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Abstract

This paper proposes the use of processor support for pro-

gram rollback, as a key primitive to enhance software de-

bugging in production-run environments. We discuss how

hardware support for program rollback can be used to

characterize bugs on-the-fly, leverage code versioning for

performance or reliability, sandbox device drivers, collect

monitoring information with very low overhead, support

failure-oblivious computing, and perform fault injection. To

test our ideas, we built an FPGA prototype. We run several

buggy applications on top of a version of Linux.

1. Introduction

Dynamic bug-detection tools (e.g., [9, 13]) face major

challenges when targeting production-run environments. In

such environments, bug monitoring and detection have to

be done with very low overhead. In addition, it is often

desirable to provide graceful recovery from bugs, so that

the system can continue to work.

One way to accomplish these goals is to provide hard-

ware support in the processor for low-overhead software

bug characterization, and for graceful recovery from bugs.

For this, we propose a hardware primitive that quickly un-

does (rolls back) sections of code. When a certain suspi-

cious event that may be a bug has been detected, the hard-

ware rolls the program thousands of instructions back with

very little overhead. At that point, several options are pos-

sible. We can either choose to re-execute the same section

of code or to jump off to another section where additional

monitoring can be done. If we choose the former, we can

re-execute the code section with the same input data set but

with more instrumentation enabled, so that we can further

characterize the bug. Alternatively, we can re-execute the

section with a different input or algorithm, to skip the bug

altogether.

To test these ideas, we have implemented such a hard-

ware extension to a simple processor prototyped using FP-

GAs (Field Programmable Gate Arrays). In this paper, we

describe the operation and software interface of our proto-

type. In addition,, we describe some of the uses that such

hardware support can have in helping software debugging.

Such uses are to fully characterize a bug on-the-fly, leverage

code versioning, sandbox the kernel’s device drivers, col-

lect and sample information with very low overhead, sup-

port failure-oblivious computing, and perform fault injec-

tion, among other issues.

This paper also evaluates the FPGA-based prototype

we built [16]. The extensions added include hold-

ing speculative data in the cache, register checkpointing,

and software-controlled transitions between speculative and

non-speculative execution. We experiment with several

buggy applications running on top of a version of Linux.

Overall, we show that this rollback primitive can be very

effective in production-run environments.

2 System overview

The system we propose allows the rollback and re-

execution of large sections of code (typically up to tens of

thousands of instructions) with very low overhead. This is

achieved through a few relatively simple changes to an ex-

isting processor.

We have implemented two main extensions: (1) the

cache can hold speculative data and, on demand, quickly

commit it or discard it all, and (2) the register state can

be quickly checkpointed into a special storage and restored

from there on demand. These two operations are done in

hardware. When entering speculative execution, the hard-

ware checkpoints the registers and the cache starts buffer-

ing speculatively written data. During speculative execu-

tion, speculative data in the cache gets marked as such and

is not allowed to be displaced from the cache. When transi-

tioning back to normal execution, any mark of speculative



data is deleted and the register checkpoint is discarded. If a

rollback is necessary, the speculatively written data is inval-

idated and the register state is restored from the checkpoint.

2.1 Speculative execution control

The speculative execution can be controlled either in

hardware or in software. There are benefits on both sides

and deciding which is best is dependent on what specula-

tion is used for.

2.1.1 Hardware control

If we want the system to always execute code speculatively

and be able to guarantee a minimum rollback window, the

hardware control is more appropriate. As the program runs,

the cache buffers the data generated and always marks them

as speculative. There are always two epochs of speculative

data buffered in the cache at a time, each one with a corre-

sponding register checkpoint. When the cache is about to

get full, the earliest epoch is committed, and a new check-

point is created. With this support, the program can always

roll back at least one of the two execution epochs (a number

of instructions that filled roughly half of the L1 data cache).

2.1.2 Software control

If, on the other hand, we need to execute speculatively only

some sections of code, and the compiler or user is able to

identify these sections, it is best to expose the speculation

control to the software. This approach has two main bene-

fits: more flexibility is given to the compiler and a smaller

overhead is incurred since only parts of the code execute

speculatively.

In this approach, the software explicitly marks the be-

ginning and the end of the speculative section with BE-

GIN SPEC and END SPEC instructions. When a BE-

GIN SPEC instruction executes, the hardware checkpoints

the register state and the cache starts buffering data written

to the cache, marking them as speculative.

If, while executing speculatively, a suspicious event that

may be a bug is detected, the software can set a special Roll-

back register. Later, when END SPEC is encountered, two

cases are possible. If the Rollback register is clear, the cache

commits the speculative data, and the hardware returns to

the normal mode of execution. If, instead, the Rollback

register is set, the program execution is rolled back to the

checkpoint, and the code is re-executed, possibly with more

instrumentation or different parameters.

If the cache runs out of space before the END SPEC in-

struction is encountered, or the processor attempts to per-

form an uncacheable operation (such as an I/O access), the

processor triggers an exception. The exception handler de-

cides what to do, one possibility being to commit the current

speculative data and continue executing normally.

3 Using program rollback for software de-
bugging

The architectural support presented in this work provides

a flexible environment for software debugging and system

reliability. In this section, we list some its possible uses.

3.1 An integrated debugging system

The system described here is part of a larger debugging

effort for production-run codes that includes architectural

and compiler support for bug detection and characteriza-

tion. In this system, program sections execute in one of

three states: normal, speculative or re-execute. While run-

ning in speculative mode, the hardware guarantees that the

code (typically up to about tens of thousands of instructions)

can be rolled back with very low overhead and re-executed.

This is used for thorough characterization of code sections

that are suspected to be buggy.

The compiler [6] is responsible for selecting which sec-

tions of code are more error-prone and thus, should be exe-

cuted in speculative mode. Potential candidates are func-

tions that deal with user input, code with heavy pointer

arithmetic, or newer, less tested functions. The program-

mer can also assist by indicating the functions that he or she

considers less reliable.

In addition, a mechanism is needed to detect potential

problems, and can be used as a starting point in the bug de-

tection process. Such a mechanism can take many forms,

from a simple crash detection system to more sophisticated

anomaly detection mechanisms. Examples of the latter in-

clude software approaches like Artemis [3] or hardware

approaches like iWatcher [19].

Artemis is a lightweight run-time monitoring system that

uses execution contexts (values of variables and function

parameters) to detect anomalous behavior. It uses training

data to learn the normal behavior of an application and will

detect unusual situations. These situations can act as a trig-

ger for program rollbacks and re-executions for code char-

acterization.

iWatcher is an architecture proposed for dynamically

monitoring memory locations. The main idea of iWatcher

is to associate programmer-specified monitoring functions

with monitored memory objects. When a monitored object

is accessed, the monitoring function associated with this ob-

ject is automatically triggered and executed by the hardware

without generating an exception to the operating system.

The monitoring function can be used to detect a wide range

of memory bugs that are otherwise difficult to catch.
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We provide two functions, namely enter spec to be-

gin speculative execution and exit spec to end it with

commit or rollback. In addition, we have a function

proc state() used to probe the state of the processor.

A return value of 0 means normal mode, 1 means specula-

tive mode, and 2 means re-execute mode (which follows a

rollback).

The following code shows how these functions are

used. exit spec takes one argument, flag, that con-

trols whether speculation ends with commit or rollback.

If an anomaly is detected, the software immediately sets

the flag variable. When the execution finally reaches

exit spec, a rollback is triggered. The execution re-

sumes from the enter spec point.

num=1;
...
/* begin speculation */
enter_spec();
...
/* heavy pointer arithmetic */
p=m[a[*x]]+&y;
if (err) flag=1;
...
/* info collection */
/* only in re-execute mode */
if (proc_state()==REEXECUTE) {
collect_info();

}
exit_spec(flag);
/* end speculation */
num++;
...

The compiler inserts code in the speculative section to

collect relevant information about the program execution

that can help characterize a potential bug. This code is only

executed if the processor is in re-execute mode (proc state()

returns 2).

Figure 1 shows the three possible execution scenarios

for the example given above. Case (a) represents normal

execution: no error is found, the flag variable remains

clear and, when exit spec(flag) is reached, specula-

tion ends with commit.

In case (b), an abnormal behavior that can lead to a bug

is encountered. Flag is set when the anomaly is detected

and, later, when execution reaches exit spec(flag),

the program rolls back to the beginning of the speculative

region and continues in re-execute mode. This can be re-

peated, possibly even inside a debugger, until the bug is

fully characterized. Flag can be set as a result of a failed

assertion or data integrity test.

Finally, in case (c) the speculative state can no longer fit

in the cache. The overflow is detected by the cache con-

troller and an exception is raised. The software is expected

to handle this case. The example assumes that the excep-

tion handler commits the speculative data. When the execu-

tion reaches the exit spec(flag) instruction, the state

...

...

...

...

...

...

p = m[a[*x]]+&y;

...

...

...

p = m[a[*x]]+&y;

...

roll

back

overflow

cache

p = m[a[*x]]+&y;

(b)

RollbackCommit

enter_spec();

exit_spec(flag);

enter_spec();

exit_spec(flag);

enter_spec();

exit_spec(flag);

Non−speculative executionSpeculative execution

num = 1; num = 1; num = 1;

if (err) flag = 1;

...

 if (err) flag =1

num++; num++;

(a) No error (flag=0) Error (flag=1)

Early commit

(c) Exeption

 if (err) flag = 1;;

num++;

...

Figure 1. Speculative execution ends with
commit (a), a rollback (b), or an early com­

mit due to cache overflow (c).

of the processor is first checked. Since the processor is no

longer speculative (due to the early commit), the instruction

is simply ignored.

3.2 Other uses of program rollback

3.2.1 Code versioning

Code versioning, or N-version programming [8] is a tech-

nique that involves generating multiple, different versions

of the same code. It can be used for performance or reli-

ability. When targeting performance, a compiler generates

a main version that is aggressively optimized, and poten-

tially sometimes incorrect. Using our hardware, this ver-

sion can be executed speculatively, with some verification

code in place. If the function fails or produces an incorrect

result as indicated by the verification code, the processor is

rolled back, and a second, unoptimized but safe version of

the code is executed.

In the same way, when targeting reliability, we can have

two versions of the same function that are safe, have similar

performance, but use different functional units in the pro-

cessor. Each version includes some verification code that

checks that the computation was correct. We can first run

the first function and its verification code. If the verification

code fails, we then run the second function and its verifi-

cation code. Since the functions use different parts of the

processor, they are unlikely to both fail.

3.2.2 OS kernel and driver debugging

One of the major challenges in OS reliability is to ensure

correct execution of the OS kernel in the presence of faulty

drivers. In fact, in Linux, the frequency of coding errors

is seven times higher for device drivers than for the rest

of the kernel [1]. Several solutions have been proposed to

this problem including many that involve isolating the ker-

nel from the device drivers with some protection layer [15].
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In general, these solutions require major changes to OS de-

sign and implementation and can introduce significant over-

heads.

We propose a simpler solution with potentially very low

overhead that takes advantage of the rollback support im-

plemented in the hardware.

In general, the kernel and driver code interact through in-

terface functions, and maintain data structures in both ker-

nel and driver memory. In a system like ours, function calls

from kernel to driver or vice-versa could be executed spec-

ulatively. If an error is detected, the changes made to kernel

memory would then be rolled back. The idea is to prevent

the kernel from becoming corrupted or even crashing due to

a faulty driver. A cleanup procedure could then be called to

shut down the driver and either attempt to reinitialize it or

report the error to the user.

The current system cannot roll back any I/O operations.

This is because we currently buffer only cacheable data.

However, we can still roll back the processor in case of a

fault. Any communication with the faulty device is lost but

the processor is restored to the state before the device ac-

cess began. If the device somehow corrupted the kernel,

the correct state can still be recovered from the checkpoint.

The fault model for a system like this would target kernel

integrity rather than guaranteeing the correct operation of

individual devices.

3.2.3 Lightweight information collection and sampling

Detecting bugs in production code can be challenging be-

cause it is hard to obtain substantial information about pro-

gram execution. It is hard to collect relevant information

without incurring a large overhead. Previous solutions to

this problem have suggested using statistical sampling to

obtain execution information with small overheads [7].

We propose using our system to perform lightweight col-

lection of execution information based on anomaly detec-

tion. In this case, the processor would always execute in

speculative state. When an anomaly is detected (an unusual

return value, a rarely executed path, etc.), the processor is

rolled back as far as its speculative window allows and then

re-executed. Upon re-execution, instrumentation present in

the code is turned on, and the path that led to the anoma-

lous execution recorded. This allows more precise infor-

mation about anomalous program behavior than statistical

sampling would. Also, because the additional code is rarely

executed, the overhead should be very low.

3.2.4 Failure-oblivious computing

A failure-oblivious system [12] enables programs to con-

tinue executing through memory errors. Invalid memory

accesses are detected, but, instead of terminating the exe-

cution or raising an exception, the program discards the in-

valid writes and manufactures values for invalid reads, en-

abling the program to continue execution.

A failure-oblivious system can greatly benefit from our

rollback support. When a read results in an invalid access,

the system enters speculative mode, generates a fake value,

and uses it in order to continue execution. It is unknown

however, whether the new value can be used successfully

or, instead, will cause further errors. Since the code that

uses the fake value executes speculatively, it can roll back

if a new error is detected. Then, the program can use a

different predicted value and re-execute the code again, or

finally raise an exception.

3.2.5 Fault injection

Our rollback hardware can also be used as a platform for

performing fault injection in production systems. It offers

a way of testing the resilience of systems to faulty code, or

test what if conditions, without causing system crashes. The

code that is injected with faults is executed speculatively, to

determine what effect it has on the overall system. Even

if the fault propagates, the code can be rolled back and the

system not allowed to crash. The process can be repeated

multiple times, with low overhead, to determine how a sys-

tem behaves in the presence of a wide array of faults.

4 Evaluation

4.1 FPGA infrastructure

As a platform for our experiments, we used a synthesiz-

able VHDL implementation of a 32-bit processor [4] com-

pliant with the SPARC V8 architecture.

The processor has an in-order, single-issue, five stage

pipeline. This system is part of a system-on-a-chip infras-

tructure that includes a synthesizable SDRAM controller,

PCI and Ethernet interfaces. The system was synthesized

using Xilinx ISE v6.1.03. The target FPGA chip is a Xilinx

Virtex II XC2V3000 running on a GR-PCI-XC2V develop-

ment board [10].

On top of the hardware, we run a version of the SnapGear

Embedded Linux distribution [2]. SnapGear Linux is a full

source package, containing kernel, libraries and application

code for rapid development of embedded Linux systems. A

cross-compilation tool-chain for the SPARC architecture is

used for the compilation of the kernel and Linux applica-

tions.

To get a sense of the hardware overhead imposed by our

scheme, we synthesize the processor core with and with-

out the support for speculative execution. We look at the

utilization of the main resources in FPGA chips, the Con-

figurable Logic Blocks (CLBs). Virtex II CLBs are orga-

nized in an array and are used to build the combinatorial
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and synchronous logic components of the design. The CLB

overhead of our scheme is small (less than 4.5% on average)

[16].

4.2 Speculative execution of buggy applications

We run experiments, using standard Linux applications

that have known (reported) bugs. For these applications, we

want to determine whether we can speculatively execute a

section of dynamic instructions that is large enough to con-

tain both the bug and the location where the bug is caught

by a detection mechanism like iWatcher [19]. Some param-

eters of the experimental setup are given in Table 1.

We assume that the compiler has identified the suspi-

cious region of code that should be executed speculatively.

We also assume the existence of a detection mechanism

(such as iWatcher), which can tell us that a bug has oc-

curred. We want to determine if, under these circumstances,

we can roll back the buggy section of code in order to char-

acterize the bug thoroughly by enabling additional instru-

mentation.

We use five buggy programs from the open-source com-

munity. The bugs were introduced by the original pro-

grammers. They represent a broad spectrum of memory-

related bugs. The programs are: gzip, man, polymorph,

ncompress and tar. Gzip is the popular compression utility,

man is a utility used to format and display on-line manual

pages, polymorph is a tool used to convert Windows style

file names to something more portable for UNIX systems,

ncompress is a compression and decompression utility, and

tar is a tool to create and manipulate archives.

In the tests we use the bug-exhibiting inputs to generate

the abnormal runs. All the experiments are done under re-

alistic conditions, with the applications running on top of a

version of Linux running on our hardware.

Table 1. Main parameters of the experimental
setup.

Processor LEON2, SPARC V8 compliant

Clock frequency 40MHz

Instruction cache 8KB

Data cache 32KB

RAM 64MB

Windowed register file 8 windows × 24 registers each

Global registers 8 registers

Table 2 shows that the buggy sections were success-

fully rolled back in most cases, as shown in column four.

This means that the system executed speculatively the entire

buggy section, performed a rollback when the end specula-

tion instruction was reached, and then re-executed the entire

section. On the other hand, a failed rollback (polymorph)

means that before reaching the end speculation instruction,

a condition is encountered that forces the early commit of

the speculative section. Rollback is no longer possible in

this case.

The fifth column shows the number of dynamic instruc-

tions that were executed speculatively. Notice that in the

case of polymorph the large number of dynamic instructions

causes the cache to overflow the speculative data, and forces

an early commit.

5 Related work

Some of the hardware presented in this work builds on

extensive work on Thread-Level Speculation (TLS) (e.g.

[5, 14]). We employ some of the techniques first proposed

for TLS to provide lightweight rollback and replay capabil-

ities. TLS hardware has also been proposed as a mechanism

to detect data races on-the-fly [11].

Previous work has also focused on various methods

for collecting information about bugs. The “Flight Data

Recorder” [17] enables off-line deterministic replay of ap-

plications and can be used for postmortem analysis of a bug.

It has a significant overhead that could prevent its use in

production codes.

There is other extensive work in the field of dynamic

execution monitoring. Well-known examples include tools

like Eraser [13] or Valgrind [9]. Eraser targets detection of

data races in multi-threaded programs. Valgrind is a dy-

namic checker to detect general memory-related bugs such

as memory leaks, memory corruption and buffer overflow.

Most of these systems have overheads that are too large to

make them acceptable in production code.

There have also been proposals for hardware support for

detecting bugs, such as iWatcher [19] and AccMon [18].

These systems offer dynamic monitoring and bug detection

capabilities that are sufficiently lightweight to allow their

use on production software. This work is mostly comple-

mentary to ours. In fact we assume some of the detection

capabilities of iWatcher when evaluating our system.

6 Conclusions and future work

This work shows that with relatively simple hardware

we can provide powerful support for debugging production

codes. We show it by building a hardware prototype of the

envisioned system, using FPGA technology. Finally, we run

experiments on top of Linux running on this system.

The hardware presented in this work is part of a compre-

hensive debugging infrastructure. We are working toward

integrating compiler support to identify vulnerable code re-

gions as well as to instrument the code with speculation

control instructions.
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Application Bug location Bug description Successful Speculative

rollback instructions

ncompress-4.2.4 compress42.c: Input file name longer than 1024 Yes 10653

line 886 bytes corrupts stack return address

polymorph-0.4.0 polymorph.c: Input file name longer than 2048 No 103838

lines 193 and 200 bytes corrupts stack return address

tar-1.13.25 prepargs.c: Unexpected loop bounds Yes 193

line 92 causes heap object overflow

man-1.5h1 man.c: Wrong bounds checking Yes 54217

line 998 causes static object corruption

gzip-1.2.4 gzip.c: Input file name longer than 1024 Yes 17535

line 1009 bytes overflows a global variable

Table 2. Speculative execution in the presence of bugs.

We have presented several uses of this hardware for de-

bugging, including to characterize bugs on-the-fly, leverage

code versioning for performance or reliability, sandbox de-

vice drivers, collect monitoring information with very low

overhead, support failure-oblivious computing, and perform

fault injection. We will be implementing some of these

techniques in the near future.
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