
November 2004 www.sysadminmag.com Sys Admin — 41

D
ebugging an application or kernel program can be done with

the GNU Debugger (gdb), Linux Kernel Source Level

Debugger (kgdb), or Linux Kernel Debugger (kdb), but if we

want to trace a particular process, we must use the strace utility,

which will trace system calls and signals. Strace will trace only one

process and present the result in text form. To trace many processes in

a given period of time, Linux Trace Toolkit (LTT) is a better choice.

LTT is distributed as free software under GPL. Applying an

LTT-patch to the corresponding kernel will create a module to trace

48 events. The trace toolkit provides

a daemon, which will capture the

events and write it to disk. The

provided trace visualizer is used to

analyze the tracing data in three

different forms (viz., event graph,

process analysis, and raw event

descriptions).

LTT is useful for systems admin-

istrators for analyzing the perfor-

mance of the system. It is useful for

programmers for getting details of

the interaction between kernel and

user-level applications and for

embedded/real-time programmers

for getting information about real-

and non-real-time tasks’ behavior.

The theoretical aspect of LTT is

skipped in this article because it is

well documented in the Linux Trace Toolkit Reference Manual.

Enabling LTT with 2.4 kernel is very straightforward in the

sense that an available trace toolkit contains all the necessary

patches with documentation. It can be found at:

http://www.opersys.com/ltt/downloads.html

However, enabling LTT with the 2.6 kernel requires some guidance

to make the task successful and to save time. In this article, we’ll

guide you through the necessary packages, patches, and implemen-

tation details for 2.6 kernel. We will also demonstrate the usage of

the LTT with a simple example.

Linux Trace Toolkit with 2.6 Kernel
The procedure for building the Linux kernel has been changed in

2.6. To enable LTT and relayfs, you must first apply the correspond-

ing patches with the source code. These patches will modify the

source code in the respective places. The make xconfig command

will show the menu with a new look in 2.6. As shown in Figures 1

and 2, the tracing support and relayfs are enabled.

Relayfs is a file system, which is used to move data from kernel

to user space in an efficient manner. After configuring the kernel,

usually in 2.4, we would execute make dep, make bzImage, and

make modules command. Now, all these will work together if you

execute make.

To install kernel modules, the existing installation command will

not work in 2.6 kernel. For this, you must download modutilities

and install it. Then, execute the make modules_install command,

which will install all the kernel modules, and the make install

command, which will update the

boot loader. Now you can boot the

system with the LTT-enabled 2.6

kernel.

After installing the trace toolkit,

we need to mount the relayfs then

execute a daemon for a specific

interval of time. This tracer daemon

will capture all the events for the

given time period and store them in

the specified file name. The cap-

tured data can be analyzed by a

trace visualizer.

Necessary Packages
The following packages should

downloaded from their respective

Web sites:

Kernel —

ftp://ftp.kernel.org/pub/linux/kernel/v2.6/ \

linux-2.6.3.tar.bz2

Trace Toolkit — http://www.opersys.com/ftp/pub/LTT/ \

TraceToolkit-0.9.6pre2.tgz

Mod-Utils — http://www.kernel.org/pub/linux/kernel/ \

people/rusty/modules/module-init-tools-3.0-pre9.tar.gz

Patches for relay file systems — http://www.opersys.com/ftp/ \

pub/relayfs/patch-relayfs-2.6.0-test11-031203.bz2

Linux trace toolkit patch for 2.6 kernel —

http://www.opersys.com/ftp/pub/relayfs/LTT/ \

patch-ltt-linux-2.6.0-test11-vanilla.bz2

The above two patches are for kernel building with LTT and relayfs

enabled. To use relayfs on LTT, download the patch from:

http://www.opersys.com/ftp/pub/relayfs/LTT/ \

patch-ltt-on-relayfs-0.9.6pre2-031203.bz2

Process Tracing with the Linux Trace Toolkit
B. B. Ramya, V. Pavithra, and B. Thangaraju

PERFORMANCE

Implementation
Download the 2.6.3 kernel source from the abovementioned

Web site along with the patches and untar the kernel in /usr/src

directory:

bzip2 -d /usr/src/linux-2.6.3.tar.bz2

tar xvf linux 2.6.3.tar

This will create a linux-2.6.3 directory under /usr/src. Then, copy

patch-relayfs-2.6.0-test11-031203.bz2 and patch-ltt-linux-2.6.0-

test11-vanilla.bz2 into the linux-2.6.3 directory.

Unzip them using:

bzip2 -d patch-relayfs-2.6.0-test11-031203.bz2

bzip2 -d patch-ltt-linux-2.6.0-test11-vanilla.bz2

then apply the above patches to the Linux kernel:

patch -p1 < patch-relayfs-2.6.0-test11-031203

patch -p1 < patch- ltt-linux-2.6.0-test11-vanilla

These patches will modify the kernel files. Next, we need to config-

ure and rebuild the kernel.

Enable the tracing option and relay file system in the configura-

tion menu as in Figures 1 and 2. Then a make will build the kernel

and create the modules.

The modules of the 2.6.3 kernel will not be loaded because they

come with version 2.4 of module-init tools. So, we must get the

latest version of the mod-utils and configure it for the kernel using:

./configure --prefix=/

make moveold

make

make install

to translate the old /etc/modules.conf into /etc/modprobe.conf with the

./generate-modprobe.conf script that comes with module-init-tools:

./generate-modprobe.conf /etc/modprobe.conf

Run make modules_install to install the kernel modules. Next,

make install will update the boot loader and reboot the system

with the new kernel.

Next, traverse to the /usr/src/linux-2.6.3 directory and untar the

TraceToolkit-0.9.6pre2.tgz:

tar xzvf TraceToolkit-0.9.6pre2.tgz

This will create a TraceToolkit-0.9.6pre2 directory and change into

that directory. Apply the patch:

bzip2 -d patch-ltt-on-relayfs-0.9.6pre2-031203.bz2

patch -p1 < patch-ltt-on-relayfs-0.9.6pre2-031203

Next, configure the tracetool using:

./configure

make

make install

Mount the relay file system:

mkdir /mnt/relay

mount -t relayfs relayfs /mnt/relay

Note that you can also make an entry in the /etc/fstab file for relayfs so

that you need not mount the relayfs every time you restart the system:

relayfs /mnt/relay relayfs defauls 1 1

Now, the tracetool is up and ready to trace the system.

Working with LTT
We are interested in capturing the system events along with the

following program’s execution trace. The program calls the fork

system call, which will create a new process:

int main (void)

{

fork ();

printf (“Hello Fork%d\n”, getpid());

return 0;

}

To get a trace of the system during the execution of this program,

we start the trace daemon for 5 sec as shown below:

tracedaemon -ts5 ./out1.trace ./out.proc

42 — Sys Admin www.sysadminmag.com November 2004

Figure 1 Enabling tracing support in kernel configuration

Figure 2 Enabling relayfs in kernel configuration

Conclusion
The Linux Trace Ttoolkit is a constructive tool to help all kinds

of Linux users see and understand system events. In this article, we

described how to enable LTT with 2.6.3 kernel, trace simple process

events, and analyze trace data in different forms.

Acknowledgement
The authors are very grateful to Mr. Karim Yaghmour, creator of

the Linux Trace Toolkit, embedded and real-time Linux expert.

References
Linux Trace Toolkit Reference Manual available at —

http://www.opersys.com/ltt/dox/ltt-online-help/index.html

Trace Toolkit -0.9.5a.tgz available at —

http://www.opersys.com/ltt/downloads.html

B. B. Ramya and V. Pavithra work as Project Trainees, and B.Thangaraju is

a Manager in the Embedded and Product Engineering Solutions (E&FPE),

Wipro Technologies in Bangalore, India. B. Thangaraju can be reached at

bt_raju@vsnl.net.

tracedaemon is the command to run the daemon for a given time

period, where t is for time, s for time unit in seconds, and 5 for the

given time period. Out1.trace and out.proc files are used to store the

trace data for analysis.

To get process details in a graphical format, execute the follow-

ing in the shell prompt:

tracevisualizer -g out1.trace out.proc outfile

The tracevisualizer command will launch the trace toolkit, and

the -g option is for graphical format. The next two fields are the

input files, which we specified to store the data collected by the dae-

mon process earlier. The last argument, outfile, is where the trace

and analysis are written in text format.

The event graph of the trace is shown in Figure 3. It gives infor-

mation about the processes that were executing during the trace,

along with their process ids. The right side of the figure shows the

entire trace of the process. It shows the details of what system calls,

signals, traps, hard and soft IRQs were handled for the specific

process that is highlighted in the left box, along with its interactions

with the kernel and any other processes that are executing.

The highlighted bar shows the trace of myfork that is executable

of fork_demo.c. When the CPU executes a system call like fork, the

CPU will change mode from user to kernel. The system call will be

executed in kernel mode, and the fork system call will spawn a new

child (unnamed child with pid 274 in Figure 3).

Processes of interest or system information can be analyzed by

the process analysis method as shown in Figure 4. This provides

information about the number of system calls the process has called

during its execution and the total time the kernel has taken to exe-

cute each system call. It also lists the process characteristics such as

the number of system calls, traps the process has made, the time

spent by the process waiting for I/O, and the quantity of data read

and written to files.

The “Raw Trace” view is there to list all events that were logged by

the data acquisition module, which is shown in Figure 5. The high-

lighted bar shows a Scheduler change for process id 271 (i.e., myfork).

November 2004 www.sysadminmag.com Sys Admin — 43

Figure 3 Event graph

Figure 4 Per-process analysis

Figure 5 Raw trace

