
1

Advanced Techniques to Build and Manage

 User-Defined SAS FORMAT Catalogs

Jack Shoemaker, Oxford Specialty Management, Norwalk, CT

SAS supplies a wealth of formats for displaying
character and numeric data. When these do not suffice,
you can use PROC FORMAT to create user-defined
formats which are stored as members of a SAS catalog
named FORMATS by default. For example, the following
code fragment will create a member called LOB with an
entry type of FORMATC in the catalog
WORK.FORMATS.

SURF IRUPDW�SURF IRUPDW�

YDOXH �OREYDOXH �ORE

m&2n m&RPPHUFLDOnm&2n m&RPPHUFLDOn

m0&n m0HGLFDUHnm0&n m0HGLFDUHn

m6)n m6HOI�)XQGHGnm6)n m6HOI�)XQGHGn

��

UXQ�UXQ�

All formats defined as above will reside in the
WORK.FORMATS catalog. Like all objects in the SAS
WORK area, the FORMATS catalog disappears once the
SAS session terminates. You can create a permanent
user-defined format, that is, one which persists after the
current SAS session terminates by using the LIBRARY=
option to direct SAS to use a catalog other than
WORK.FORMATS. For example, the following code
fragment will store the catalog member LOB.FORMATC
in LIBRARY.FORMATS instead of WORK.FORMATS.

SURF IRUPDW OLEUDU\ OLEUDU\�SURF IRUPDW OLEUDU\ OLEUDU\�

YDOXH �OREYDOXH �ORE

m&2n m&RPPHUFLDOnm&2n m&RPPHUFLDOn

m0&n m0HGLFDUHnm0&n m0HGLFDUHn

m6)n m6HOI�)XQGHGnm6)n m6HOI�)XQGHGn

��

UXQ�UXQ�

The preceding code assumes that the aggregate
storage location LIBRARY has been defined to SAS using
a LIBNAME statement. In fact, you can instruct SAS to
create the FORMATS catalog in any place you choose.
For example, assuming the directory specified inside the
single quotes exists, the following code fragment will
create the format catalog in MYLIB instead of LIBRARY.

OLEQDPH P\OLE m�RSW�VDV�P\OLEn�OLEQDPH P\OLE m�RSW�VDV�P\OLEn�

SURF IRUPDW OLEUDU\ P\OLE�SURF IRUPDW OLEUDU\ P\OLE�

YDOXH �OREYDOXH �ORE

m&2n m&RPPHUFLDOnm&2n m&RPPHUFLDOn

m0&n m0HGLFDUHnm0&n m0HGLFDUHn

m6)n m6HOI�)XQGHGnm6)n m6HOI�)XQGHGn

��

UXQ�UXQ�

Maintaining and searching catalogs

 When you use a format either to display data in
a PROC step or as a parameter to the PUT(), PUTC(), or
PUTN() functions, SAS searches the SAS-supplied
formats, WORK.FORMATS, and LIBRARY.FORMATS in
that order, to find the format definition. If you choose to
store user-defined formats in a catalog other than
WORK.FORMATS or LIBRARY.FORMATS, you must tell
SAS where to look by using the FMTSEARCH= system
option. For example, the following code fragment will tell
SAS to look in MYLIB.FORMATS after searching
WORK.FORMATS and LIBRARY.FORMATS.

RSWLRQV IPWVHDUFK � P\OLE ��RSWLRQV IPWVHDUFK � P\OLE ��

In fact, you may use the FMTSEARCH= system option to
change the default search order. For example, the
statement below will cause SAS to look in
MYLIB.FORMATS before searching LIBRARY.FORMATS
and WORK.FORMATS.

RSWLRQV IPWVHDUFK RSWLRQV IPWVHDUFK

� P\OLE OLEUDU\ ZRUN ��� P\OLE OLEUDU\ ZRUN ��

Why would you want to do this? One good
reason is for testing. Let’s assume that you already have
a format definition for $LOB. In LIBRARY.FORMATS.
You want to modify, or enhance, this definition. But,
before you commit the new $LOB definition to
LIBRARY.FORMATS, you wish to test its use in an
application or two. SAS stops searching for format
definitions as soon as it finds one. So, using the example
above, your test version of the $LOB definition will be
used instead of the one already in place in
LIBRARY.FORMATS. Other applications which use the
formats in LIBRARY.FORMATS will not be affected by
your testing and maintenance of the $LOB definition.

Except for testing purposes, it’s a terrible idea to
have the same format defined in more than one format
catalog. But, why have a separate format catalog at all?
That is, since SAS searches LIBRARY.FORMATS
automatically, why not place all user-defined formats in
this special catalog and save yourself the bother of
coding FMTSEARCH= statements?

 It’s a good question which partly comes down
to style. Consider how folks set up their Windoze
desktop. Generally speaking there are two dominant
approaches: those who like to have many documents

2

open simultaneously, much like piles of papers on a real
desk; and, those who tend to have one or two
applications open at once opening and closing files and
documents as necessary. Members of the first group
can’t believe that members of the second group can
actually wait for specific applications to open and close;
members of the second group can’t believe that members
of the first can actually work among such clutter. Neither
group is right or wrong. It’s only a matter of personal
style and preference.

 The question of multiple format catalogs is
analogous. Placing all user-defined formats in one
catalog means there’s only one catalog to maintain. And,
if this catalog is named LIBRARY.FORMATS, SAS will
search it automatically. On the other hand, many user-
defined formats are specific to a subject area or project.
That is, they do not have broad applicability. Placing all
user-defined formats in LIBRARY.FORMATS means that
all applications will search the entire catalog of user-
defined formats even though many of these formats are
of no interest. Another knock against the one format
approach is that the format catalog tends to become quite
large which poses its own set of back-up and storage
allocation problems.

The good news is that SAS allows you to
manage your format catalogs as you wish. You can
begin by using LIBRARY.FORMATS exclusively. If you
have large, project-specific formats to define and store,
you may place those definitions in a separate catalog and
use a FMTSEARCH= statement in the project-specific
application which uses those formats. Generally
speaking user-defined formats which are small or
frequently used belong in LIBRARY.FORMATS. User-
defined formats which are large and infrequently used are
good candidates for separate format catalogs.

Finally, format catalogs need not be named
FORMATS. The LIBRARY= option on PROC FORMAT
accepts one-level LIBNAMES, or two-level catalog
names. For example, the following code fragment will
store $LOB in a format catalog called
LIBRARY.MYPROJ.

SURF IRUPDW OLEUDU\ OLEUDU\�P\SURM�SURF IRUPDW OLEUDU\ OLEUDU\�P\SURM�

YDOXH �OREYDOXH �ORE

m&2n m&RPPHUFLDOnm&2n m&RPPHUFLDOn

m0&n m0HGLFDUHnm0&n m0HGLFDUHn

m6)n m6HOI�)XQGHGnm6)n m6HOI�)XQGHGn

��

UXQ�UXQ�

The corresponding FMTSEARCH= system
option would now refer to this two-level catalog name.

RSWLRQV IPWVHDUFK � OLEUDU\�P\SURM ��RSWLRQV IPWVHDUFK � OLEUDU\�P\SURM ��

Listing formats

Since the format catalog is just a SAS catalog as
any other, you can use PROC CATALOG to interrogate,

manage, and modify members. A format catalog
contains two entry types: FORMATN and FORMATC.
Numeric formats have an entry type of FORMATN while
character formats have an entry type of FORMATC. You
can display the contents of a format catalog (or any
catalog for that matter) by using the CONTENTS
statement as follows:

SURF FDWDORJ F OLEUDU\�IRUPDWV�SURF FDWDORJ F OLEUDU\�IRUPDWV�

FRQWHQWV�FRQWHQWV�

UXQ�UXQ�

This will produce a listing similar to this:

&RQWHQWV RI &DWDORJ /,%5$5<�)250$76&RQWHQWV RI &DWDORJ /,%5$5<�)250$76

� 1DPH 7\SH 'HVFULSWLRQ� 1DPH 7\SH 'HVFULSWLRQ

� /2%)250$7&)250$7�0$;/(1 ������� /2%)250$7&)250$7�0$;/(1 ������

You receive a slightly enhanced display if you
include the STAT keyword on the CONTENTS statement.
For example:

SURF FDWDORJ F OLEUDU\�IRUPDWV�SURF FDWDORJ F OLEUDU\�IRUPDWV�

FRQWHQWV VWDW�FRQWHQWV VWDW�

UXQ�UXQ�

The resulting output will include information
about the size of each member to the right of the
description field. One caveat: you’ll want to have a
LINESIZE setting of at least 121 to make this render
properly. Otherwise the STAT information will wrap
around and confuse the display. You can also use PROC
CATALOG to modify the member description which
contains information about the maximum lengths of the
START, END, and LABEL fields by default. For example,
the following code fragment will change the description of
the $LOB format to “Nicer Description”.

SURF FDWDORJ F OLEUDU\�IRUPDWV�SURF FDWDORJ F OLEUDU\�IRUPDWV�

PRGLI\ ORE�IRUPDWFPRGLI\ ORE�IRUPDWF

� GHVFULSWLRQ m1LFHU 'HVFULSWLRQn ��� GHVFULSWLRQ m1LFHU 'HVFULSWLRQn ��

UXQ�UXQ�

Note that you need to specify both the member
name and the entry type when you invoke the MODIFY
statement. Similarly, you can use the COPY statement to
copy a member from one catalog to another. For
example, this code fragment will copy $LOB from
LIBRARY.FORMATS to MYLIB.FORMATS.

SURF FDWDORJ F OLEUDU\�IRUPDWV�SURF FDWDORJ F OLEUDU\�IRUPDWV�

FRS\ RXW P\OLE�IRUPDWV�FRS\ RXW P\OLE�IRUPDWV�

VHOHFW ORE�IRUPDWF�VHOHFW ORE�IRUPDWF�

UXQ�UXQ�

The COPY statement also includes a MOVE
option which will delete the entry from the source catalog
once the copy is complete. For example, this code

3

fragment will move $LOB from LIBRARY.FORMATS to
MYLIB.FORMATS.

SURF FDWDORJ F OLEUDU\�IRUPDWV�SURF FDWDORJ F OLEUDU\�IRUPDWV�

FRS\ RXW P\OLE�IRUPDWV PRYH�FRS\ RXW P\OLE�IRUPDWV PRYH�

VHOHFW ORE�IRUPDWF�VHOHFW ORE�IRUPDWF�

UXQ�UXQ�

Associating formats

Note that members of a format catalog are
uniquely identified by the full four-level name. That is,
LIBRARY.FORMATS.AGE.FORMATN and
LIBRARY.FORMATS.AGE.FORMATC refer to separate
member entries - one a numeric format and one a
character format. This is useful if you have a numeric
format which maps a continuous numeric value to set of
code values. You can then define a character format of
the same name which decodes the coded values.
Consider the following example which maps age into four
levels 1, 2, 3, and 4.

SURF IRUPDW�SURF IRUPDW�

YDOXH DJHYDOXH DJH

� �� �� m�n� �� �� m�n

�� �� �� m�n�� �� �� m�n

�� �� �� m�n�� �� �� m�n

�� � KLJK m�n�� � KLJK m�n

��

YDOXH �DJHYDOXH �DJH

m�n m�� � WR ��nm�n m�� � WR ��n

m�n m�� �� WR ��nm�n m�� �� WR ��n

m�n m�� �� WR ��nm�n m�� �� WR ��n

m�n m�� �� �����nm�n m�� �� �����n

��

You might use the first numeric format inside the
PUT() function in a data step to create a one-character
data-step variable called AGEGROUP; send the resulting
data set through PROC SUMMARY using AGEGROUP
as one of the classification variables; and, use the second
character format to display the results of the reduction
using PROC PRINT.

GDWD DJHJURXS�GDWD DJHJURXS�

VHW LQ�VHW LQ�

OHQJWK DJHJURXS � ��OHQJWK DJHJURXS � ��

DJHJURXS SXW� DJH� DJH� ��DJHJURXS SXW� DJH� DJH� ��

UXQ�UXQ�

SURF VXPPDU\ GDWD DJHJURXS QZD\ PLVVLQJ�SURF VXPPDU\ GDWD DJHJURXS QZD\ PLVVLQJ�

FODVV DJHJURXS�FODVV DJHJURXS�

RXWSXW RXW UHGXFHG�RXWSXW RXW UHGXFHG�

UXQ�UXQ�

SURF SULQW GDWD UHGXFHG�SURF SULQW GDWD UHGXFHG�

IRUPDW DJHJURXS �DJH��IRUPDW DJHJURXS �DJH��

UXQ�UXQ�

Of course you could get similar results by supplying a
modified format for AGE directly in the PROC SUMMARY
step. The point is that the numeric format AGE and the
character format $AGE are two separate members in the
format catalog. You could call the character format
$AGEGRP or something similar, but by taking advantage
of the uniqueness of numeric and character formats you
can imply a connection between the two formats - a poor
man’s meta data, if you will.

Creating your own date formats

The SAS system supplies a rich set of formats to
display date values. SAS stores dates and times as
numbers. For dates, the date values are the number of
days since 01JAN1960 which has a date value of zero.
New Year’s Eve 1959, 31DEC1959 has a value of -1 and
02JAN1960 has a value of 1. The day of this
presentation, 06OCT1998 is 14,158. The SAS-supplied
DATE9. format displays dates in ddMMMyyyy, Y2K-
compliant format as shown in this paragraph.

Membership eligibility rosters often contain a
pair of dates which define the spell of eligibility for the
record. For example, the membership eligibility roster for
a health insurer might contain and effective from and
through date pair to indicate the period of eligibility for the
characteristics contained on the rest of the data record.
The active record will have an open, or missing, through
date. Let’s say that the process which extracts this
information form the on-line transaction processing
system converts open through dates to the special
missing value .A. If we were to use the DATE9. format to
display these data you might see a sequence like this.

7+528*+7+528*+

��0$5������0$5����

$$

��6(3������6(3����

Based on the discussion in the previous
paragraph, you know that the A value refers to an active
or open record. If you wish to have this value displayed
as ‘Active’ instead of ‘A’ you may concatenate a definition
for .A with the SAS-supplied DATE9. format as shown in
this code fragment.

SURF IRUPDW�SURF IRUPDW�

YDOXH P\GDWHYDOXH P\GDWH

�$ m$FWLYHn�$ m$FWLYHn

RWKHU >'$7(��@RWKHU >'$7(��@

��

UXQ�UXQ�

Using the user-defined MYDATE format to display the
same series of dates will produce these results.

7+528*+7+528*+

��0$5������0$5����

4

$FWLYH$FWLYH

��6(3������6(3����

You may also use format concatenation to
temporarily override or enhance an existing user-defined
format. For example, assume that there exists a
permanent, user-defined format called $LOB defined as
follows.

SURF IRUPDW OLEUDU\ OLEUDU\�SURF IRUPDW OLEUDU\ OLEUDU\�

YDOXH �OREYDOXH �ORE

m&2n m&RPPHUFLDOnm&2n m&RPPHUFLDOn

m0&n m0HGLFDUHnm0&n m0HGLFDUHn

m6)n m6HOI�)XQGHGnm6)n m6HOI�)XQGHGn

RWKHU m8QNQRZQnRWKHU m8QNQRZQn

��

UXQ�UXQ�

Now assume that one of the OTHER values that keeps
showing up is MD which is the coded value for Medicaid.
Eventually this value will makes its way into the
permanent format library. In the meantime, you would
like to display MD as ‘Medicaid’ rather than ‘Unknown’.
You can accomplish this by concatenating the definition
for MD with the extant definition for $LOB as shown in
this code fragment.

SURF IRUPDW�SURF IRUPDW�

YDOXH �P\OREYDOXH �P\ORE

m0'n m0HGLFDLGnm0'n m0HGLFDLGn

RWKHU >�/2%���@RWKHU >�/2%���@

��

UXQ�UXQ�

You may also use format concatenation to
modify an existing definition. For example, what if SF
does not mean ‘Self-Funded’ but rather means ‘Single
Family’? You can correct this mistake as shown in the
code fragment below.

SURF IRUPDW�SURF IRUPDW�

YDOXH �P\OREYDOXH �P\ORE

m6)n m6LQJOH)DPLO\nm6)n m6LQJOH)DPLO\n

RWKHU >�/2%���@RWKHU >�/2%���@

��

UXQ�UXQ�

This does not result in an OVERLAPPING RANGE error
message because there really aren’t any overlapping
ranges. The user-defined format $MYLOB associates the
coded value ‘SF’ with the literal phrase ‘Singe Family’. All
other values use the $LOB format. That the $LOB format
also contains a mapping for ‘SF’ matters not.

Building CNTLIN data sets

The examples presented so far use the simple
four-item $LOB format which is easy enough to code and
maintain by hand. Often maps and translators are much

larger and difficult to maintain by hand. Fortunately you
can build a user-defined format from a SAS data set
known as the CNTLIN data set. The CNTLIN data set
uses specially named fields to build the user-defined
format. There are about a score of these fields,
fortunately only four are required: FMTNAME, START,
TYPE, and LABEL. These fields contain the format
name, the start value, the format type, and the label value
respectively. If you have built a SAS data set called
CNTLIN which contains these specially defined names,
you load the format using PROC FORMAT as follows.

SURF IRUPDW FQWOLQ FQWOLQ�SURF IRUPDW FQWOLQ FQWOLQ�

You are free to use whatever name you like for the
CNTLIN data set; however, sticking with CNTLIN as the
data set name provides a simple method for documenting
what’s going on. If you’d like to see all the specially
named fields recognized by PROC FORMAT, use the
CNTLOUT= option to create a CNTLOUT data set. Then
run a PROC CONTENTS or PROC PRINT on the
CNTLOUT data set. That exercise is left to the reader.
The focus here is to build CNTLIN data sets from existing
SAS data sets.

Assume that the two-character LOB codes
shown in the examples above are aggregations of a more
refined concept known as PRODUCT. Furthermore,
assume that you have a SAS data set called PRODUCT
which has two fields - PRODUCT and LOB which maps
PRODUCT to LOB. The code fragment shown below
creates a CNTLIN data set which will create a user-
defined format called PRODMAP to map PRODUCT into
LOB aggregations.

GDWD FQWOLQ�GDWD FQWOLQ�

NHHS IPWQDPH W\SH KOR VWDUW ODEHO ��NHHS IPWQDPH W\SH KOR VWDUW ODEHO ��

UHWDLQ IPWQDPH m352'0$3n W\SH m&n�UHWDLQ IPWQDPH m352'0$3n W\SH m&n�

VHW SURGXFW HQG ODVWUHF�VHW SURGXFW HQG ODVWUHF�

VWDUW SURGXFW�VWDUW SURGXFW�

ODEHO ORE�ODEHO ORE�

RXWSXW�RXWSXW�

LI ODVWUHF WKHQ GR�LI ODVWUHF WKHQ GR�

KOR m2n�KOR m2n�

ODEHO m8QNQRZQn�ODEHO m8QNQRZQn�

RXWSXW�RXWSXW�

HQG�HQG�

UXQ�UXQ�

Note that this data set has an additional field
beyond the required four called HLO. This field is used to
indicate one of the special range values HIGH, LOW, or
OTHER. A value of O in this field indicates the OTHER
range value. Since we are creating a single user-define
format from the PRODUCT data set, the values for
FMTNAME and TYPE will be constant for the entire data
set. These fields are given the values of PRODMAP and
C, respectively, on the RETAIN statement. The value of
C for TYPE means that PRODMAP is a character format.
The only other valid value is N which indicates a numeric
format. The values for START and LABEL are set by way

5

of simple assignment statements. Alternatively, you
could use the RENAME= data set option on the SET
statement as shown here.

VHW SURGXFW� UHQDPH VHW SURGXFW� UHQDPH

� SURGXFW VWDUW ORE ODEHO � �� SURGXFW VWDUW ORE ODEHO � �

HQG ODVWUHF�HQG ODVWUHF�

The use of the RENAME= option versus the assignment
statement is largely a matter of personal style. Many
would argue that the RENAME= method is confusing and
hard to understand. Others would counter that the
assignment statements are a waste given that nothing is
happening other than renaming of the variables.

The END= option on the SET statement creates
a temporary data-step variable which has a value of 0, or
false, for each observation in the incoming data set save
the last observation where the variable takes on a value
of 1, or true. In this example we have called this
temporary variable LASTREC although any valid SAS
variable name would do. Having this variable available
allows us to test for the end of the PRODUCT data set
when we want to generate an assignment for the special
range OTHER. The assignment of O to the special
variable HLO indicates that this assignment has the
special range OTHER.

Creating multiple formats

The preceding CNTLIN data step serves as a
general model for converting an existing SAS data set
into a CNTLIN= data set for use by PROC FORMAT.
You can also produce multiple user-defined formats from
a single data set. Suppose you have a SAS data set
called ZIPINFO which contains three fields: ZIP Code,
state code, and FIPS state-county code. You would like
to have one format which maps ZIP code to state code
and a second format which maps ZIP code to FIPS state-
county code. One strategy would be to follow the
example above and create two CNTLIN data sets.
Alternatively, you could create one CNTLIN data set with
both format definitions as follows.

GDWD FQWOLQ�GDWD FQWOLQ�

NHHS IPWQDPH W\SH VWDUW ODEHO ��NHHS IPWQDPH W\SH VWDUW ODEHO ��

UHWDLQ W\SH m&n�UHWDLQ W\SH m&n�

VHW]LSLQIR HQG ODVWUHF�VHW]LSLQIR HQG ODVWUHF�

VWDUW]LSFRGH�VWDUW]LSFRGH�

IPWQDPH m=,367n�IPWQDPH m=,367n�

ODEHO VWDWHFG�ODEHO VWDWHFG�

RXWSXW�RXWSXW�

IPWQDPH m=,3),36n�IPWQDPH m=,3),36n�

ODEHO ILSVFG�ODEHO ILSVFG�

RXWSXW�RXWSXW�

UXQ�UXQ�

SURF VRUW GDWD FQWOLQ�SURF VRUW GDWD FQWOLQ�

E\ IPWQDPH VWDUW�E\ IPWQDPH VWDUW�

UXQ�UXQ�

Note the PROC SORT step immediately
following the CNTLIN data step. This is needed so all of
the format definitions are grouped together physically.
Otherwise, SAS will create many single-entry formats
with each change in the value of FMTNAME. Although
not shown in this example, you could create a definition
for the special range OTHER following the example
above. A key difference is that there will need be two
OUTPUT statements in the DO-group - one for each
format definition.

Creating tokenized labels

As the number of user-defined formats you
would like to create from an existing SAS data set
increases, the method shown above may become overly
cluttered. As an alternative, you can create a tokenized
label statement which contains all the information you
want mapped to the key value delimited by some rarely
used character like #. For example, ZIP code 06854
belongs in state CT with a FIPS state county code of
09001. To put both the state and county information in a
single LABEL variable you would create an assignment
statement as follows.

ODEHO VWDWHFG __ m�n __ ILSVFG�ODEHO VWDWHFG __ m�n __ ILSVFG�

For our example, label would contain the literal
‘CT#09001’. To use this type of format definition in a
data step, you need to break out the tokens as necessary
as shown in this code fragment.

GDWD H[DPSOH�GDWD H[DPSOH�

VHW LQ�VHW LQ�

OHQJWK VWDWHFG � � ILSVFG � ��OHQJWK VWDWHFG � � ILSVFG � ��

LQIR SXW�]LS� �]LSLQIR� ��LQIR SXW�]LS� �]LSLQIR� ��

VWDWHFG VFDQ� LQIR� �� m�n ��VWDWHFG VFDQ� LQIR� �� m�n ��

ILSVFG VFDQ� LQIR� �� m�n ��ILSVFG VFDQ� LQIR� �� m�n ��

UXQ�UXQ�

The preceding example assumes that the user-defined
format $ZIPINFO exists with labels defined as above.
The SCAN() data-step function is used to pull out specific
tokens, or sub-fields, from the composite label. You can
use any character as a token delimiter; however, you
need to choose a character which will not appear in one
of the tokens. Alternatively, you would create a fixed-field
label value and use the SUBSTR() function to extract the
desired tokens. In this example, state code will always be
two characters and FIPS code will always be five
characters, so a seven-character label would do. Once
again, the choice is largely a matter of style.

Outlier identification

So far our CNTLIN example have been single-
keyed. That is, a single value placed in the START
variable is mapped to a label. You may also specify
ranges of values in a CNTLIN data step using the special
field name called END. To see how this might work
consider the following example.

6

You have a data step which has upper and lower
bounds by county for an analytic variable COST. You
wish to create a summary display which shows average
COST by county for both he raw, nominal values as well
as the trimmed values - that is, values within the lower
and upper bounds. You could accomplish this task by
merging the data set containing the upper and lower
bounds to the raw data. Provided the raw data are
already sorted by county, this approach is simple enough
to apply. However, if the data are not sorted properly and
the raw data happen to be many millions of records,
PROC FORMAT affords an alternate solution which does
not require sorting of the raw data. The first step is to
create a CNTLIN= data set from the bounds data set
which defines a separate format for each county with a
value of 1 between the upper and lower bound and 0
otherwise.

GDWD FQWOLQ� NHHS GDWD FQWOLQ� NHHS

IPWQDPH W\SH VWDUW HQG KOR ODEHO ��IPWQDPH W\SH VWDUW HQG KOR ODEHO ��

UHWDLQ W\SH m1n�UHWDLQ W\SH m1n�

VHW ERXQGV�VHW ERXQGV�

IPWQDPH mBn __ ILSVFG __ mBn�IPWQDPH mBn __ ILSVFG __ mBn�

VWDUW ORZHU�VWDUW ORZHU�

HQG XSSHU�HQG XSSHU�

ODEHO m�n�ODEHO m�n�

RXWSXW�RXWSXW�

KOR m2n�KOR m2n�

ODEHO m�n�ODEHO m�n�

RXWSXW�RXWSXW�

UXQ�UXQ�

The preceding example assumes that the
BOUNDS data set has three variables - FIPSCD,
LOWER, and UPPER, which represent the county code,
lower and upper bounds respectively. Since user-defined
formats may not start or end with a number, we create
the FMTNAME by adding an underscore character to the
beginning and end of the FIPS state-county code. Values
with the lower and upper bounds are given a value of 1,
other values get a 0. Note that this is a numeric format
because we will use these formats to compare individual
values of COST - a numeric variable - in the raw data set
to a lower and upper bound.

Next we load the user-defined formats using the
CNTLIN= option on PROC FORMAT. This will create as
many user-defined formats as there are observations in
BOUNDS.

SURF IRUPDW FQWOLQ FQWOLQ�SURF IRUPDW FQWOLQ FQWOLQ�

Now we pass the raw data through a data step
to create a new variable called TRIMCOST which has the
value of COST for any value within bounds and missing
otherwise.

GDWD WULPPHG� NHHS GDWD WULPPHG� NHHS

ILSVFG FRVW WULPFRVW ��ILSVFG FRVW WULPFRVW ��

VHW UDZ�VHW UDZ�

IPWQDPH mBn __ ILSVFG __ mBn�IPWQDPH mBn __ ILSVFG __ mBn�

LI SXWQ� FRVW� IPWQDPH � m�nLI SXWQ� FRVW� IPWQDPH � m�n

WKHQ WULPFRVW FRVW�WKHQ WULPFRVW FRVW�

UXQ�UXQ�

The PUTN() data-step function is similar to the
PUT() function except that it accepts as its second
parameter a step-step variable which contains the value
of a user-defined format. If the value of COST is between
the lower and upper bounds, the previously defined
format will return a value of ‘1’ and we assign the value of
COST to TRIMCOST. If this is not the case, TRIMCOST
will retain its initial value of missing.

The final step is to pass TRIMMED through
PROC SUMMARY to obtain the desired parametric
statistics.

SURF VXPPDU\ GDWD WULPPHGSURF VXPPDU\ GDWD WULPPHG

QZD\ PLVVLQJ�QZD\ PLVVLQJ�

FODVV ILSVFG�FODVV ILSVFG�

YDU FRVW WULPFRVW�YDU FRVW WULPFRVW�

RXWSXW RXW UHGXFHGRXWSXW RXW UHGXFHG

Q QBFRVW QBWULP PHDQ �Q QBFRVW QBWULP PHDQ �

UXQ�UXQ�

The data set REDUCED will contain the MEAN
and N values for COST and TRIMCOST. The difference
between N_COST and N_TRIM is the number of outliers
removed from the raw mean to create the trimmed mean.
Note that this was all done without a single SORT or
MERGE which on a multi-million observation data set will
yield tremendous savings of computational resources.

This concludes a somewhat rambling survey of
advanced PROC FORMAT techniques. The party line
about SAS is that while it doesn’t do everything better
than some other product with a specific niche - graphics,
statistics, etc. - it does do everything it does pretty well.
In terms of data manipulation the tools SAS provides are
unsurpassed and PROC FORMAT is a gem of a tool
without rival in any other application programming
languages. I sincerely hope that this paper has given you
some food for thought.

The author welcomes comments and criticisms.

Jack N Shoemaker
Oxford Specialty Management
800 Connecticut Avenue
Norwalk, CT 06854

203 851 2650 JShoemak@oxhp.com

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. Other brand
and product names are registered trademarks or
trademarks of their respective companies.

