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9 Models for atmospheric propagation delays

Techniques operated for the realization of the IERS reference systems make use of
electromagnetic signals received on the surface of the Earth. During their transit
of the atmosphere, the signals experience delays which must be modeled in the
analysis software. This chapter presents models for the propagation of optical
signals in the troposphere (9.1), for radio signals in the troposphere (9.2) and
for radio signals in the ionosphere (9.4). For Doppler techniques which use time-
differenced phases as observables, the models presented in this chapter should be
time-differenced as well.

9.1 Tropospheric model for optical techniques

The accuracy of satellite and lunar laser ranging (SLR & LLR) is greatly affected
by the residual errors in modeling the effect of signal propagation through the
troposphere and stratosphere. Although several models for atmospheric correction
have been developed, the more traditional approach in LR data analysis uses a
model developed in the 1970s (Marini and Murray, 1973). Mendes et al. (2002)
pointed out some limitations in that model, namely the modeling of the elevation
dependence of the zenith atmospheric delay, i.e. the mapping function (MF)
component of the model. The MFs developed by Mendes et al. (2002) represent
a significant improvement over the MF in the Marini-Murray model and other
known MFs. Of particular interest is the ability of the new MFs to be used in
combination with any zenith delay (ZD) model to predict the atmospheric delay
in the line-of-sight direction. Subsequently, Mendes and Pavlis (2004) developed
a more accurate ZD model, applicable to the range of wavelengths used in modern
LR instrumentation. The combined set of the new mapping function and the new
ZD model were adopted in October 2006 by the Analysis Working Group of the
International Laser Ranging Service (ILRS) as the new standard model to be used
for the analysis of LR data starting January 1, 2007. The alternative to correct
the atmospheric delay using two-color ranging systems is still at an experimental
stage.

9.1.1 Zenith delay models

The atmospheric propagation delay experienced by a laser signal in the zenith
direction is defined as

dzatm = 10−6

ra
∫

rs

Ndz =

ra
∫

rs

(n− 1) dz, (9.1)

or, if we split the zenith delay into hydrostatic (dzh) and non-hydrostatic (dznh)
components,

dzatm = dzh + dznh = 10−6

ra
∫

rs

Nhdz + 10−6

ra
∫

rs

Nnhdz, (9.2)

where N = (n− 1) × 106 is the (total) group refractivity of moist air, n is the
(total) refractive index of moist air, Nh and Nnh are the hydrostatic and the non-
hydrostatic components of the refractivity, rs is the geocentric radius of the laser
station, ra is the geocentric radius of the top of the (neutral) atmosphere, and
dzatm and dz have length units.
In the last few years, the computation of the group refractivity at optical wave-
lengths has received special attention and, as a consequence, the International As-
sociation of Geodesy (IAG) (IUGG, 1999) recommended a new procedure to com-
pute the group refractivity, following Ciddor (1996) and Ciddor and Hill (1999).
Based on this procedure, Mendes and Pavlis (2004) derived closed-form expres-
sions to compute the zenith delay. For the hydrostatic component, we have

dzh = 0.002416579
fh(λ)

fs(φ,H)
Ps, (9.3)
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where dzh is the zenith hydrostatic delay, in meters, and Ps is the surface barometric
pressure, in hPa. The function fs(φ,H) is given by

fs(φ,H) = 1− 0.00266 cos 2φ− 0.00000028H, (9.4)

where φ is the geodetic latitude of the station and H is the geodetic height of
the station in meters <1>, fh (λ) is the dispersion equation for the hydrostatic
component

fh (λ) = 10−2 ×

[

k∗

1

(

k0 + σ2
)

(k0 − σ2)2
+ k∗

3

(

k2 + σ2
)

(k2 − σ2)2

]

CCO2
, (9.5)

with k0 = 238.0185 µm−2, k2 = 57.362 µm−2, k∗

1 = 19990.975 µm−2, and k∗

3 =
579.55174 µm−2, σ is the wave number (σ = λ−1, where λ is the wavelength, in
µm), CCO2

= 1 + 0.534 × 10−6 (xc − 450), and xc is the carbon dioxide (CO2)
content, in ppm. In the conventional formula, a CO2 content of 375 ppm should
be used, in line with the IAG recommendations, thus CCO2

= 0.99995995 should
be used.

For the non-hydrostatic component, we have:

dznh = 10−4 (5.316fnh(λ)− 3.759fh(λ))
es

fs(φ,H)
, (9.6)

where dznh is the zenith non-hydrostatic delay, in meters, and es is the surface
water vapor pressure, in hPa. fnh is the dispersion formula for the non-hydrostatic
component:

fnh (λ) = 0.003101
(

ω0 + 3ω1σ
2 + 5ω2σ

4 + 7ω3σ
6) , (9.7)

where ω0 = 295.235, ω1 = 2.6422 µm2, ω2 = −0.032380 µm4, and ω3 = 0.004028
µm6.

The subroutine FCUL ZTD HPA.F to compute the total zenith delay is available at
<2>.

From the assessment of the zenith models against ray tracing for the most used
wavelengths in LR, it can be concluded that these zenith delay models have over-
all rms errors for the total zenith delay below 1mm across the whole frequency
spectrum (Mendes and Pavlis, 2003; Mendes and Pavlis, 2004).

9.1.2 Mapping function

Due to the small contribution of water vapor to atmospheric refraction at visible
wavelengths, we can consider a single MF for laser ranging. In this case, we have:

datm = dzatm ·m(e), (9.8)

where dzatm is the total zenith propagation delay and m(e) the (total) MF. Mendes
et al. (2002) derived a MF, named FCULa, based on a truncated form of the
continued fraction in terms of 1/sin(e) (Marini, 1972), normalized to unity at the
zenith

m(e) =

1 +
a1

1 +
a2

1 + a3

sin e+
a1

sin e+
a2

sin e+ a3

. (9.9)

Note that the same formula is used for radio techniques, but with different vari-
ables, see Equation (9.13). The FCULa MF is based on ray tracing through one
full year of radiosonde data from 180 globally distributed stations. It is valid for a

1originally, Saastamoinen (1972) used orthometric height, however, the formula is insensitive to the difference, so
geodetic height can be used instead without loss of accuracy.

2ftp://tai.bipm.org/iers/conv2010/chapter9
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Table 9.1: Coefficients (aij) for the FCULa mapping function, see Equation (9.10). Coefficients (ai1)
are in C−1 and coefficients (ai3) in m−1.

aij FCULa

a10 (12100.8±1.9)× 10−7

a11 (1729.5±4.3)× 10−9

a12 (319.1±3.1)× 10−7

a13 (-1847.8±6.5)× 10−11

a20 (30496.5±6.6)× 10−7

a21 (234.6±1.5)× 10−8

a22 (-103.5±1.1)× 10−6

a23 (-185.6±2.2)× 10−10

a30 (6877.7±1.2)× 10−5

a31 (197.2±2.8)× 10−7

a32 (-345.8±2.0)× 10−5

a33 (106.0±4.2)× 10−9

wide range of wavelengths from 0.355 µm to 1.064 µm (Mendes and Pavlis, 2003)
and for elevation angles greater than 3 degrees, if we neglect the contribution of
horizontal refractivity gradients. The coefficients ai (i=1,2,3) have the following
mathematical formulation:

ai = ai0 + ai1ts + ai2 cosφ+ ai3H, (9.10)

where ts is the temperature at the station in Celsius degrees, H is the geodetic
height of the station, in meters, and the coefficients are given in Table 1, see
Mendes et al. (2002) for details. The subroutine FCUL A.F to compute the FCULa
mapping function is available at <2>.

The new mapping functions represent a significant improvement over other map-
ping functions available and have the advantage of being easily combined with dif-
ferent zenith delay models. The analysis of two years of SLR data from LAGEOS
and LAGEOS 2 indicate a clear improvement in the estimated station heights
(8% reduction in variance), while the simultaneously adjusted tropospheric zenith
delay biases were all consistent with zero (Mendes et al., 2002).

For users who do not have extreme accuracy requirements or do not know the
station temperature, the FCULb mapping function, which depends on the station
location and the day of the year, has been developed, see Mendes et al. (2002)
for details. The subroutine FCUL B.F to compute the FCULb mapping function is
available at <2>.

9.1.3 Future developments

The accuracy of the new atmospheric delay models are still far from the accuracy
required for global climate change studies. The goal as set forth by the Inter-
national Laser Ranging Service (ILRS) is better than one millimeter. The LR
community has been looking into ways to achieve that accuracy. One significant
component that is missing from the above models is to account for the effect of
horizontal gradients in the atmosphere, an error source that contributes up to 5
cm of delay at low elevation angles. Ranging at low elevation angles improves the
de-correlation of errors in the vertical coordinate with errors in the measurement
process (biases). Stations thus strive to range as low as possible, thence the need
for model improvements.

Global meteorological fields are now becoming more readily accessible, with higher
spatio-temporal resolution, better accuracy and more uniform quality. This is
primarily due to the availability of satellite observations with global coverage twice
daily. Hulley and Pavlis (2007) developed a new technique, and tested it with real
data, computing the total atmospheric delay, including horizontal gradients, via
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three-dimensional atmospheric ray tracing (3D ART) with meteorological fields
from the Atmospheric Infrared Sounder (AIRS). This technique has already been
tested and applied to two years of SLR data from LAGEOS 1 and 2, and for ten
core, globally-distributed SLR stations. Replacing the atmospheric corrections
estimated from the Mendes-Pavlis ZD and MF models with 3D ART resulted in
reducing the variance of the SLR range residuals by up to 25% for all the data
used in the analysis. As of May 2007, an effort is in progress to establish a service
that will compute these corrections for all of the collected SLR and LLR data in
the future. Once this service is in place, it is expected that this new approach will
be adopted as the standard for SLR and LLR data reductions.

9.2 Tropospheric model for radio techniques

The non-dispersive delay imparted by the atmosphere on a radio signal up to
30 GHz in frequency, which reaches a magnitude of about 2.3 m at sea level, is
conveniently divided into “hydrostatic” and “wet” components. The hydrostatic
delay is caused by the refractivity of the dry gases (mainly N2 and O2) in the tro-
posphere and by most of the nondipole component of the water vapor refractivity.
The rest of the water vapor refractivity is responsible for most of the wet delay.
The hydrostatic delay component accounts for roughly 90% of the total delay at
any given site globally, but can vary between about 80 and 100% depending on
location and time of year. It can be accurately computed a priori based on reliable
surface pressure data using the formula of Saastamoinen (1972) as given by Davis
et al. (1985):

Dhz =
[(0.0022768± 0.0000005)]P0

fs(φ,H)
(9.11)

where Dhz is the zenith hydrostatic delay in meters, P0 is the total atmospheric
pressure in hPa (equivalent to millibars) at the antenna reference point (e.g. an-
tenna phase center for Global Positioning System, the intersection of the axes of
rotation for VLBI 3), and the function fs(φ,H) is given in Equation (9.4).

There is currently no simple method to estimate an accurate a priori value for
the wet tropospheric delay, although research continues into the use of external
monitoring devices (such as water vapor radiometers) for this purpose. So, in most
precise applications where sub-decimeter accuracy is sought, the residual delay
must usually be estimated with the other geodetic quantities of interest. The
estimation is facilitated by a simple parameterization of the tropospheric delay,
where the line-of-sight delay, DL, is expressed as a function of four parameters as
follows:

DL = mh(e)Dhz +mw(e)Dwz +mg(e)[GN cos(a) +GE sin(a)]. (9.12)

The four parameters in this expression are the zenith hydrostatic delay, Dhz, the
zenith wet delay, Dwz, and a horizontal delay gradient with components GN and
GE . mh, mw and mg are the hydrostatic, wet, and gradient mapping functions,
respectively, and e is the elevation angle of the observation direction in vacuum.
a is the azimuth angle in which the signal is received, measured east from north.

Horizontal gradient parameters are needed to account for a systematic component
in the N/S direction towards the equator due to the atmospheric bulge (MacMillan
and Ma, 1997), which are about -0.5/+0.5 mm at mid-latitudes in the northern
and southern hemispheres, respectively. They also capture the effects of random
components in both directions due to weather systems. Failing to model gradients
in radiometric analyses can lead to systematic errors in the scale of the estimated
terrestrial reference frame at the level of about 1 ppb, as well as cause latitude and
declination offsets in station and source positions, the latter also depending on the
station distribution (Titov, 2004). A mean a priori model for the gradients which
is based on re-analysis data of the European Centre for Medium-Range Weather

3In the case of VLBI, provision should be made to account for the actual path of the photons due to the possible
altitude variation of the reference point (Sovers and Jacobs, 1996)
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Forecasts (ECMWF) is provided by the subroutine APG.F available at <4> and
<2>. However, an a priori model cannot replace the (additional) estimation of
gradient parameters, if observations at elevation angles below 15◦ are analyzed.
In the case of GPS analyses, such low-elevation data could be deweighted because
of multipath effects.

Horizontal tropospheric gradients can reach or exceed 1 mm and their estimation
was shown by Chen and Herring (1997) and MacMillan (1995) to be beneficial
for VLBI, and by Bar-Sever et al. (1998) to be beneficial for GPS. Chen and
Herring (1997) propose to use mg(e) = 1/(sin e tan e + 0.0032). Unlike other
gradient mapping functions this equation is not affected by singularity at very
low elevations (below 5◦).

The hydrostatic and wet mapping functions, mh and mw, for the neutral atmo-
sphere depend on the vertical distribution of the hydrostatic and wet refractiv-
ity above the geodetic sites. With the availability of numerical weather models
(NWM) this information can currently be extracted globally with a temporal res-
olution of six hours (Niell, 2001). Unlike previous mapping functions these are
not limited in their accuracy by the use of only surface meteorological data, as
in the functions of Ifadis (1986) or in MTT (Herring, 1992), or of the lapse rate
and the heights of the isothermal layer and the tropopause as additionally used
in the function of Lanyi (1984), nor by the use of average in situ properties of the
atmosphere, even if validated with radiosonde data, as in NMF (Niell, 1996). The
general form of the hydrostatic and wet mapping functions is (Herring, 1992)

mh,w (e) =

1 +
a

1 +
b

1 + c

sin e+
a

sin e+
b

sin e+ c

. (9.13)

The Vienna Mapping Function 1 (VMF1) (Boehm et al., 2006a) is based on exact
ray traces through the refractivity profiles of a NWM at 3◦ elevation and empirical
equations for the b and c coefficients of the continued fraction in Equation (9.13).
Niell (2006) compared mapping functions determined from radiosonde data in
1992 with VMF1 and found that the equivalent station height standard deviations
are less than 3 mm, which is significantly better than for other mapping functions
available. These results are confirmed by VLBI analyses as shown by Boehm et

al. (2007a) and Tesmer et al. (2007), respectively. Thus, VMF1 is recommended
for any global application, such as the determination of the terrestrial reference
frame and Earth orientation parameters.

At the webpage <4>, the a coefficients of VMF1 as derived from data of the
ECMWF are provided with a time interval of 6 hours for the positions of most
sites of the International GNSS Service (IGS), the International VLBI Service for
Geodesy and Astrometry (IVS), and the International DORIS Service (IDS), as
well as on a global 2.5◦×2.0◦ grid. Kouba (2008) compares results from the grids
with VMF1 given at the sites and provides algorithms on how to use the grids.

The Global Mapping Function (GMF) (Boehm et al., 2006b) is an empirical map-
ping function in the tradition of NMF that can be calculated using only station
latitude, longitude (not used by NMF), height, and day of the year. GMF, which
is based on spherical harmonics up to degree and order 9, was developed with the
goal to be more accurate than NMF and to be consistent with VMF1. Some com-
parisons of GMF, VMF1 and other MFs with radiosonde data may be found in
(Niell, 2006). GMF is easy to implement and can be used when the best accuracy
is not required or when VMF1 is not available. The Fortran subroutines VMF1.F
and GMF.F are available at <2> and <4>.

9.3 Sources for meteorological data

Because 1 mbar pressure error causes an a priori delay error of about 2.3 mm at sea
level, it is essential to use accurate estimates of meteorological data (Tregoning and

4http://ggosatm.hg.tuwien.ac.at/DELAY
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Herring, 2006). If meteorological instrumentation is not available, meteorological
data may be retrieved from a NWM, e.g. the ECMWF as provided together with
VMF1 at <4>. In both cases adjustments of the pressure should be applied for
the height difference between the location of the pressure measurement (from in

situ instrumentation or from NWM) and the reference point of the space geodesy
instrument. Commonly used formulas for the adjustment can be found in (Boehm
et al., 2007b). Alternatively, local pressure and temperature estimates could be
determined with the empirical model GPT (Boehm et al., 2007b) that has been
developed similarly to the GMF, and is provided as a Fortran routine, GPT.F, at
<2> and <4>.

9.4 Ionospheric model for radio techniques

Dispersive effects of the ionosphere on the propagation of radio signals are clas-
sically accounted for by linear combination of multi-frequency observations. In
past years it has been shown that this approach induces errors on the computed
time of propagation that can reach 100 ps for GPS due to the fact that higher
order dispersive effects are not considered. For wide-band VLBI observations,
the induced errors might reach a couple of ps. In this section the estimation of
the effect of higher-order neglected ionospheric terms and possible conventional
models are summarized for the microwave range, with frequencies from hundreds
of MHz to few tens of GHz.

9.4.1 Ionospheric delay dependence on radio signals including higher order terms

The delay δρI experienced by the transionospheric electromagnetic signals, travel-
ling from the transmitter T at ~rT to the receiver R at ~rR, separated by a distance
ρ, can be expressed by the integral of the refractive index n along the ray path:

δρI =

∫ ~rR

~rT

c
dl

v
− ρ =

∫ ~rR

~rT

(n− 1)dl (9.14)

where c = 299792458 m/s is the light speed in free space, v is the actual tran-
sionospheric signal propagation velocity at the given place and dl is the differential
length element.

Effects on carrier phase data

By neglecting the frictional force, assuming that we are in a cold, collisionless,
magnetized plasma such as the ionosphere, the refractive index for the carrier
phase, np, can be expressed by the Appleton expression, for both ordinary (upper
sign) and extraordinary (lower sign) waves, see for instance Davies (1990) page
72:

n2
p = 1−

X

1−
Y 2

T

2(1−X)
±
[

Y 4

T

4(1−X)2
+ Y 2

L

] 1

2

(9.15)

where

X =
ω2
p

ω2
, YL = −

ωg

ω
cos θ, YT = −

ωg

ω
sin θ, (9.16)

where θ is the angle between the magnetic field ~B and the electromagnetic (EM)

propagation direction ~k, and where ω = 2πf is the circular frequency correspond-
ing to a frequency f . This applies to the carrier circular frequency ω, and to the
plasma ωp and gyro ωg circular frequencies associated to the free electrons of the
ionosphere:

ω2
p =

Neq
2

meǫ0
ωg =

Bq

me
(9.17)

where Ne is the number density of free electrons and B is the magnetic field
modulus (both depending on time and position along the EM ray), q ≃ 1.6022×
10−19C is the absolute value of the electron charge, me ≃ 9.1094 × 10−31kg is
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the electron mass and ǫ0 ≃ 8.8542× 10−12F/m is the electric permittivity in free
space (vacuum). Extraordinary waves (lower sign) can be typically associated to
right hand polarized EM signals such as those of GPS antennas, and most L and
S Band antennas that receive satellite signals.

For signals with frequencies ω >> ωp (and hence ω >> ωg) as for GNSS we may
expand (9.15) into a second-order Taylor approximation and retain only terms up
to f−4, similarly to the approach of Bassiri and Hajj (1993). The result is, see
(Datta-Barua et al. 2008) for a detailed discussion of several approximation ways
adopted by different authors:

np = 1−
1

2
X ±

1

2
XYL −

1

8
X2 −

1

4
X · Y 2(1 + cos2 θ) (9.18)

where Y 2 = Y 2
L +Y 2

T =
(ωg

ω

)2
and again upper sign represents ordinary wave, and

lower sign represents extraordinary wave.

The following explicit expression for np can be obtained for extraordinary EM
signals in terms of the main physical constants and parameters, after substituting
X, YL and YT from equations (9.16):

np = 1−
q2

8π2meǫ0
·
Ne

f2
−

q3

16π3m2
eǫ0

·
NeB cos θ

f3

−
q4

128π4m2
eǫ

2
0

·
N2

e

f4
−

q4

64π4m3
eǫ0

·
NeB

2(1 + cos2 θ)

f4
(9.19)

Inserting equation (9.19) into (9.14) leads to the following ionospheric dependent
terms in the carrier phase, up to third (f−4) order:

δρI,p = −
s1
f2

−
s2
f3

−
s3
f4

(9.20)

After substituting the physical constants, me, q, ǫ0, with 5 significant digits the
first, second and third order coefficients, s1, s2 and s3, read (note that the Inter-
national System of Physical Units (SI) is used, e.g. magnetic field is expressed in
Tesla):

s1 = 40.309

∫ ~rR

~rT

Nedl (9.21)

s2 = 1.1284 · 1012
∫ ~rR

~rT

NeB cos θdl (9.22)

s3 = 812.42

∫ ~rR

~rT

N2
e dl + 1.5793× 1022

∫ ~rR

~rT

NeB
2 (1 + cos2 θ

)

dl (9.23)

These expressions are fully equivalent for instance to Equations (2) to (5) in
Fritsche et al. (2005).

It can be seen in the last expressions (9.20) to (9.23) that the ionospheric delay
on the carrier phase is negative, indicating an increase of the phase velocity of the
EM transionospheric signal propagation.

In order to assess the importance of the different ionospheric terms for δρI,p in
Equation (9.20), we start with the first term, assuming a high value of Slant Total

Electron Content (STEC, see Section 9.4.2 for more details) of S =
∫ ~rR
~rT

Nedl ∼

300× 1016m−2:

δρI,p,1 = −
40.309S

f2
∼ −

1.2× 1020

f2
(9.24)

In this case we obtain a first ionospheric order term δρI,p,1 of up to several km of
delay for f ≃ 150 MHz (negative for the carrier phase), corresponding to the lower
frequency of the NIMS satellite system (U.S. Navy Ionospheric Measuring System,
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formerly TRANSIT), and of up to several tens of meters for f = 1575.42 MHz
(L1 GPS carrier frequency).

The relative importance of the first (δρI,p,1 = −s1/f
2), second (δρI,p,2 = −s2/f

3)
and third order terms (δρI,p,3 = −s3/f

4) also depends on the frequency. The
higher order terms are increasingly less important for increasing frequencies (e.g. for
VLBI frequencies compared to GPS frequencies). Indeed, from Equations (9.20)
to (9.23):

δρI,p,2
δρI,p,1

=
2.7994× 1010

f
·

∫ ~rR
~rT

NeB cos θdl
∫ ~rR
~rT

Nedl
(9.25)

By taking typical values reflecting the order of magnitude of |B0 cos θ0| ≃ 104nT
at a given effective height to evaluate both integrals, the order of magnitude of
the ratio of second to first order ionospheric term can be approximated by:

δρI,p,2
δρI,p,1

≃
2.7994× 1010

f
|B0 cos θ0| ∼

2.8× 105

f
(9.26)

The value of δρI,p,2 is thus typically only 1% of that of δρI,p,1 for f ≃ 150 MHz
(NIMS), and only 0.1% for f = 1575.42 MHz (GPS L1 carrier).

Similarly, the order of magnitude of the relative value between third and second
order ionospheric terms can be estimated as:

δρI,p,3
δρI,p,2

=
7.1998× 10−10

f
·

∫ ~rR
~rT

N2
e dl

∫ ~rR
~rT

NeB cos θdl
+

1.3996× 1010

f
·

∫ ~rR
~rT

NeB
2
(

1 + cos2 θ
)

dl
∫ ~rR
~rT

NeB cos θdl
(9.27)

Considering the typical values used above reflecting order of magnitude of |B0 cos θ0|
≃ 104nT at a given effective height to evaluate the integrals, an intermediate an-
gle of θ0 = 45 deg, and taking N0 ≃ 1012m−3 a raw order of magnitude value of
effective electron density fulfilling N0 ·

∫ ~rR
~rT

Nedl =
∫ ~rR
~rT

N2
e dl, we get the follow-

ing relative order of magnitude value between third and second order ionospheric
terms:

δρI,p,3
δρI,p,2

≃
1

f

(

7.1998× 10−10 N0

|B0 cos θ0|
+ 1.3996× 1010 ·

3

2
|B0 cos θ0|

)

∼
7.2× 107 + 2.1× 105

f
(9.28)

The order of magnitude of the ratio between third and second order ionospheric
terms can thus be as high as about 50% for NIMS frequency f ≃ 150 MHz but
less than 10% for f = 1575.42 MHz, the L1 GPS carrier frequency.

Another conclusion from this approximation is that the second integral in (9.23)
can typically be neglected compared to the first integral depending only on the
electron density, as it is typically two orders of magnitude smaller, see Equa-
tion (9.28):

s3 ≃ 812

∫ ~rR

~rT

N2
e dl (9.29)

Finally, in order to show that third order ionospheric approximation should be
adequate for most of the radio astronomic-geodetic techniques, we can consider
the fourth order term δρI,p,4 in the carrier phase delay. It can be deduced in a
similar way as the first to third order terms, but now keeping the terms f−5 in
the Taylor expansion of Equation (9.15) in the corresponding fourth order term
δnp,4 of the carrier phase ionospheric refraction index term

δnp,4 = −
1

2
XYL

(

X

2
+ Y 2

[

1 +
1

8
sin2 θ tan2 θ

])

(9.30)
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which is expressed with the same notation as in the previous expressions. Using
Equations (9.16) and (9.17) as well as Equation (9.14), the fourth order ionospheric
term in delay can be expressed as:

δρI,p,4 = −
s4
f5

(9.31)

where

s4 =
q5

128π5me
3ǫ02

∫ ~rR

~rT

N2
eB cos θdl +

q5

64π5me
4ǫ0

∫ ~rR

~rT

NeB
3f(θ)dl (9.32)

and where f(θ) = cos θ
(

1 + 1
8
sin2 θ tan2 θ

)

. Substituting the values of the con-
stants we get:

s4 = 4.5481× 1013
∫ ~rR

~rT

N2
eB cos θdl+8.8413× 1032

∫ ~rR

~rT

NeB
3f(θ)dl (9.33)

Taking into account Equations (9.31), (9.33), (9.20) and (9.29), the ratio between
the fourth and third ionospheric order terms can be written as:

δρI,p,4
δρI,p,3

=
1

f

(

5.5982× 1010
∫ ~rR
~rT

N2
eB cos θdl

∫ ~rR
~rT

N2
e dl

+ 1.0883× 1030
∫ ~rR
~rT

NeB
3f(θ)dl

∫

~rR
N2

e dl

)

(9.34)

Taking into account the same approximations and typical values than before, the
ratio can be expressed as:

δρI,p,4
δρI,p,3

≃
1

f

(

5.6× 1010|B0 cos θ0|+ 1.1× 1030
|B0 cos θ0|

3f(θ0)

N0| cos3 θ0|

)

∼
1

f

(

5.6× 105 + 2.3× 103
)

(9.35)

According to this expression the fourth order ionospheric term is only 1% of the
third order term for f ≃ 150 MHz (NIMS) and less than 0.1% for the L1 GPS
carrier at f = 1575.42 MHz. Another conclusion from this development is that
the fourth order term can be approximated by the first term in Equation (9.33):

s4 ≃ 4.55× 1013
∫ ~rR

~rT

N2
eB cos θdl (9.36)

Table 9.2 provides delays corresponding to ionospheric terms of different order
and different frequencies of interest in radio astronomic-geodetic research, with
the same approximations and particular values as above (|B0 cos θ0| ∼ 104nT ,
N0 ∼ 1012m−3 and S ∼ 3 × 1018m−2). It can be seen, taking as significant
threshold the delay value of 1mm, that:

• The first order ionospheric term, as expected, is significant for all the con-
sidered frequencies.

• The second order ionospheric term should be taken into account for all the
frequencies, except for the high VLBI frequency and those used for Ku band
time transfer.

• The third order ionospheric term should be taken into account in NIMS and
DORIS low frequencies. It is at the significance limit for GPS and high
DORIS frequencies and can be neglected for VLBI and time transfer Ku
band frequencies.

• The fourth order can be neglected, except for the very low NIMS frequency
of 150 MHz.

Ray bending effects on geometric path excess and ionospheric delay

Moreover the effect of the curvature (or bending) of the ray in terms of geometric
path excess can be considered as an additional correction ∆s3 (typically up to
few millimeters at low elevation for GPS frequencies), appearing as a f−4 depen-
dence too, which can be easily added to the s3 coefficient of Equation (9.47). In
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Table 9.2: Delays (in millimeters) corresponding to the first to fourth higher order ionospheric delay
terms (in columns) for a representative subset of typical frequencies used in radio astronomy and
geodesy: the values are based on typical values of |B0 cos θ0| ∼ 104 nT, θ0 = π/4, N0 = 1012m−3 and
S = 3× 1018m−2 (the values that can be typically neglected –those lower than 1 mm– can be clearly
identified by a negative exponent).

f / MHz Technique δρI,p,1 / mm δρI,p,2 / mm δρI,p,3 / mm δρI,p,4 / mm

150 NIMS −5.3 · 106 −9.9 · 103 −4.8 · 103 −1.8 · 101

400 NIMS / DORIS −7.5 · 105 −5.2 · 102 −9.4 · 101 −1.3 · 10−1

1228 GPS (L2) −8.0 · 104 −1.8 · 101 −1.1 · 100 −5.0 · 10−4

1575 GPS (L1) −4.8 · 104 −8.5 · 100 −3.9 · 10−1 −1.4 · 10−4

2000 DORIS −3.0 · 104 −4.2 · 100 −1.5 · 10−1 −4.2 · 10−5

2300 Low VLBI f. −2.3 · 104 −2.8 · 100 −8.8 · 10−2 −2.2 · 10−5

8400 High VLBI f. −1.7 · 103 −5.7 · 10−2 −4.9 · 10−4 −3.3 · 10−8

12000 Time trans. low Ku f. −8.3 · 102 −1.9 · 10−2 −1.1 · 10−4 −5.2 · 10−9

14000 Time trans. high Ku f. −6.1 · 102 −1.2 · 10−2 −6.2 · 10−5 −2.5 · 10−9

particular Jakowski et al. (1994) derived by ray tracing a simple expression for
GPS in which, with the above introduced notation, the coefficient of the f−4 term
approximating the bending effect is:

∆s3 ≃ 2.495× 108[(1− 0.8592 cos2 E]−1/2 − 1] · Ŝ2 (9.37)

where E is the spherical elevation, i.e. the complement of the zenith angle with
respect to the geocenter direction and where the units are not in SI system: the
STEC Ŝ in TECU=1016m−3, the elevation E in degrees and the factor ∆s3 in
mm·(MHz)4. This expression is a particular approximation for GPS of the general
results obtained for different frequencies. Details of the typical dependences for
other frequencies can be seen in Figure 9.1 for different levels of electron content
(8, 40 and 100 TECU) and different elevations (10, 25 and 50 degrees).

Recently Hoque and Jakowski (2008) proposed an update for this expresion tak-
ing into account the dependency not only on the STEC but also on the vertical
distribution of electron content (by considering the F2 layer scale and maximum
ionization heights, see Equation (23) in the given reference). But we retain Equa-
tion (9.37) for this document because, as the authors recognize in the same paper,
these parameters are not easily available in the practice.

As the ray bending depends on the carrier frequency, an additional effect on the
ionospheric correction appears when two different carriers are used, because the
STEC differs on the two paths. However, following Hoque and Jakowski (2008)
Equation (31), this effect is small (mm level at low elevation).

Effects on code pseudorange data

The corresponding effect can be computed for the code pseudorange measure-
ments, by using the well known relationship between phase and code refractive
indices, np and nc respectively, relating the phase velocity with the group (code)
velocity, see for instance Davies (1990) page 13:

nc = np + f
dnp

df
(9.38)

A similar relationship holds for the code and carrier phase ionospheric delays,
δρI,c and δρI,p, after introducing Equation (9.38) in Equation (9.14):

δρI,c = δρI,p + f
d

df
δρI,p (9.39)

Applying Equation (9.39) to Equation (9.20), the ionospheric effect on code iono-
spheric delay, up to third order term, is:

δρI,c =
s1
f2

+ 2
s2
f3

+ 3
s3
f4

(9.40)
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Figure 9.1: Results of ray-tracing calculations concerning the dependency of
the excess path length from the frequency of the propagation radio wave. At
frequencies below 600 MHz the calculations correspond to a satellite height
hs = 1000km (NIMS/NNSS, DORIS) whereas above 600 MHz the calcula-
tions correspond to a satellite height hs = 20000km (GPS, GLONASS) [Fig-
ure kindly provided by Dr. Norbert Jakowski, see Jakowski et al. (1994)]

It can be seen from this relationship, taking into account Equations (9.21), (9.22)
and (9.23), that the ionospheric delay on the code pseudorange is positive, as-
sociated to a decrease of the EM signal group velocity in the transionospheric
propagation.

9.4.2 Correcting the ionospheric effects on code and phase

The most efficient way of correcting the ionospheric effects is by combining simul-
taneous measurements in k different frequencies, which allows to cancel the iono-
spheric effects up to order k − 1, taking into account Equations (9.20) and (9.40)
for carrier phase and code, respectively. A well know example is the case of the
actual GPS system with two frequencies, which allows to cancel out the first or-
der ionospheric effect by the so called ionospheric-free combination of observables
(see below). And in the future, with Galileo and modernized GPS systems (broad-
casting at three frequencies), the full correction can be extended to second order
ionospheric terms too.

Correcting the ionospheric term for single frequency users

If the user is only able to gather measurements at a single frequency f , then
his main problem is to correct as much as possible (or at least mitigate) the
first order ionospheric terms in phase and code measurements, δρI,p,1 (9.20) and
δρI,c,1 (9.40), which account for more than 99.9% of the total ionospheric delays,
as we have shown above. Following (9.21) the first order ionospheric terms are

only dependent on the Slant Total Electron Content S =
∫ ~rR
~rT

Nedl and the signal
frequency:

δρI,p,1 = −40.309 S
f2

δρI,c,1 = +40.309 S
f2







(9.41)
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Taking into account this expression, the single frequency users with available phase
and code measurements at frequency fa, and not interested on precise positioning,
can use as main observable the so called Graphic combination Ga = 1

2

(

ρac + ρap
)

.
In this way the I1 ionospheric delay is completely removed at the price of having an
observable with the half part of the code thermal and multipath noise, maintaining
as additional unknown the carrier phase ambiguity for each continuous arc of phase
data. However the graphic combination can be convenient for real-time users with
relatively low requirements of accuracy, in conditions of maximum solar activity
and/or low latitude and daylight time or strong ionospheric storms scenarios.

On the other hand, there are different available external sources for the STEC S,
which allow to directly correct the single frequency observables. Many of them
provide the vertically integrated ionospheric free electron density, the so called
Vertical Total Electron Content (VTEC), globally or at least at regional scale.

From the VTEC values (V ) corresponding to the observation time, the STEC
S can be estimated thanks to a factor approximating the conversion from the
vertical to the slant Total Electron Content: the so called ionospheric mapping

function, M , by S = M · V .

Typically a thin shell spherical layer model, at a fixed effective ionospheric height

h, is applied:

M =
1

√

1− r2 cos2 E
(r+h)2

(9.42)

where r and E are the geocentric distance and ray spherical elevation taken from
the user receiver. In the case of IGS the adopted effective height is h = 450km.
This approximation can introduce significant errors as well, of 5% or more, spe-
cially when the 3D nature of the electron density distribution Ne has a larger
impact on the integrated (total electron content) values: at low elevation or low
latitude observations, see for instance Hernández-Pajares et al. (2005). Other
better approximations are possible, as Modified Single Mapping Function (Hugen-
tobler et al. 2002), variable effective height, see Komjathy and Langley (1996)
and Hernández-Pajares et al. (2005) or multilayer tomographic model, see for
instance Hernández-Pajares et al. (2002).

Some common sources of electron content are:

• Global VTEC maps, such as those computed by the International GNSS
Service (IGS) <5> from a global network of dual-frequency receivers. The
user can compute its STEC, S, from interpolating the VTEC maps and
applying the corresponding mapping function given by Equation (9.42) with
h = 450km in IGS IONEX format, see Schaer et al. (1998). The IGS VTEC
maps have typically errors of 10 to 20%, see for instance Hernández-Pajares
(2004) and Orús et al. (2002).

• Predicted VTEC models such as those used by GNSS: Klobuchar model
broadcasted in GPS navigation message, or NeQuick <6> for the future
Galileo system. They can show average errors up to 50% (up to 30% at
low latitude, see for instance Orús et al. (2002) or Aragón et al. (2004).
Moreover predicted Global VTEC maps are available from IGS center CODE
server <7>.

• Regional VTEC models, which provide better accuracy by means of a better
temporal and spatial resolution, thanks to the availability of dense networks
of permanent receivers (e.g. for Japan, Europe or USA).

• Empirical standard models of the Ionosphere, based on all available data
sources, such as the International Reference Ionosphere (IRI, Bilitza 1990)
available at <8> or PIM (Daniell et al. 1995) available at <9>. If they

5ftp://cddisa.gsfc.nasa.gov/pub/gps/products/ionex/
6http://www.itu.int/ITU-R/study-groups/software/rsg3-p531-electron-density.zip
7ftp://ftp.unibe.ch/aiub/CODE
8http://modelweb.gsfc.nasa.gov/ionos/iri.html
9http://www.cpi.com/products/pim/pim.html
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are adjusted to the actual conditions by means of one or several parameters,
such as the Sun Spot Number (Bilitza et al. 1999), these empirical models
can provide at least similar performance than predicted VTEC models for
GNSS. Otherwise the performance can be poor, depending on the region and
time.

Correcting the ionospheric term for dual frequency users In case the user
is able to gather two simultaneous measurements at two frequencies, fa and fb, the
situation is much better, because the first order term can be cancelled, elliminating
more than 99.9% of the total ionospheric delay. The first-order-ionospheric-free
combination ρ

(1)
p is defined by the weight factors f2

a and −f2
b as

ρ(1)p (a, b) =
f2
aρ

(a)
p − f2

b ρ
(b)
p

f2
a − f2

b

. (9.43)

If the measurements at the two frequencies are not exactly simultaneous, with
a time offset small enough to consider that the electron content does not vary
between the two measurements, the linear combination can still be applied but it
is necessary to account for the time offset10.

The first-order-ionospheric-free combination leads to the following new ionospheric
dependencies, for carrier phase and code (δρ

(1)
I,p and δρ

(1)
I,c respectively), after con-

sidering Equations (9.20) and (9.40):

δρ
(1)
I,p =

f2
aδρ

(a)
I,p − f2

b δρ
(b)
I,p

f2
a − f2

b

=
s2

fafb(fa + fb)
+

s3
f2
af

2
b

(9.44)

δρ
(1)
I,c =

f2
aδρ

(a)
I,c − f2

b δρ
(b)
I,c

f2
a − f2

b

= −
2s2

fafb(fa + fb)
−

3s3
f2
af

2
b

(9.45)

where s2 and s3 depend on electron density Ne and magnetic field ~B, according
to expressions (9.22) and (9.29). The following approximations can be done to
facilitate the computations:

s2 = 1.1284× 1012
∫ ~rR

~rT

NeB cos θdl ≃ 1.1284× 1012Bp cos θp · S (9.46)

where Bp and θp are the magnetic field modulus and projecting angle with respect
to the propagation direction, at an effective pierce point p, and S is the integrated
electron density, or STEC S. This approximation is used by Kedar et al. (2003)
and Petrie et al. (2010), and in other references cited above.

For this equation, a source of magnetic field is needed, which should be more
realistic than the dipolar one, such as the International Magnetic Reference Field
(IMRF) available at <11> or the Comprehensive Model 12 available at <13> ,
to reduce errors of up to more than 60% in certain regions, see a discussion in
Hernández-Pajares et al. (2007). Both models are provided as Fortran routines:
the IMRF model is provided with a short description of the arguments as the
subroutine igrf10syn in the file igrf10.f at <11>. The Comprehensive Model CM4
is provided with a complete description of the arguments as cm4field.f at <13>.

The third order coefficient can be approximated in terms of the maximum electron
density along the ray path Nm:

s3 ≃ 812

∫ ~rR

~rT

N2
e dl ≃ 812ηNmS (9.47)

10For example, in some of the Doris instruments, the difference between the two measurement times ta and tb can
reach 20 microseconds. In this case, it can be shown (Mercier, 2009) that it is sufficient to consider that the linear
combination (9.43) should be considered as a measurement taken at the epoch t(1) = (f2

a ta − f2
b tb)/(f

2
a − f2

b ).
11http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
12This model provides different components of the magnetic field besides the main field generated by sources inside

the Earth. The external field is caused by charged particle currents in the space around it, primarily in the ionosphere.
A calculation of the contribution of these currents to the total magnetic field within the ionosphere has suggested that
it is almost two orders of magnitude smaller than that of the main field there, even under geomagnetic storm conditions.
If so, the external field can be neglected when computing the second order ionospheric correction.

13http://core2.gsfc.nasa.gov/CM/
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We may take η ≃ 0.66 and Nm can be expressed as function of the slab thickness
H (which can be modelled as function on the latitude and local time) and the
VTEC V , see more details in Fritsche et al. (2005) and references therein.

These expressions typically lead for GPS to values of up to few centimeters for
the second order ionospheric correction: for instance δρ

(1)
I,p ≃ 2 cm for a given

observation with high STEC values (such as S ≃ 300 TECU = 3× 1018 m−3) and
magnetic field projection of B cos θ ≃ 3× 104nT .

Moreover the geometric path excess produced by the ray curvature (or bending)
can be considered as an additional term depending on f−4, for instance using
expression (9.37).

Then, to evaluate δρ
(1)
I,p and δρ

(1)
I,c we need as well an STEC source for S, as in the

case of single frequency users (see previous subsection). In this case, the double
frequency measurements can be used, to provide a direct estimate of S, from the
first order term which contains more than 99.9% of it. For instance in GPS S can
be estimated from the ionospheric (geometry-free) combination of carrier phases
LI = L1 − L2 and codes PI = P2 − P1, where Li and Pi are the carrier phase
and code measurements for carrier frequency fi, in length units. Indeed, writing
LI

14 and PI in terms of the corresponding BI term (which includes the carrier
phase ambiguity and the interfrequency phase biases) and interfrequency delay
code biases (DCBs) for receiver and transmitter D and D′:

LI = αS +BI , PI = αS +D +D′, (9.48)

where α = 40.309 · (f−2
2 −f−2

1 ) ≃ 1.05 ·10−17m3, the STEC S can be estimated as
S = (LI− < LI −PI > −D−D′)/α, where < · > is the average along a carrier
phase continuous arc of transmitter-receiver data with no phase cycle-slips. This
way of computing the STEC has certain advantages, specially when no external
sources of STEC are available (such as in real-time conditions) or at low latitudes
and elevations, see Hernández-Pajares et al. (2007) for corresponding discussion.

Equations (9.44) to (9.47), with an adequate source of STEC and magnetic field
(see above) provide a conventional method to correct the ionospheric higher order
terms for dual frequency users.

An alternative approach to correcting the GPS measurements is to apply the
second order ionospheric correction by means of redefining the first-order iono-
spheric free combination of observables (Brunner and Gu 1991), for instance in
terms of the line-of-sight magnetic field projection term 15. This approach has
the disadvantage of producing a time dependent carrier phase bias. More details
on pros and cons of different approaches for higher order ionospheric corrections,
including regional models such as Hoque and Jakowski (2007), can be found in
Hernández-Pajares et al. (2008).

In the case of DORIS instruments, the measurements are directly the phase vari-
ations between successive epochs (intervals of 7 or 10 seconds). They can be pro-
cessed using the time-differenced first-order-ionospheric-free combination (9.43).
For example, for ionospheric studies, this leads to a differential VTEC. VTEC may
be deduced with an iterative process (Fleury and Lassudrie, 1992, Li and Parrot,
2007). For the recent instruments (Jason 2 and after), the undifferenced phase
and pseudo-range measurements are also available. The pseudo-range measure-
ments are only used to synchronize the on-board oscillator in order to estimate
with a sufficient accuracy the measurement time. The first order ionospheric effect
can also be removed here using the corresponding combination. For higher order
terms, it possible to use as corrections for Doppler the time differences of those for
the carrier phase, calculated using the equations for phase given above. But some
caution is necessary for DORIS, where the second order effect on the equivalent

14The wind-up or transmitter-to-receiver antennas rotation angle, is not explicitely written here due its typical small
amount -up to less than about 1% of STEC in GPS for example-.

15From Equation (9.48) and the definition of the first-order ionospheric free combination of carrier phases Lc ≡

(f2
1L1− f2

2L2)/(f2
1 − f2

2 ) = ρ⋆+Bc (where ρ⋆ contains the frequency independent terms –including geometric distance,
clock errors and tropospheric delay– and Bc the carrier phase bias), an apparently first and second order iono free
combination of carrier phases can be easily derived L′

c = ρ⋆ + B′

c, where L′

c = Lc − s2LI/(f1f2(f1 + f2)) and B′

c =
Bc − s2BI/(f1f2(f1 + f2)) are the new combination of observables and time-varying carrier phase bias, respectively.
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carrier phase is several times larger than for GPS, on account of the different
choice of frequencies. The errors made in the phase correction, and therefore, in
the time-differenced phase correction, will be larger. It is not necessary to apply
these corrections on the code measurements because the required precision for
synchronisation is not so high as for phase processing.

Correcting the ionospheric term for multi (three or more)-frequency
users

GNSS systems offering simultaneous observations in 3 or more frequencies should
be available soon. Thence, in principle, it should be possible to cancel, from these
k simultaneous observations of the same transmitter-receiver pair, up to the first
k − 1 ionospheric order terms.

As an example, and from Equation (9.43) applied to two pairs of three consecutive
frequencies (fa, fb and fc), is possible to define a combination of carrier phase

observables that is first and second order ionospheric free, ρ
(2)
p :

ρ(2)p =
fafb(fa + fb)ρ

(1)
p (a, b)− fbfc(fb + fc)ρ

(1)
p (b, c)

fafb(fa + fb)− fbfc(fb + fc)
(9.49)

And in terms of the basic observables, given by Equation (9.43), it can be written
as:

ρ(2)p =
1

fa + fb + fc

(

f3
aρ

(a)
p

(fa − fb)(fa − fc)
+

f3
b ρ

(b)
p

(fb − fa)(fb − fc)
+

f3
c ρ

(c)
p

(fc − fa)(fc − fb)

)

(9.50)

From here and from Equation (9.44) the following remaining higher order iono-
spheric dependence can be deduced:

δρ
(2)
I,p =

s3
fafc(f2

b + fb[fa + fc])
(9.51)

A similar definition to Equation (9.49) can be derived for the code observations
resulting, by using Equation (9.45), in the following remaining higher order iono-
spheric dependency:

δρ
(2)
I,c =

−2s3
fafc(f2

b + fb[fa + fc])
(9.52)

However it must be pointed out that the combination significantly increases the
measurement noise. Indeed, from Equation (9.50), considering a simple hypothesis
of gaussian independent and identical gaussian distribution for the measurement
noise at different frequencies, it is easy to show that the increase of measurement
noise is very important (e.g. 25x in Galileo E1, E6, E5 frequencies, 34x in GPS
L1, L2, L5, 52x in Galileo E1, E5a, E5b).
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