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Summary 

The Matlab© toolbox FEDEASLab is a user-friendly, versatile and powerful tool for the 
simulation of nonlinear structural response under static and dynamic loads, which has been 
used successfully for the development of new elements and material models, as well as for the 
simulation of the response of small structural models in research and instruction. Its 
development started in 1998 for the support of instruction of the basic graduate courses of linear 
and nonlinear structural analysis at the University of California, Berkeley. To date FEDEASLab 
has evolved into a powerful framework for research in the nonlinear analysis of structures.  

The toolbox consists of several functions that are grouped in categories and are, consequently, 
organized in separate directories. These functions operate on five basic data structures which 
represent the model, the loading, the element properties, the state of the structural response, 
and the parameters of the solution strategy. A sixth data structure is optional and carries post-
processing information that can be used for response interpretation and visualization. 

FEDEASLab supports path-dependent static or transient response under multiple force and 
displacement patterns. Transient response under multiple force patterns, displacement patterns, 
and acceleration patterns with uniform or multi-support excitation is also supported. 

The nonlinear response analysis of structural models under static or transient conditions is 
decomposed into logical steps. Each step is represented by a separate function with one or 
more basic data objects as input and output arguments. In this way the definition of the model, 
the specification of element properties, the definition of applied force and displacement patterns 
and corresponding load histories, and the analysis of the model under the loading becomes a 
sequence of function calls that are organized in script files. With Matlab's scripting language it is 
easy to customize the analysis sequence and conduct parameter studies. The modular 
architecture of the toolbox and the compact organization of data allow for the easy addition of 
new functions for providing new capabilities. It is equally easy to access the data objects and 
enhance the information stored in them. A well defined interface for element, section and 
material models permits the user to add custom components to the available element, section 
and material libraries. 

Post-processing is accommodated with a data object that carries all important material, element 
and structural information for plotting or printing. Several functions that address basic post-
processing tasks are provided. The user can easily enhance and extend the current capabilities. 

Berkeley, July 31, 2004 
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1. Introduction 

The objective of this report is to provide a brief overview of FEDEASLab's data structures 
and functions by describing their use in typical nonlinear static and transient analysis situations 
for a small structural model. A thorough discussion of the toolbox' architecture and its 
capabilities is provided in NEES Technical Report TR-2004-50. 

It is assumed that the reader is familiar with Matlab©, in particular with numeric arrays and 
array operations, and with data structures and cell arrays. In addition to the excellent on-line 
help of the program the reader is referred to chapters 5 through 7 of the book Mastering Matlab 
6 by D. Hanselman and B. Littlefield published in 2001 by Prentice Hall. 

The toolbox functions require Matlab© version 6.x or later. 
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2. Installation 

FEDEASLab toolbox functions are contained in a self-extracting zip file that can be 
downloaded from the website: http://fedeaslab.berkeley.edu. Execution of the file will unzip the 
functions into several subdirectories under the directory containing the executable. The 
subdirectory organization is shown in Fig. 1. 

FEDEASLab Function 

Categories

Section_Lib

Element_Lib

Output

Utilities

Geometry

General

Examples

Solution_Lib

Material_Lib

 

Figure 1  Directory organization of FEDEASLab functions 

The execution of file Adjust_Path.m  will add these subdirectories to Matlab's directory 

search path. Each subdirectory contains a Contents file with a brief description of each 

function. This can be invoked directly from Matlab's command line by typing help 

directory_name. 
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3. Data structures 

The Matlab© toolbox FEDEASLab consists of several functions. These operate on five 
basic data objects that carry information about the structural model geometry, the element 
properties, the applied loading, the solution strategy parameters, and the response state. A sixth 
data object called Post is optional and carries post-processing information for response 
interpretation and visualization. These data structures are summarized in Fig. 2. In this report 
data structures are identified with a double vertical border in figures and with bold type face in 
text. 

 

Figure 2     Data structures in FEDEASLab 

Detailed information about the basic data structures and the toolbox function architecture is 
provided in NEES Technical Report TR-2004-50. 
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4. The key role of function Structure 

Each function in the FEDEASLab toolbox has a single purpose, which can often be 

surmised from the function name. The only exception is the function Structure which 

accomplishes several tasks by operating on all elements in the structural model, or only on a 

group of them, as specified in the optional input argument ElemList. The type of action that 

the function performs is specified by character variable action which can assume one of the 

four letter keywords on the leftmost column of Fig. 3. The function syntax with the order of input 
arguments along with a short description of the function purpose for every action keyword is 
shown in Fig. 3. The output of the function is either a data object, or a printing or plotting action 
with an empty output argument list. In the figure printing is identified by the symbol IOW and 
plotting by the deformed shape of a structural model. 

 

Figure 3 Syntax and input/output argument list of function Structure 
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5. Organization of typical simulation script 

A typical simulation script performs the following tasks: 

1. Definition of model geometry and creation of data object Model. 

2. Specification of element properties and creation of data object ElemData. 

3. State initialization (creation of data object State). 

4. Specification of one or more load patterns and creation of data object Loading. 

5. Creation of data object SolStrat with default solution strategy parameters. 

6. Initialization of solution process and application of one or more load steps with 
corresponding structural response determination. 

7. Storage of response information for immediate or subsequent post-processing. 

Because of the importance of Model and ElemData in subsequent tasks, tasks 1 and 2 
must be arranged in this order at the start of the analysis script. In fact, it may be convenient to 
isolate the model definition and the element property specification in separate script files, as 
was done in the examples of this report. Fig. 4 shows the sequence of FEDEASLab function 
calls and the input and output arguments for tasks 1 and 2.  

 

Figure 4  Model definition and ElemData specification 
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In Fig. 4 functions are identified by square boxes with double vertical borders and are 
arranged in the middle of the figure with an arrow depicting the sequence. The input arguments 
to every function are collected in the box pointing toward the function on the left hand side of 
figure. The key data objects have a double vertical border, while arrays specified by the user 
have a single border and a rounder outline. The output of every function is typically a single data 
object. It is arranged in a box on the right hand side of the figure with an arrow pointing away 
from the function. This graphic convention is followed consistently in this report.   

In Fig. 4 the function CleanStart clears the workspace memory and initializes a couple of 

global variables. Upon specification of the node coordinates in array XYZ, the boundary 

conditions in array BOUN, the element connectivity in cell array CON and the element type in cell 

array ElemName the function Create_Model generates the data object Model with fields 

carrying information about the model geometry and the degree of freedom (dof) numbering. In 
the next step the user specifies the element properties in cell array ElemData and the function 

Structure with action keyword 'chec' checks the element property data for missing 

information and supplies default values, if necessary. The data object completion process is 
indicated in Fig. 4 by the darker background of the ElemData data object upon exit from the 

function Structure. Optional functions for printing model information and displaying the model 

geometry are shown on the right hand side of Fig. 4 enclosed in a lighter gray background. The 

optional invocation of function Structure with action keyword 'data' prints the element 

properties in the output file. 

With Model and ElemData defined, tasks 3 through 5 can be accomplished in any order. 
The necessary function calls and input arguments are shown in Fig. 5.  

Loading

Initialize_SolStrat

Initialize_State

SolStrat

State

Model

ElemData

Create_Loading

Model

Pe(1:nn,1:ndfx,1:npat)

Ue(1:nn,1:ndfx,1:npat)

 

Figure 5  Loading definition and initialization of State and SolStrat 
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It is important to note, however, that the initialization of State is typically done only once in 
an analysis, while Loading and SolStrat can be specified several times in the script for 
describing load sequences and changes to solution strategy parameters. Consequently, the 
order of Fig. 5 should be adhered to, if possible. 

It is worth noting that the data object SolStrat emerging from function Initialize_SolStrat 

only contains default values for the solution strategy parameters. The user should supply 
solution specific values for the case at hand.  

Task 6 is made up of several function calls, as shown in Figs. 6 and 7 for static and transient 
response analysis, respectively 

 

Figure 6 Nonlinear static response analysis with several load steps 

Upon specification of the solution strategy parameters the call to the Initialize or 

TransientInitialize function sets to zero the pseudo-or real time parameter and the load 

factor(s) in State and stores any resisting forces of the structure as initial forces for the next 
analysis. It is assumed that these resisting forces are in equilibrium with the applied loading 
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before the application of the new load sequence. Following the initialization, several steps of 
load incrementation with equilibrium iterations can be performed. Upon convergence of the 

iteration process in each load step the function Update_State or Update_TransientState 

can be used to update the response state variables in State. To prepare for the eventuality of 
lack of convergence during a particular load step it is advisable to copy the last State to a data 
object TempState before the start of a new step. TempState is then used instead of State as 
input and output argument of the incrementation and iteration functions. Upon convergence 
TempState serves as input argument to the state updating function with State as the output 
argument. This approach allows for switching to alternative solution strategies in case of 
convergence failure, such as time step subdivision or change of solution strategy parameters. 

 

Figure 7 Nonlinear transient response analysis with several time steps 

It is worth noting that SolStrat is required as input argument to Update_TransientState 

in Fig. 7 because it carries the time integration constants needed for updating the dof velocities 
and accelerations at the end of the time step. 
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Structural response information for post-processing can be requested with a call to function 

Structure anytime after State is created. This permits information to be stored for each 

iteration within a load step of the solution process. Such profusion of information may result in a 
very large data object Post for a model with many elements under many load steps. In such 
case it is advisable to limit the storage of information to a few relevant steps, or to write the data 
object Post to the hard disk and clear it from memory. The syntax for generating post-
processing information is shown in Fig. 8. 

Structure (‘post’,…) Post

Print_State

Structure (‘prin’,…)

Structure (‘defo’,…)

Plot_ForcDistr

Plot_CurvDistr

Plot_IPVarDistr

Model

ElemData

State

ElemList

 

Figure 8 Generation of post-processing information in data object Post 

Fig. 8 shows that it is possible to limit the generation of post-processing information to 

elements in an ElemList. The figure also shows that a few post-processing functions do not 

require Post. These functions precede the function call to Structure in Fig. 8. Print_State 

sends structural response information like global dof displacements and resisting forces, which 
is stored in data obejct State, to the output file. The same is true for element response 

information with a call to function Structure with action keyword 'prin', while the call to 

function Structure with action keyword 'defo' plots the deformed shape of the structure 

under the current state. Once Post is available, the functions Plot_xxDistr can be used to 

plot the distribution of certain variables along the element axis. 

The syntax of the distribution plotting functions is shown in Fig. 9. Additional details about 
function syntax are available in NEES Technical Report TR-2004-50 and in the on-line help file 
that accompanies the functions. 
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Plot_ForcDistr

Plot_CurvDistr

ElemList

Component

Model

ElemData

Post

Plot_IPVarDistr

ElemList

Model

ElemData

Post

ElemList

Component

Model

ElemData

Post

Scale

 

Figure 9 FEDEASLab functions for plotting element variables 
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6. Simulation examples 

The following examples present the necessary steps for performing a linear or nonlinear 
static or dynamic analysis of the two-story steel frame model in Fig. 10. Some of the applied 
loads are also shown in Fig. 10. In addition, the following simulation studies cover the case of 
imposed support displacement as well as support acceleration. The model consists of eight 
elements: one for each column and two elements for each girder. Nodes are represented by 
little squares in the figure. 

Because the model geometry is the same for the simulation studies it is specified in a 

separate script file called Model_TwoStoryFrm.  

144

144

300

20

40

0.35

0.50

40

20

W14x193 W14x193

W14x145 W14x145

W27x94

W24x68

 

Figure 10  Two-story steel frame model used in the simulation examples 

Figure 11 shows the schematic representation of the process and the actual contents of file 

Model_TwoStoryFrm.  The model definition for a two-story, one-bay 3d braced frame is 

shown in the Appendix and in the FEDEASLab website. 
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Create Model 

% all units in kip and inches 

Node coordinates (in feet!) 

XYZ(1,:) = [ 0     0];  % first node 
XYZ(2,:) = [ 0    12];  % second node, etc 
XYZ(3,:) = [ 0    24];  % 
XYZ(4,:) = [25     0];  % 
XYZ(5,:) = [25    12];  % 
XYZ(6,:) = [25    24];  % 
XYZ(7,:) = [12.5  12];  % 
XYZ(8,:) = [12.5  24];  % 
% convert coordinates to inches 
XYZ = XYZ.*12; 

Connectivity array 

CON {1} = [  1   2];   % first story columns 
CON {2} = [  4   5]; 
CON {3} = [  2   3];   % second story columns 
CON {4} = [  5   6]; 
CON {5} = [  2   7];   % first floor girders 
CON {6} = [  7   5]; 
CON {7} = [  3   8];   % second floor girders 
CON {8} = [  8   6]; 

Boundary conditions 

% (specify only restrained dof's) 
BOUN(1,1:3) = [1 1 1];  % (1 = restrained,  0 = free) 
BOUN(4,1:3) = [1 1 1]; 

Element type 

% Note:  any 2 node 3dof/node element can be used at this point! 
[ElemName{1:8}] = deal('Lin2dFrm_NLG');    % 2d linear elastic frame element 

Create model data structure 

Model = Create_Model(XYZ,CON,BOUN,ElemName); 

Display model and show node/element numbering (optional) 

Create_Window (0.70,0.70);         % open figure window 
set(gcf,'Color',[1 1 1]); 
Plot_Model  (Model);               % plot model (optional) 
Label_Model (Model);               % label model (optional) 

 

Figure 11 Contents of file Model_TwoStoryFrm  
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Even though ElemName is specified as a 2d linear elastic frame element, the actual element 

type is modified later with the element property information. During model creation the function 

Create_Model requires the number of nodes and the number of dofs per node for each 

element in the model. Because all 2d frame elements in the current library have two nodes and 
3 dofs per node, it is irrelevant what 2d frame element type is specified at this stage. The output 

of functions Plot_Model and Label_Model is shown in Fig. 12. 

1

2

3

4

5

6

7

8

1 2

3 4

5 6

7 8

 

Figure 12 Output from Plot_Model and Label_Model 

The next stage involves the specification of element property data. These data are also 
specified in a separate script file. There are three types of element in the simulation studies: a 
linear elastic 2d frame element, a nonlinear one-component 2d frame element with concentrated 
plastic hinges at the ends, and a distributed inelasticity 2d frame element with 5 integration 
points along the span and discretization of each section into layers with uniaxial material 
response. Correspondingly, three separate script files are provided, one for each case: 

LinearElemData, SimpleNLElemData and DistrInelElemData. The contents of these 

files are provided in Figs. 13a-c. By invoking the function Structure with action keyword 

'chec' the element property data are checked for missing information and default values are 

supplied, if necessary. 
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Define elements 

% all units in kip and inches 

Element name: 2d linear elastic frame element 

[Model.ElemName{1:8}] = deal('Lin2dFrm_NLG'); 

Element properties 

Columns of first story W14x193 

for i=1:2; 
   ElemData{i}.E = 29000; 
   ElemData{i}.A = 56.8; 
   ElemData{i}.I = 2400; 
end 

Columns of second story W14x145 

for i=3:4; 
   ElemData{i}.E = 29000; 
   ElemData{i}.A = 42.7; 
   ElemData{i}.I = 1710; 
end 

Girders on first floor W27x94 

for i=5:6; 
   ElemData{i}.E = 29000; 
   ElemData{i}.A = 27.7; 
   ElemData{i}.I = 3270; 
end 

Girders on second floor W24x68 

for i=7:8; 
   ElemData{i}.E = 29000; 
   ElemData{i}.A = 20.1; 
   ElemData{i}.I = 1830; 
end 

Default values for missing element properties 

ElemData = Structure ('chec',Model,ElemData); 

 

Figure 13a  Element property specification for 2d linear frame elements 
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Define elements 

% all units in kip and inches 

Element name: 2d nonlinear frame element with concentrated inelasticity 

[Model.ElemName{1:8}] = deal('OneCo2dFrm_NLG');    % One-component nonlinear 2d 
frame element 

Element properties 

fy  = 50;        % yield strength 
eta = 1.e-5;     % strain hardening modulus for multi-component models 

Columns of first story W14x193 

for i=1:2; 
   ElemData{i}.E = 29000; 
   ElemData{i}.A = 56.8; 
   ElemData{i}.I = 2400; 
   ElemData{i}.Mp  = 355*fy; 
   ElemData{i}.eta = eta; 
end 

Columns of second story W14x145 

for i=3:4; 
   ElemData{i}.E = 29000; 
   ElemData{i}.A = 42.7; 
   ElemData{i}.I = 1710; 
   ElemData{i}.Mp  = 260*fy; 
   ElemData{i}.eta = eta; 
end 

Girders on first floor W27x94 

for i=5:6; 
   ElemData{i}.E = 29000; 
   ElemData{i}.A = 27.7; 
   ElemData{i}.I = 3270; 
   ElemData{i}.Mp  = 278*fy; 
   ElemData{i}.eta = eta; 
end 

Girders on second floor W24x68 

for i=7:8; 
   ElemData{i}.E = 29000; 
   ElemData{i}.A = 20.1; 
   ElemData{i}.I = 1830; 
   ElemData{i}.Mp  = 177*fy; 
   ElemData{i}.eta = eta; 
end 

Default values for missing element properties 

ElemData = Structure ('chec',Model,ElemData); 

 

Figure 13b  Element property specification for 2d nonlinear one-component model 
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Element name: 2d nonlinear frame element with distributed inelasticity 

[Model.ElemName{1:8}] = deal('NLdirFF2dFrm_NLG'); % NL iterative force 
formulation 

Element properties 

Columns of first story W14x193 

for i=1:2; 
   ElemData{i}.nIP    = 5;           % number of integration points 
   ElemData{i}.IntTyp = 'Lobatto';   % Gauss-Lobatto Integration 
   ElemData{i}.SecName= 'HomoWF2dSec';    % type of section 
   for j=1:ElemData{i}.nIP 
      ElemData{i}.SecData{j}.d   = 15.48;  % depth 
      ElemData{i}.SecData{j}.tw  =  0.89;  % web thickness 
      ElemData{i}.SecData{j}.bf  = 15.71;  % flange width 
      ElemData{i}.SecData{j}.tf  =  1.44;  % flange thickness 
      ElemData{i}.SecData{j}.nfl =     4;  % number of flange layers 
      ElemData{i}.SecData{j}.nwl =     8;  % number of web layers 
      ElemData{i}.SecData{j}.IntTyp = 'Midpoint';   % midpoint integration rule
   end 
end 

Columns of second story W14x145 

……………… 

Girders on first floor W27x94 

……………… 

Girders on second floor W24x68 

……………… 

Material properties 

for i=1:Model.ne; 
   for j=1:ElemData{i}.nIP 
      ElemData{i}.SecData{j}.MatName    = 'BilinearHysteretic1dMat';       % 
material type 
      ElemData{i}.SecData{j}.MatData.E  = 29000;  % elastic modulus 
      ElemData{i}.SecData{j}.MatData.fy = 50;     % yield strength 
      ElemData{i}.SecData{j}.MatData.Eh = 0.1;    % hardening modulus 
   end 
end 

Default values for missing element properties 

ElemData = Structure ('chec',Model,ElemData); 

 

Figure 13c  Element property specification for 2d distributed inelasticity elements 

With the model geometry and element specification complete, it is now possible to apply 
different types of loading for linear or nonlinear, static or transient response analysis. This is 
discussed in the following examples. 
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6.1 Example 1- Linear elastic analysis with superposition of results 

In this example the two story steel frame is subjected to three types of loading: (a) uniformly 
distributed element loads in the girders, as shown in Fig. 10, (b) horizontal forces, as shown in 
Fig. 10, and, (c) a horizontal displacement of 0.2 units at the left support. Three separate linear 
analyses are conducted and the results are then superimposed with load combination factors, 
as required by LRFD. The sequence of function calls is shown graphically in Fig. 14  

Create_Loading Loading

StateLinearStep

Structure (‘post’,…) Post(1)

Create_Loading Loading

LinearStep State

Structure (‘post’,…) Post(2)

Create_Loading Loading

LinearStep State

Structure (‘post’,…) Post(3)

Plot_ForcDistr

Print_State

Structure (‘defo’,…)

Print_State

Structure (‘defo’,…)

Plot_ForcDistr

Print_State

Structure (‘defo’,…)

Plot_ForcDistr

1.2*Post(1)+1.5*Post(2) Post_Combi Plot_ForcDistr
 

Figure 14  Function call sequence for the analysis steps of Example 1 
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It is noteworthy that a single analysis function called LinearStep is available in this case. 

The function syntax is shown in Fig. 15. 

 

Figure 15  Input and output arguments for function LinearStep 

The moment distribution under factored gravity element loads and horizontal forces is 
shown in Fig. 16, while Fig. 17 contains salient excerpts from the script file Example_1. It is 
worth noting in Fig. 16 the necessity to zero the distributed element load before defining the 
loading for the horizontal forces. It is equally necessary to specify an empty force vector in the 
third load case, so as to set to zero the horizontal forces before defining the loading for the 
horizontal support displacement. 

Finally, the distributed element loading needs to be re-inserted with the appropriate load factor 

in the data object ElemData before invoking the last Plot_ForcDistr function, so that the 

moment diagram reflects the presence of the element loading in the factored load combination. 

y

 

Figure 16  Moment distribution under factored gravity and horizontal forces 
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Load case 1 : distributed load in girders 

% distributed load in elements 5 through 8 
for el=5:6 ElemData{el}.w = [0;-0.50]; end 
for el=7:8 ElemData{el}.w = [0;-0.35]; end 
% there are no nodal forces for first load case 
Loading = Create_Loading (Model); 
 
% perform single linear analysis step 
State = LinearStep (Model, ElemData, Loading); 
… … … … … 
% store element response for later post-processing 
Post(1) = Structure ('post',Model,ElemData,State); 
… … … … … 

Load case 2: horizontal forces 

% set distributed load in elements 5 through 8 from previous load case to zero 
for el=5:8;  ElemData{el}.w = [0;0]; end 
% specify nodal forces 
Pe(2,1) = 20; 
Pe(3,1) = 40; 
Pe(5,1) = 20; 
Pe(6,1) = 40; 
Loading = Create_Loading (Model,Pe); 
 
State = LinearStep (Model, ElemData, Loading); 
… … … … … 
Post(2) = Structure ('post',Model,ElemData,State); 
… … … … … 

Load case 3: support displacement 

% zero nodal forces from previous load case and impose horizontal support 
displacement 
Pe = []; 
Ue(1,1) = 0.2;   % horizontal support displacement 
Loading = Create_Loading (Model,Pe,Ue); 
 
State = LinearStep (Model, ElemData, Loading); 
… … … … … 
 
Post(3) = Structure ('post',Model,ElemData,State); 
… … … … … 

Load combination 

% plot a new moment distribution for gravity and lateral force combination 
% using LRFD load factors and assuming that horizontal forces are due to EQ 
for el=1:Model.ne 
   Post_Combi.Elem{el}.q =1.2.*Post(1).Elem{el}.q + 1.5.*Post(2).Elem{el}.q; 
end 
 
% include distributed load in elements 5 through 8 for moment diagram 
for el=5:6 ElemData{el}.w = [0;-0.50]; end 
for el=7:8 ElemData{el}.w = [0;-0.35]; end 
 
% plot combined moment distribution 
Create_Window(0.70,0.70); 
Plot_Model(Model); 
Plot_ForcDistr (Model,ElemData,Post_Combi,'Mz');

 

Figure 17 Salient analysis steps for Example 1 
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6.2 Example 2 - Modal analysis of linear transient response 

The second example deals with the modal analysis of linear transient response of the two-
story steel frame under support acceleration from a recorded motion from the Erzincan, Turkey, 
earthquake of 1992. The function call sequence is presented graphically in Fig. 18 and salient 
analysis steps from the script file Example_2 are shown in Fig. 19. 

It is worth noting that a linear elastic analysis under an imposed unit support displacement is 
used in determining the reference acceleration vector at the free dofs of the model. A direct 
specification of this vector is more straightforward in this case, but the method used is more 
general, since it is equally valid under multi-support excitation. 

For the case of support acceleration the data object Loading consists of fields Uddref and 

AccHst with fields Time and Value, as shown in Fig. 18. These fields are specified by the 

user, as the input file shows. There is no need for a reference force or displacement vector in 
this case.  

 

Figure 18  Function call sequence for the analysis steps of Example 2 
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Specify ground acceleration 

% Reference acceleration vector by linear analysis under unit support 
displacement 
Ue([1,4],1)  = ones(2,1); 
SupLoading = Create_Loading (Model,[],Ue); % need to include an empty array for 
Pe 
 
State = LinearStep(Model,ElemData,SupLoading); 
% create actual loading vector with reference acceleration vector 
Loading.Uddref = State.U(1:Model.nf);      % reference acceleration vector in 
Loading 
% NOTE: the above reference acceleration vector could also be specified 
directly for this 
% simple case of rigid body motion due to support displacement 
 
% load ground motion history into Loading: 2% in 50 years motion from Erzincan, 
Turkey 
load EZ02; 
Loading.AccHst(1).Time  = EZ02(1:500,1);        % Load time values into field 
Time 
Loading.AccHst(1).Value = EZ02(1:500,2)/2.54;   % Load acceleration values and 
convert to in/sec^2 

 

 Norm of equilibrium error = 2.066638e-012 

Lumped mass vector 

% define distributed mass m 
m = 0.6; 
Me([2 3 5:8],1) = m.*ones(6,1); 
% create nodal mass vector and stored it in Model 
Model = Add_Mass2Model(Model,Me); 

Modal analysis 

% determine stiffness matrix at initial State 
State = Initialize_State(Model,ElemData); 
State = Structure('stif',Model,ElemData,State); 
 
% % number of modes to include in modal analysis 
no_mod = 2; 
% % modal damping ratios 
zeta = 0.02.*ones(1,no_mod); 
 
% Integration time step 
Dt = 0.03; 
 
% modal analysis 
[omega, Veig, Y_t] = ModalAnalysis(State.Kf,Model.Ml,Loading,Dt,zeta,no_mod); 
 
% global dof response history 
U_t = Y_t*Veig'; 

 

Figure 19 Salient analysis steps for Example 2 

In this example the deformed shape of the structure yields the mode shapes in Fig. 20 and the 
response time history of the horizontal roof displacement in shown in Fig. 21. 
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Figure 20  Mode shapes for two lowest eigenfrequencies of two-story steel frame 
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Figure 21  Time history of horizontal roof displacement of  two-story steel frame 
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6.3 Example 3 - Time history analysis of linear transient response 

The third example deals with the time history analysis of linear response of the two-story 
steel frame under support acceleration from a recorded motion at Erzincan, Turkey. The 
function call sequence is presented graphically in Fig. 22 and salient analysis steps from the 
script file Example_3 are shown in Fig. 23. The time history response results in Fig. 24 can be 
compared directly with those from Example 2. Very small discrepancies in value are due to the 
approximate nature of the time integration strategy for the given time step. 

 

Figure 22  Function call sequence for time history analysis 

The steps preceding the call to function Add_Damping2State in Fig. 22 are identical to 

those of Example 2 in Fig. 18 before the call to function Modal_Analysis. In addition to data 

object Loading, which has the same fields as in Example 2, the time history analysis requires 
specification of the time step for the numerical integration of transient response in data object 

SolStrat. This information is specified in field Deltat of field TimeStrat of SolStrat, as 

shown in Fig. 22. The function Initialize_SolStrat uses by default Newmark's constant 

acceleration method for the time integration. The user can modify the parameters of the method 

in field Param of field TimeStrat of SolStrat. 
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Specify ground acceleration 

% Reference acceleration vector by linear analysis under unit support 
displacement 
Ue([1,4],1)  = ones(2,1); 
SupLoading = Create_Loading (Model,[],Ue); % need to include an empty array for 
Pe 
 
State = LinearStep(Model,ElemData,SupLoading); 
% create Loading data object 
Loading = Create_Loading(Model); 
% insert reference acceleration vector into Loading 
Loading.Uddref = State.U(1:Model.nf);      % reference acceleration vector in 
Loading 
… … … … … 

Lumped mass vector 

… … … … … 

Rayleigh damping matrix 

% re-initialize State (zero support displacement this time) 
State = Initialize_State(Model,ElemData); 
% determine initial stiffness matrix 
State = Structure('stif',Model,ElemData,State); 
% specify modal damping ratios 
zeta = [0.02 0.02]; 
% specify modes 
mode  = [1 2]; 
State = Add_Damping2State ('Caughey',Model,State,zeta,mode); 

Transient time history analysis 

% initialize solution strategy parameters 
SolStrat = Initialize_SolStrat; 
% specify time interval for numerical integration 
SolStrat.TimeStrat.Deltat = 0.01; 
 
… … … … … 
Tmax = Loading.AccHst(1).Time(end); 
 
% initialize analysis parameters for transient response 
State = TransientInitialize(Model,ElemData,Loading,State); 

Time stepping until maximum specified time Tmax 

while (State.Time < Tmax) 
   [State,SolStrat] = TransientIncrement 
(Model,ElemData,Loading,State,SolStrat); 
   [State,SolStrat] = TransientIterate   
(Model,ElemData,Loading,State,SolStrat); 
   if (SolStrat.ConvFlag) 
      State = Update_TransientState (Model,ElemData,State,SolStrat); 
      % store displacement value at pltDOF 
      pc = pc+1; 
      Disp (pc) = State.U(pltDOF); 
   else 
      break 
   end 
end 

 

Figure 23 Salient analysis steps for Example 3 
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Figure 24  Time history of horizontal roof displacement of  two-story steel frame 

6.4 Example 4 – Nonlinear static analysis with different load histories 

The fourth example is the first of four examples for the simulation of the nonlinear static 
(push-over) analysis of the two story frame under constant gravity loads and a horizontal force 
pattern that is incremented until the ultimate lateral shear force is reached. In this example the 
nonlinear response of the elements is described by the one-component model with properties 

specified in script file SimpleNLElemData. 

To simulate the loading history two separate load  histories are specified in this example: 
one for the gravity loads, which consist of uniformly distributed element loads and are assigned 
load history number 1, and one for the horizontal forces, which are assigned load history 
number 2.  This approach is certainly more straightforward, but has the limitation that an 
automatic load control strategy for the lateral force pattern is not possible. 

The function call sequence for the nonlinear push-over analysis is shown in Fig. 25, where 
the salient data specification steps are highlighted: specification of element loading and load 
history number in ElemData, load pattern number specification for horizontal forces in Loading 

that matches the load history number in FrcHst, specification of load histories as time-value 

pairs of field FrcHst in data object Loading, and specification of pseudo-time increment 

Deltat under field IncrStrat of SolStrat data object. 

It is worth noting that the creation of a new Post object in every load step in Fig. 25 permits 
the subsequent post-processing of the entire incremental analysis at the expense of storage. 
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Structure (‘chec’,…)

Create_Loading Loading

Loading

FrcHst(1:2)

Time(.) Value(.)

Initialize_SolStrat

Initialize

Initialize_State State

ElemData

w(.)

ElemData

LdIDy=1

Pe(.,.,2)

Update_State

Iterate

Increment

k = 1:nostepSolStrat

IncrStrat

Deltat

Structure (‘post’,…) Post

 

Figure 25  Function call sequence for load specification and analysis steps in Example 4 

Fig. 27 shows the relation between lateral load factor and horizontal roof displacement (also 
known as push-over curve) of the 2-story steel frame. Fig. 28 shows the deformed shape with a 
magnification factor of 10 and the plastic hinge locations of the 2-story frame at the last load 
step (near lateral strength). 
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Distributed element loads with load pattern number 1 

for el=5:6 
   ElemData{el}.w     = [0;-0.50]; 
   ElemData{el}.LdIdy = 1; 
end 
for el=7:8 
   ElemData{el}.w = [0;-0.35]; 
   ElemData{el}.LdIdy = 1; 
end 

Horizontal forces with laod pattern number 2 

% specify nodal forces values in first two columns, pattern number in third 
Pe(2,1,2) =  20;     % force at node 2 in dof 1 (force in global X) for load 
pattern 2 
Pe(3,1,2) =  40; 
Pe(5,1,2) =  20; 
Pe(6,1,2) =  40;     % force at node 6 in dof 1 (force in global X) for load 
pattern 2 
Loading = Create_Loading (Model,Pe); 

Applied force time histories 

Deltat = 0.10; 
Tmax   = 2.00; 
 
Loading.FrcHst(1).Time  = [0;Deltat;Tmax]; 
% force pattern 1 is applied over Deltat and then kept constant 
Loading.FrcHst(1).Value = [0;1;1]; 
Loading.FrcHst(2).Time  = [0;Deltat;Tmax]; 
% force pattern 2 is linearly rising between Deltat and Tmax up to value of 2.8
Loading.FrcHst(2).Value = [0;0;2.8]; 

Incremental analysis by pseudo-time incrementation 

% initialize State 
State = Initialize_State(Model,ElemData); 
% initialize default SolStrat parameters 
SolStrat = Initialize_SolStrat; 
% specify pseudo-time step increment (does not have to be the same as Deltat, 
smaller value 
% results in more steps to reach end of analysis) 
SolStrat.IncrStrat.Deltat = 0.10; 
% initialize analysis parameters 
[State SolStrat] = Initialize(Model,ElemData,Loading,State,SolStrat); 
… … … … … … … 

Load incrementation until maximum specified time Tmax (pseudo-time stepping) 

while (State.Time < Tmax-10^3*eps) 
   [State SolStrat] = Increment(Model,ElemData,Loading,State,SolStrat); 
   [State SolStrat] = Iterate  (Model,ElemData,Loading,State,SolStrat); 
   if (SolStrat.ConvFlag) 
      State = Update_State(Model, ElemData, State); 
   else 
      break 
   end 
   pc = pc+1; 
   Post(pc) = Structure ('post',Model,ElemData,State); 
end 

 

Figure 26  Salient steps for load specification and analysis for Example 4 
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Figure 27  Load factor vs. horizontal roof displacement for 2-story steel frame 

 
Figure 28  Deformed shape and plastic hinge locations of 2-story frame at last load step 
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6.5 Example 5 – Nonlinear static analysis with loading sequence and control 

The specification of two separate load histories for gravity and horizontal forces in the 
preceding example does not allow for automatic load control strategy, which is essential for the 
determination of the lateral strength of the frame and the post-peak response. Since load control 
is only possible with the application of a single force pattern, the gravity loads are applied first in 
this example, followed by the analysis for the horizontal forces. The function call sequence for 
the loading sequence is shown in Fig. 29. 

 

Figure 29 Function call sequence for gravity load and horizontal force loading sequence 
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The gravity loads consist only of distributed element loads specified in ElemData. The 

function call to function Create_Loading without input arguments generates a Loading data 

object with zero nodal reference force and displacement vectors. For easier identification this 
data object is called GravLoading in this example. After initializing the State and SolStrat data 

object a single load step is applied with the sequence of function calls Initialize, 

Increment, Iterate and Update_State (under the assumption that convergence is 

achieved during equilibrium iterations). Following the completion of the load step it is possible to 

specify the lateral forces and call function Create_Loading to generate a new loading data 

object, called LatLoading in this example. It contains the lateral forces in reference vector 

Pref. The call to function Initialize resets the load factor and stores the resisting force 

vector at the time of the call as initial force vector. This allows the application of load sequences 
in separate sequential analyses. During the second analysis it is possible to modify SolStrat 
parameters and include the load control option, as Fig. 29 shows. With this option there is 
automatic load control for the horizontal force pattern, so that the push-over analysis can be 
continued past the displacement value at attainment of lateral strength, as Fig. 30 shows. 
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Figure 30  Load factor vs. horizontal roof displacement for 2-story steel frame 
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Element properties 

SimpleNLElemData 
% print element properties (optional) 
Structure ('data',Model,ElemData); 

Loading (distributed loads only) 

% define loading 
for el=5:6 ElemData{el}.w = [0;-0.50]; end 
for el=7:8 ElemData{el}.w = [0;-0.35]; end 
GravLoading = Create_Loading (Model); 

Incremental analysis for distributed element loading (single load step) 

% initialize state 
State = Initialize_State(Model,ElemData); 
% initialize solution strategy parameters 
SolStrat = Initialize_SolStrat; 
% specify initial load increment (even though it is the same as the default 
value and could be omitted) 
SolStrat.IncrStrat.Dlam0 = 1; 
% initialize analysis sequence 
[State SolStrat] = Initialize(Model,ElemData,GravLoading,State,SolStrat); 
% apply load in one increment 
[State SolStrat] = Increment(Model,ElemData,GravLoading,State,SolStrat); 
% perform equilibrium iterations (we assume that convergence will occur!) 
[State SolStrat] = Iterate  (Model,ElemData,GravLoading,State,SolStrat); 
% update State 
State = Update_State(Model,ElemData,State); 
… … … … … 

2. Loading in sequence: horizontal forces 

% specify nodal forces 
Pe(2,1) =  20; 
Pe(3,1) =  40; 
Pe(5,1) =  20; 
Pe(6,1) =  40; 
LatLoading = Create_Loading (Model,Pe); 

Incremental analysis for horizontal force pattern (load control is on) 

% (gravity forces are left on by not initializing State!) 
% specify initial load increment and turn load control on 
SolStrat.IncrStrat.Dlam0 = 0.40; 
SolStrat.IncrStrat.LoadCtrl = 'yes'; 
SolStrat.IterStrat.LoadCtrl = 'yes'; 
% specify number of load steps 
nostep = 20; 
% initialize analysis sequence 
[State SolStrat] = Initialize(Model,ElemData,LatLoading,State,SolStrat); 
 
% for specified number of steps, Increment, Iterate and Update_State (we assume 
again convergence!) 
for j=1:nostep 
   [State SolStrat] = Increment(Model,ElemData,LatLoading,State,SolStrat); 
   [State SolStrat] = Iterate  (Model,ElemData,LatLoading,State,SolStrat); 
   State = Update_State(Model,ElemData,State); 
   k = k+1; 
   Post(k) = Structure ('post',Model,ElemData,State); 
   % print results to output file 
   Structure('prin',Model,ElemData,State); 
end 

 

Figure 31  Salient steps for load specification and analysis for Example 5 
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6.6 Example 6 – Nonlinear static analysis with nonlinear geometry 

This example is the same as example 5, except for the fact that nonlinear geometry effects 
are included for the frame columns. To accentuate the nonlinear geometry effect additional 
vertical forces are applied at the top of each column element of the model. In this case it is very 
important to clear the applied force vector before specifying the lateral forces for the second 
loading case. The salient steps of this process are shown in Fig. 32. The subsequent steps are 
identical to the steps following the lateral load definition in Fig. 31. 

1. Loading (distributed loads and vertical forces on columns) 

% define loading 
for el=5:6 ElemData{el}.w = [0;-0.50]; end 
for el=7:8 ElemData{el}.w = [0;-0.35]; end 
 
Pe(2,2) =  -200; 
Pe(3,2) =  -400; 
Pe(5,2) =  -200; 
Pe(6,2) =  -400; 
GravLoading = Create_Loading (Model,Pe); 

Specify nonlinear geometry option for columns 

for el=1:4 ElemData{el}.Geom = 'PDelta'; end 

Incremental analysis for distributed element loading (single load step) 

% initialize state 
State = Initialize_State(Model,ElemData); 
% initialize solution strategy parameters 
SolStrat = Initialize_SolStrat; 
% specify initial load increment (even though it is the same as the default 
value and could be omitted) 
SolStrat.IncrStrat.Dlam0 = 1; 
% initialize analysis sequence 
[State SolStrat] = Initialize(Model,ElemData,GravLoading,State,SolStrat); 
% apply load in one increment 
[State SolStrat] = Increment(Model,ElemData,GravLoading,State,SolStrat); 
% perform equilibrium iterations (we assume that convergence will occur!) 
[State SolStrat] = Iterate  (Model,ElemData,GravLoading,State,SolStrat); 
% update State 
State = Update_State(Model,ElemData,State); 
% determine resisting force vector 
State   = Structure ('forc',Model,ElemData,State); 
… … … … … 

2. Loading in sequence: horizontal forces 

% specify nodal forces 
% !!!! IMPORTANT!!!! CLEAR PREVIOUS PE 
clear Pe; 
Pe(2,1) =  20; 
Pe(3,1) =  40; 
Pe(5,1) =  20; 
Pe(6,1) =  40; 
LatLoading = Create_Loading (Model,Pe); 

Incremental analysis for horizontal force pattern (load control is switched on) 

  

Figure 32 Salient steps for load specification and gravity load analysis for Example 6 
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Figure 33  Load factor vs. horizontal roof displacement for P-∆ geometry 

 

Figure 34 Moment distribution and plastic hinge location at last load step 
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6.7 Example 7 – Nonlinear static analysis with distributed inelasticity element 

Example 7 is the same as example 6 except for the use of the distributed inelasticity frame 
element with force formulation for modeling the girders and columns of the two-story steel 

frame. Thus, the element properties are defined by the script file DistrInelElemData instead 

of SimpleNLElemData. Figs. 35 and 36 show the push-over curve under nonlinear geometry 

and the curvature distribution which confirms the plastic hinge locations of Fig. 34. 
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Figure 35 Load factor vs. horizontal roof displacement for distributed inelasticity frame 
element under P-∆ geometry 

 

Figure 36 Curvature distribution at last load step of push-over curve of Fig. 35 
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6.8 Example 8 – Nonlinear transient response analysis with distributed 
inelasticity element 

The last example covers the nonlinear transient response analysis of the 2-story steel frame 
with distributed inelasticity frame elements under constant gravity load and support acceleration. 
Because the analysis steps are a combination of steps from similar examples, the comments 
are brief. Fig. 37 shows the sequence of function calls for loading and analysis definition.   

 

Figure 37 Function call sequence for load specification and analysis steps in Example 8 
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At first, a linear analysis under imposed support displacement is used to generate the vector 
of reference accelerations at the free dofs for support excitation (similar to Example 2). Then, 
the gravity loading consisting of uniformly distributed element loads and additional vertical 
forces at the top of column elements is specified to generate the loading data object 
GravLoading. After initializing State and SolStrat this loading is applied on the structural model 
in a single load step (similar to example 5). After adding a lumped mass vector and a Rayleigh 
damping matrix, a sequence of transient steps is performed for the lateral loading consisting of 
the imposed acceleration history and the reference acceleration vector at the free dofs. During 
transient response the gravity loads are maintained constant. The time step of numerical 

integration is specified in field Deltat of field TimeStrat of the SolStrat data object. This 

sequence of steps is identical to those for a linear transient response analysis in example 3 
(consult also Fig. 22). The roof displacement time history is shown in Fig. 38. It is clear that a 
large excursion into the inelastic range takes place approximately 4 seconds into the response. 
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Figure 38 Time history of horizontal roof displacement of two-story steel frame under 
nonlinear transient response with distributed inelasticity element 



 FEDEASLab Getting Started Guide and Simulation Examples  

 37   

Appendix 

Model definition of 2-story, one bay 3d braced frame 
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Figure A1 – 2-story, one bay 3d braced frame model 
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Create Model 

% all units in kip and inches 

Node coordinates (in feet!) 

height = 12; 
width  = 20; 
XYZ([ 1: 3],:) =  [zeros(3,1)         zeros(3,1)        linspace(0,2*height,3)']; 
XYZ([ 4: 6],:) =  [width*ones(3,1)    zeros(3,1)        linspace(0,2*height,3)']; 
XYZ([ 7: 9],:) =  [width*ones(3,1)    width*ones(3,1)   linspace(0,2*height,3)']; 
XYZ([10:12],:) =  [zeros(3,1)         width*ones(3,1)   linspace(0,2*height,3)']; 
XYZ([13:14],:) =  [width/2*ones(2,1)  zeros(2,1)        linspace(height,2*height,2)']; 
XYZ([15:16],:) =  [width*ones(2,1)    width/2*ones(2,1) linspace(height,2*height,2)']; 
XYZ([17:18],:) =  [width/2*ones(2,1)  width*ones(2,1)   linspace(height,2*height,2)']; 
XYZ([19:20],:) =  [zeros(2,1)         width/2*ones(2,1) linspace(height,2*height,2)']; 
% convert coordinates to inches 
XYZ = XYZ.*12; 

Connectivity array 

no_columns = 4; 
for i = 0:3 
    n = i+1; 
    % first story columns 
    CON(n,:)                = num2cell([3*i+1  3*i+2],2); 
    % second story columns 
    CON(n + no_columns,:)   = num2cell([3*i+2  3*i+3],2); 
    % first story beams 
    CON(n + 2*no_columns,:) = num2cell([3*i+2  2*i+13],2); 
    CON(n + 3*no_columns,:) = num2cell([3*i+2  2*i+11],2); 
    CON{13} = [2 19]; 
    % second story beams 
    CON(n + 4*no_columns,:) = num2cell([3*i+3  2*i+14],2); 
    CON(n + 5*no_columns,:) = num2cell([3*i+3  2*i+12],2); 
    CON{21} = [3 20]; 
    % first floor braces 
    CON(n + 6*no_columns,:) = num2cell([3*i+1  2*i+13],2); 
    CON(n + 7*no_columns,:) = num2cell([3*i+1  2*i+11],2); 
    CON{29} = [1 19]; 
    % second floor braces 
    CON(n + 8*no_columns,:) = num2cell([3*i+2  2*i+14],2); 
    CON(n + 9*no_columns,:) = num2cell([3*i+2  2*i+12],2); 
    CON{37} = [2 20]; 
end 

Boundary conditions 

% (specify only restrained dof's) 
BOUN( 1,:) = ones(1,3);     % (1 = restrained,  0 = free) 
BOUN( 4,:) = ones(1,3); 
BOUN( 7,:) = ones(1,3); 
BOUN(10,:) = ones(1,3); 

Element type 

[ElemName{ 1:24}] = deal('Lin3dFrm_NLG');    % 3d linear frame element 
[ElemName{25:40}] = deal('LinTruss_NLG');    %    linear truss element 

Create model data structure 

Model = Create_Model(XYZ,CON,BOUN,ElemName); 

Display model and show node/element numbering (optional) 

figA = Create_Window (0.70,0.70);  % open figure window named figA 
Plot_Model  (Model);               % plot model (optional) 
Label_Model (Model);               % label model (optional) 

 

Figure A2 – Model definition of 3d braced frame in FEDEASLab 


