element loading needs to be re-inserted with the appropriate load factor

in the data object ElemData before invoking the last Plot_ForcDistr function, so that the

moment diagram reflects the presence of the element loading in the factored load combination.

y

Figure 16 Moment distribution under factored gravity and horizontal forces

 FEDEASLab Getting Started Guide and Simulation Examples

 19

Load case 1 : distributed load in girders

% distributed load in elements 5 through 8
for el=5:6 ElemData{el}.w = [0;-0.50]; end
for el=7:8 ElemData{el}.w = [0;-0.35]; end
% there are no nodal forces for first load case
Loading = Create_Loading (Model);

% perform single linear analysis step
State = LinearStep (Model, ElemData, Loading);
… … … … …
% store element response for later post-processing
Post(1) = Structure ('post',Model,ElemData,State);
… … … … …

Load case 2: horizontal forces

% set distributed load in elements 5 through 8 from previous load case to zero
for el=5:8; ElemData{el}.w = [0;0]; end
% specify nodal forces
Pe(2,1) = 20;
Pe(3,1) = 40;
Pe(5,1) = 20;
Pe(6,1) = 40;
Loading = Create_Loading (Model,Pe);

State = LinearStep (Model, ElemData, Loading);
… … … … …
Post(2) = Structure ('post',Model,ElemData,State);
… … … … …

Load case 3: support displacement

% zero nodal forces from previous load case and impose horizontal support
displacement
Pe = [];
Ue(1,1) = 0.2; % horizontal support displacement
Loading = Create_Loading (Model,Pe,Ue);

State = LinearStep (Model, ElemData, Loading);
… … … … …

Post(3) = Structure ('post',Model,ElemData,State);
… … … … …

Load combination

% plot a new moment distribution for gravity and lateral force combination
% using LRFD load factors and assuming that horizontal forces are due to EQ
for el=1:Model.ne
 Post_Combi.Elem{el}.q =1.2.*Post(1).Elem{el}.q + 1.5.*Post(2).Elem{el}.q;
end

% include distributed load in elements 5 through 8 for moment diagram
for el=5:6 ElemData{el}.w = [0;-0.50]; end
for el=7:8 ElemData{el}.w = [0;-0.35]; end

% plot combined moment distribution
Create_Window(0.70,0.70);
Plot_Model(Model);
Plot_ForcDistr (Model,ElemData,Post_Combi,'Mz');

Figure 17 Salient analysis steps for Example 1

 FEDEASLab Getting Started Guide and Simulation Examples

 20

6.2 Example 2 - Modal analysis of linear transient response

The second example deals with the modal analysis of linear transient response of the two-
story steel frame under support acceleration from a recorded motion from the Erzincan, Turkey,
earthquake of 1992. The function call sequence is presented graphically in Fig. 18 and salient
analysis steps from the script file Example_2 are shown in Fig. 19.

It is worth noting that a linear elastic analysis under an imposed unit support displacement is
used in determining the reference acceleration vector at the free dofs of the model. A direct
specification of this vector is more straightforward in this case, but the method used is more
general, since it is equally valid under multi-support excitation.

For the case of support acceleration the data object Loading consists of fields Uddref and

AccHst with fields Time and Value, as shown in Fig. 18. These fields are specified by the

user, as the input file shows. There is no need for a reference force or displacement vector in
this case.

Figure 18 Function call sequence for the analysis steps of Example 2

 FEDEASLab Getting Started Guide and Simulation Examples

 21

Specify ground acceleration

% Reference acceleration vector by linear analysis under unit support
displacement
Ue([1,4],1) = ones(2,1);
SupLoading = Create_Loading (Model,[],Ue); % need to include an empty array for
Pe

State = LinearStep(Model,ElemData,SupLoading);
% create actual loading vector with reference acceleration vector
Loading.Uddref = State.U(1:Model.nf); % reference acceleration vector in
Loading
% NOTE: the above reference acceleration vector could also be specified
directly for this
% simple case of rigid body motion due to support displacement

% load ground motion history into Loading: 2% in 50 years motion from Erzincan,
Turkey
load EZ02;
Loading.AccHst(1).Time = EZ02(1:500,1); % Load time values into field
Time
Loading.AccHst(1).Value = EZ02(1:500,2)/2.54; % Load acceleration values and
convert to in/sec^2

 Norm of equilibrium error = 2.066638e-012

Lumped mass vector

% define distributed mass m
m = 0.6;
Me([2 3 5:8],1) = m.*ones(6,1);
% create nodal mass vector and stored it in Model
Model = Add_Mass2Model(Model,Me);

Modal analysis

% determine stiffness matrix at initial State
State = Initialize_State(Model,ElemData);
State = Structure('stif',Model,ElemData,State);

% % number of modes to include in modal analysis
no_mod = 2;
% % modal damping ratios
zeta = 0.02.*ones(1,no_mod);

% Integration time step
Dt = 0.03;

% modal analysis
[omega, Veig, Y_t] = ModalAnalysis(State.Kf,Model.Ml,Loading,Dt,zeta,no_mod);

% global dof response history
U_t = Y_t*Veig';

Figure 19 Salient analysis steps for Example 2

In this example the deformed shape of the structure yields the mode shapes in Fig. 20 and the
response time history of the horizontal roof displacement in shown in Fig. 21.

 FEDEASLab Getting Started Guide and Simulation Examples

 22

Figure 20 Mode shapes for two lowest eigenfrequencies of two-story steel frame

0 5 10 15
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 21 Time history of horizontal roof displacement of two-story steel frame

 FEDEASLab Getting Started Guide and Simulation Examples

 23

6.3 Example 3 - Time history analysis of linear transient response

The third example deals with the time history analysis of linear response of the two-story
steel frame under support acceleration from a recorded motion at Erzincan, Turkey. The
function call sequence is presented graphically in Fig. 22 and salient analysis steps from the
script file Example_3 are shown in Fig. 23. The time history response results in Fig. 24 can be
compared directly with those from Example 2. Very small discrepancies in value are due to the
approximate nature of the time integration strategy for the given time step.

Figure 22 Function call sequence for time history analysis

The steps preceding the call to function Add_Damping2State in Fig. 22 are identical to

those of Example 2 in Fig. 18 before the call to function Modal_Analysis. In addition to data

object Loading, which has the same fields as in Example 2, the time history analysis requires
specification of the time step for the numerical integration of transient response in data object

SolStrat. This information is specified in field Deltat of field TimeStrat of SolStrat, as

shown in Fig. 22. The function Initialize_SolStrat uses by default Newmark's constant

acceleration method for the time integration. The user can modify the parameters of the method

in field Param of field TimeStrat of SolStrat.

 FEDEASLab Getting Started Guide and Simulation Examples

 24

Specify ground acceleration

% Reference acceleration vector by linear analysis under unit support
displacement
Ue([1,4],1) = ones(2,1);
SupLoading = Create_Loading (Model,[],Ue); % need to include an empty array for
Pe

State = LinearStep(Model,ElemData,SupLoading);
% create Loading data object
Loading = Create_Loading(Model);
% insert reference acceleration vector into Loading
Loading.Uddref = State.U(1:Model.nf); % reference acceleration vector in
Loading
… … … … …

Lumped mass vector

… … … … …

Rayleigh damping matrix

% re-initialize State (zero support displacement this time)
State = Initialize_State(Model,ElemData);
% determine initial stiffness matrix
State = Structure('stif',Model,ElemData,State);
% specify modal damping ratios
zeta = [0.02 0.02];
% specify modes
mode = [1 2];
State = Add_Damping2State ('Caughey',Model,State,zeta,mode);

Transient time history analysis

% initialize solution strategy parameters
SolStrat = Initialize_SolStrat;
% specify time interval for numerical integration
SolStrat.TimeStrat.Deltat = 0.01;

… … … … …
Tmax = Loading.AccHst(1).Time(end);

% initialize analysis parameters for transient response
State = TransientInitialize(Model,ElemData,Loading,State);

Time stepping until maximum specified time Tmax

while (State.Time < Tmax)
 [State,SolStrat] = TransientIncrement
(Model,ElemData,Loading,State,SolStrat);
 [State,SolStrat] = TransientIterate
(Model,ElemData,Loading,State,SolStrat);
 if (SolStrat.ConvFlag)
 State = Update_TransientState (Model,ElemData,State,SolStrat);
 % store displacement value at pltDOF
 pc = pc+1;
 Disp (pc) = State.U(pltDOF);
 else
 break
 end
end

Figure 23 Salient analysis steps for Example 3

 FEDEASLab Getting Started Guide and Simulation Examples

 25

0 5 10 15
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time

R
o
o
f

d
is

p
la

c
e
m

e
n
t

Figure 24 Time history of horizontal roof displacement of two-story steel frame

6.4 Example 4 – Nonlinear static analysis with different load histories

The fourth example is the first of four examples for the simulation of the nonlinear static
(push-over) analysis of the two story frame under constant gravity loads and a horizontal force
pattern that is incremented until the ultimate lateral shear force is reached. In this example the
nonlinear response of the elements is described by the one-component model with properties

specified in script file SimpleNLElemData.

To simulate the loading history two separate load histories are specified in this example:
one for the gravity loads, which consist of uniformly distributed element loads and are assigned
load history number 1, and one for the horizontal forces, which are assigned load history
number 2. This approach is certainly more straightforward, but has the limitation that an
automatic load control strategy for the lateral force pattern is not possible.

The function call sequence for the nonlinear push-over analysis is shown in Fig. 25, where
the salient data specification steps are highlighted: specification of element loading and load
history number in ElemData, load pattern number specification for horizontal forces in Loading

that matches the load history number in FrcHst, specification of load histories as time-value

pairs of field FrcHst in data object Loading, and specification of pseudo-time increment

Deltat under field IncrStrat of SolStrat data object.

It is worth noting that the creation of a new Post object in every load step in Fig. 25 permits
the subsequent post-processing of the entire incremental analysis at the expense of storage.

 FEDEASLab Getting Started Guide and Simulation Examples

 26

Structure (‘chec’,…)

Create_Loading Loading

Loading

FrcHst(1:2)

Time(.) Value(.)

Initialize_SolStrat

Initialize

Initialize_State State

ElemData

w(.)

ElemData

LdIDy=1

Pe(.,.,2)

Update_State

Iterate

Increment

k = 1:nostepSolStrat

IncrStrat

Deltat

Structure (‘post’,…) Post

Figure 25 Function call sequence for load specification and analysis steps in Example 4

Fig. 27 shows the relation between lateral load factor and horizontal roof displacement (also
known as push-over curve) of the 2-story steel frame. Fig. 28 shows the deformed shape with a
magnification factor of 10 and the plastic hinge locations of the 2-story frame at the last load
step (near lateral strength).

 FEDEASLab Getting Started Guide and Simulation Examples

 27

Distributed element loads with load pattern number 1

for el=5:6
 ElemData{el}.w = [0;-0.50];
 ElemData{el}.LdIdy = 1;
end
for el=7:8
 ElemData{el}.w = [0;-0.35];
 ElemData{el}.LdIdy = 1;
end

Horizontal forces with laod pattern number 2

% specify nodal forces values in first two columns, pattern number in third
Pe(2,1,2) = 20; % force at node 2 in dof 1 (force in global X) for load
pattern 2
Pe(3,1,2) = 40;
Pe(5,1,2) = 20;
Pe(6,1,2) = 40; % force at node 6 in dof 1 (force in global X) for load
pattern 2
Loading = Create_Loading (Model,Pe);

Applied force time histories

Deltat = 0.10;
Tmax = 2.00;

Loading.FrcHst(1).Time = [0;Deltat;Tmax];
% force pattern 1 is applied over Deltat and then kept constant
Loading.FrcHst(1).Value = [0;1;1];
Loading.FrcHst(2).Time = [0;Deltat;Tmax];
% force pattern 2 is linearly rising between Deltat and Tmax up to value of 2.8
Loading.FrcHst(2).Value = [0;0;2.8];

Incremental analysis by pseudo-time incrementation

% initialize State
State = Initialize_State(Model,ElemData);
% initialize default SolStrat parameters
SolStrat = Initialize_SolStrat;
% specify pseudo-time step increment (does not have to be the same as Deltat,
smaller value
% results in more steps to reach end of analysis)
SolStrat.IncrStrat.Deltat = 0.10;
% initialize analysis parameters
[State SolStrat] = Initialize(Model,ElemData,Loading,State,SolStrat);
… … … … … … …

Load incrementation until maximum specified time Tmax (pseudo-time stepping)

while (State.Time < Tmax-10^3*eps)
 [State SolStrat] = Increment(Model,ElemData,Loading,State,SolStrat);
 [State SolStrat] = Iterate (Model,ElemData,Loading,State,SolStrat);
 if (SolStrat.ConvFlag)
 State = Update_State(Model, ElemData, State);
 else
 break
 end
 pc = pc+1;
 Post(pc) = Structure ('post',Model,ElemData,State);
end

Figure 26 Salient steps for load specification and analysis for Example 4

 FEDEASLab Getting Started Guide and Simulation Examples

 28

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Horizontal roof displacement

L
o

a
d

 f
a

c
to

r
λ

Figure 27 Load factor vs. horizontal roof displacement for 2-story steel frame

Figure 28 Deformed shape and plastic hinge locations of 2-story frame at last load step

 FEDEASLab Getting Started Guide and Simulation Examples

 29

6.5 Example 5 – Nonlinear static analysis with loading sequence and control

The specification of two separate load histories for gravity and horizontal forces in the
preceding example does not allow for automatic load control strategy, which is essential for the
determination of the lateral strength of the frame and the post-peak response. Since load control
is only possible with the application of a single force pattern, the gravity loads are applied first in
this example, followed by the analysis for the horizontal forces. The function call sequence for
the loading sequence is shown in Fig. 29.

Figure 29 Function call sequence for gravity load and horizontal force loading sequence

 FEDEASLab Getting Started Guide and Simulation Examples

 30

The gravity loads consist only of distributed element loads specified in ElemData. The

function call to function Create_Loading without input arguments generates a Loading data

object with zero nodal reference force and displacement vectors. For easier identification this
data object is called GravLoading in this example. After initializing the State and SolStrat data

object a single load step is applied with the sequence of function calls Initialize,

Increment, Iterate and Update_State (under the assumption that convergence is

achieved during equilibrium iterations). Following the completion of the load step it is possible to

specify the lateral forces and call function Create_Loading to generate a new loading data

object, called LatLoading in this example. It contains the lateral forces in reference vector

Pref. The call to function Initialize resets the load factor and stores the resisting force

vector at the time of the call as initial force vector. This allows the application of load sequences
in separate sequential analyses. During the second analysis it is possible to modify SolStrat
parameters and include the load control option, as Fig. 29 shows. With this option there is
automatic load control for the horizontal force pattern, so that the push-over analysis can be
continued past the displacement value at attainment of lateral strength, as Fig. 30 shows.

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

Horizontal roof displacement

L
o

a
d

 f
a

c
to

r
λ

Figure 30 Load factor vs. horizontal roof displacement for 2-story steel frame

 FEDEASLab Getting Started Guide and Simulation Examples

 31

Element properties

SimpleNLElemData
% print element properties (optional)
Structure ('data',Model,ElemData);

Loading (distributed loads only)

% define loading
for el=5:6 ElemData{el}.w = [0;-0.50]; end
for el=7:8 ElemData{el}.w = [0;-0.35]; end
GravLoading = Create_Loading (Model);

Incremental analysis for distributed element loading (single load step)

% initialize state
State = Initialize_State(Model,ElemData);
% initialize solution strategy parameters
SolStrat = Initialize_SolStrat;
% specify initial load increment (even though it is the same as the default
value and could be omitted)
SolStrat.IncrStrat.Dlam0 = 1;
% initialize analysis sequence
[State SolStrat] = Initialize(Model,ElemData,GravLoading,State,SolStrat);
% apply load in one increment
[State SolStrat] = Increment(Model,ElemData,GravLoading,State,SolStrat);
% perform equilibrium iterations (we assume that convergence will occur!)
[State SolStrat] = Iterate (Model,ElemData,GravLoading,State,SolStrat);
% update State
State = Update_State(Model,ElemData,State);
… … … … …

2. Loading in sequence: horizontal forces

% specify nodal forces
Pe(2,1) = 20;
Pe(3,1) = 40;
Pe(5,1) = 20;
Pe(6,1) = 40;
LatLoading = Create_Loading (Model,Pe);

Incremental analysis for horizontal force pattern (load control is on)

% (gravity forces are left on by not initializing State!)
% specify initial load increment and turn load control on
SolStrat.IncrStrat.Dlam0 = 0.40;
SolStrat.IncrStrat.LoadCtrl = 'yes';
SolStrat.IterStrat.LoadCtrl = 'yes';
% specify number of load steps
nostep = 20;
% initialize analysis sequence
[State SolStrat] = Initialize(Model,ElemData,LatLoading,State,SolStrat);

% for specified number of steps, Increment, Iterate and Update_State (we assume
again convergence!)
for j=1:nostep
 [State SolStrat] = Increment(Model,ElemData,LatLoading,State,SolStrat);
 [State SolStrat] = Iterate (Model,ElemData,LatLoading,State,SolStrat);
 State = Update_State(Model,ElemData,State);
 k = k+1;
 Post(k) = Structure ('post',Model,ElemData,State);
 % print results to output file
 Structure('prin',Model,ElemData,State);
end

Figure 31 Salient steps for load specification and analysis for Example 5

 FEDEASLab Getting Started Guide and Simulation Examples

 32

6.6 Example 6 – Nonlinear static analysis with nonlinear geometry

This example is the same as example 5, except for the fact that nonlinear geometry effects
are included for the frame columns. To accentuate the nonlinear geometry effect additional
vertical forces are applied at the top of each column element of the model. In this case it is very
important to clear the applied force vector before specifying the lateral forces for the second
loading case. The salient steps of this process are shown in Fig. 32. The subsequent steps are
identical to the steps following the lateral load definition in Fig. 31.

1. Loading (distributed loads and vertical forces on columns)

% define loading
for el=5:6 ElemData{el}.w = [0;-0.50]; end
for el=7:8 ElemData{el}.w = [0;-0.35]; end

Pe(2,2) = -200;
Pe(3,2) = -400;
Pe(5,2) = -200;
Pe(6,2) = -400;
GravLoading = Create_Loading (Model,Pe);

Specify nonlinear geometry option for columns

for el=1:4 ElemData{el}.Geom = 'PDelta'; end

Incremental analysis for distributed element loading (single load step)

% initialize state
State = Initialize_State(Model,ElemData);
% initialize solution strategy parameters
SolStrat = Initialize_SolStrat;
% specify initial load increment (even though it is the same as the default
value and could be omitted)
SolStrat.IncrStrat.Dlam0 = 1;
% initialize analysis sequence
[State SolStrat] = Initialize(Model,ElemData,GravLoading,State,SolStrat);
% apply load in one increment
[State SolStrat] = Increment(Model,ElemData,GravLoading,State,SolStrat);
% perform equilibrium iterations (we assume that convergence will occur!)
[State SolStrat] = Iterate (Model,ElemData,GravLoading,State,SolStrat);
% update State
State = Update_State(Model,ElemData,State);
% determine resisting force vector
State = Structure ('forc',Model,ElemData,State);
… … … … …

2. Loading in sequence: horizontal forces

% specify nodal forces
% !!!! IMPORTANT!!!! CLEAR PREVIOUS PE
clear Pe;
Pe(2,1) = 20;
Pe(3,1) = 40;
Pe(5,1) = 20;
Pe(6,1) = 40;
LatLoading = Create_Loading (Model,Pe);

Incremental analysis for horizontal force pattern (load control is switched on)

Figure 32 Salient steps for load specification and gravity load analysis for Example 6

 FEDEASLab Getting Started Guide and Simulation Examples

 33

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

Horizontal roof displacement

L
o

a
d

 f
a

c
to

r
λ

Figure 33 Load factor vs. horizontal roof displacement for P-∆ geometry

Figure 34 Moment distribution and plastic hinge location at last load step

 FEDEASLab Getting Started Guide and Simulation Examples

 34

6.7 Example 7 – Nonlinear static analysis with distributed inelasticity element

Example 7 is the same as example 6 except for the use of the distributed inelasticity frame
element with force formulation for modeling the girders and columns of the two-story steel

frame. Thus, the element properties are defined by the script file DistrInelElemData instead

of SimpleNLElemData. Figs. 35 and 36 show the push-over curve under nonlinear geometry

and the curvature distribution which confirms the plastic hinge locations of Fig. 34.

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

Horizontal roof displacement

L
o

a
d

 f
a

c
to

r
λ

Figure 35 Load factor vs. horizontal roof displacement for distributed inelasticity frame
element under P-∆ geometry

Figure 36 Curvature distribution at last load step of push-over curve of Fig. 35

 FEDEASLab Getting Started Guide and Simulation Examples

 35

6.8 Example 8 – Nonlinear transient response analysis with distributed
inelasticity element

The last example covers the nonlinear transient response analysis of the 2-story steel frame
with distributed inelasticity frame elements under constant gravity load and support acceleration.
Because the analysis steps are a combination of steps from similar examples, the comments
are brief. Fig. 37 shows the sequence of function calls for loading and analysis definition.

Figure 37 Function call sequence for load specification and analysis steps in Example 8

 FEDEASLab Getting Started Guide and Simulation Examples

 36

At first, a linear analysis under imposed support displacement is used to generate the vector
of reference accelerations at the free dofs for support excitation (similar to Example 2). Then,
the gravity loading consisting of uniformly distributed element loads and additional vertical
forces at the top of column elements is specified to generate the loading data object
GravLoading. After initializing State and SolStrat this loading is applied on the structural model
in a single load step (similar to example 5). After adding a lumped mass vector and a Rayleigh
damping matrix, a sequence of transient steps is performed for the lateral loading consisting of
the imposed acceleration history and the reference acceleration vector at the free dofs. During
transient response the gravity loads are maintained constant. The time step of numerical

integration is specified in field Deltat of field TimeStrat of the SolStrat data object. This

sequence of steps is identical to those for a linear transient response analysis in example 3
(consult also Fig. 22). The roof displacement time history is shown in Fig. 38. It is clear that a
large excursion into the inelastic range takes place approximately 4 seconds into the response.

0 5 10 15
-14

-12

-10

-8

-6

-4

-2

0

2

4

Time

R
o

o
f
d

is
p

la
c
e

m
e

n
t

Figure 38 Time history of horizontal roof displacement of two-story steel frame under
nonlinear transient response with distributed inelasticity element

 FEDEASLab Getting Started Guide and Simulation Examples

 37

Appendix

Model definition of 2-story, one bay 3d braced frame

 9

 7

 8

 7

 3

11

19

27

35

18

17
16

24

32

40

23

39

15

31

12

11

10

 4

 8

16

15

12

20

28

36

18

34

10

26

20

19

 6

 5

 4

 6

 2

13

21

37

29

22

38

14

30

14

13

17

 9

33

25

 3

 2

 1

 5

 1

Figure A1 – 2-story, one bay 3d braced frame model

 FEDEASLab Getting Started Guide and Simulation Examples

 38

Create Model

% all units in kip and inches

Node coordinates (in feet!)

height = 12;
width = 20;
XYZ([1: 3],:) = [zeros(3,1) zeros(3,1) linspace(0,2*height,3)'];
XYZ([4: 6],:) = [width*ones(3,1) zeros(3,1) linspace(0,2*height,3)'];
XYZ([7: 9],:) = [width*ones(3,1) width*ones(3,1) linspace(0,2*height,3)'];
XYZ([10:12],:) = [zeros(3,1) width*ones(3,1) linspace(0,2*height,3)'];
XYZ([13:14],:) = [width/2*ones(2,1) zeros(2,1) linspace(height,2*height,2)'];
XYZ([15:16],:) = [width*ones(2,1) width/2*ones(2,1) linspace(height,2*height,2)'];
XYZ([17:18],:) = [width/2*ones(2,1) width*ones(2,1) linspace(height,2*height,2)'];
XYZ([19:20],:) = [zeros(2,1) width/2*ones(2,1) linspace(height,2*height,2)'];
% convert coordinates to inches
XYZ = XYZ.*12;

Connectivity array

no_columns = 4;
for i = 0:3
 n = i+1;
 % first story columns
 CON(n,:) = num2cell([3*i+1 3*i+2],2);
 % second story columns
 CON(n + no_columns,:) = num2cell([3*i+2 3*i+3],2);
 % first story beams
 CON(n + 2*no_columns,:) = num2cell([3*i+2 2*i+13],2);
 CON(n + 3*no_columns,:) = num2cell([3*i+2 2*i+11],2);
 CON{13} = [2 19];
 % second story beams
 CON(n + 4*no_columns,:) = num2cell([3*i+3 2*i+14],2);
 CON(n + 5*no_columns,:) = num2cell([3*i+3 2*i+12],2);
 CON{21} = [3 20];
 % first floor braces
 CON(n + 6*no_columns,:) = num2cell([3*i+1 2*i+13],2);
 CON(n + 7*no_columns,:) = num2cell([3*i+1 2*i+11],2);
 CON{29} = [1 19];
 % second floor braces
 CON(n + 8*no_columns,:) = num2cell([3*i+2 2*i+14],2);
 CON(n + 9*no_columns,:) = num2cell([3*i+2 2*i+12],2);
 CON{37} = [2 20];
end

Boundary conditions

% (specify only restrained dof's)
BOUN(1,:) = ones(1,3); % (1 = restrained, 0 = free)
BOUN(4,:) = ones(1,3);
BOUN(7,:) = ones(1,3);
BOUN(10,:) = ones(1,3);

Element type

[ElemName{ 1:24}] = deal('Lin3dFrm_NLG'); % 3d linear frame element
[ElemName{25:40}] = deal('LinTruss_NLG'); % linear truss element

Create model data structure

Model = Create_Model(XYZ,CON,BOUN,ElemName);

Display model and show node/element numbering (optional)

figA = Create_Window (0.70,0.70); % open figure window named figA
Plot_Model (Model); % plot model (optional)
Label_Model (Model); % label model (optional)

Figure A2 – Model definition of 3d braced frame in FEDEASLab

