TNI Chemistry FoPT Subcommittee Meeting Summary January 5, 2010

1. Roll call and Meeting Minutes:

Co-Chair Carl Kircher called the Chemistry FoPT Subcommittee to order on January 5, 2010, at 12:08pm EST. Attendance is recorded in Attachment A.

The minutes from the December 8th, 15th and 22nd meetings were reviewed for approval. Eric was added to the December 8th minutes as the person who made the motion for acceptance of the Volatile Solids, Total. Jeff motioned to accept these sets of minutes with the change above and Dan Dickinson seconded the motion. The motion was unanimously approved and these minutes will be posted on the TNI website.

2. DW FoPT Table

Jeff asked if someone could double check the PTRLs before the table is finalized. During the call, Dan Dickinson and Carl went through the table and confirmed all the PTRLs.

- Eric asked about Footnote 10. He reminded the group about a PT Board discussion.

From the PT Board, 3-19-09 minutes:

The question, **How may unique ten-sample sets does this client have to purchase for this** scenario? Technically, all results (Total, Fecal, E. coli) are obtained from the analysis of one ten-sample set. Given the fact that 9221E and 9221F cannot be done independently from 9222B, I would hope that only one unique ten-sample set is required for these methods in this situation. But, if you read the way the footnote is written, it could be interpreted that 3 unique ten-sample sets are required, one for each of the three methods that are being certified. I do not believe that was the intent of this requirement.

After much discussion the final conclusion was that for the specific scenario presented above, only one unique ten sample set would need to be purchased. The discussion also prompted Eric to submit a revision on the footnote to submit to Board members for comment.

Jeff felt the footnote should not be changed today and that the PT Board should approach the NELAP Board on this issue. Eric will take this back to the PT Board.

- Dan Tholan had the following comments:

Footnote 1: Need to add an "s" to "sample" where it needs to be plural.

<u>Footnote 3</u>: Last line – why do we need "after outlier removal" if we are using "robust"? He is requesting that "after outlier removal" be removed. The subcommittee agreed that it should be removed.

Footnote 13, 14 and 16: Change "criteria" to "criterion".

- Dan Dickinson had the following comment:

<u>Footnote 14</u>: Why is "simple" used in the footnote, but not in the table above? Jeff commented that it has to be potassium cyanide. Carl asked if clarification is needed? The subcommittee decided that information should be added. "Simple" will be changed to "uncomplexed, e.g. Potassium Cyanide".

- Eric had the following comment: Add the units to Perchlorate in the PTRL column.

Look at formatting in Footnote #1 – Is there a problem with the page break cutting off one of the words? Jeff looked at it and it does not appear to be a problem.

Dan Tholan made a motion to accept the Drinking Water Fields of Proficiency Testing with PTRLs table e-mailed by Jeff on 12-17-09 and as revised during the call. The motion was seconded by Steve. A roll call vote was taken:

Yes – Carl, Jeff, Steve, Dan Tholan, Eric, Stacie, Jim No – Dan Dickinson (He has issue with the limits for the Unregulated VOCs as expressed in previous meetings.) Abstentions - None

Jeff suggested giving the missing subcommittee members an opportunity to vote within the next 48 hours. Carl agreed. Ilona will send an e-mail to Chuck, Amy and Brian. They'll need to see the edited table that Jeff will send out this afternoon (Attachment B). If they do not vote – they will be noted as an abstention.

3. PT Acceptance Limits

NPW Analytes

Endrin Ketone

There is a lot of data for this analyte. The Mean R^2 Evaluation passed. The Stdev R^2 Evaluation did not pass. This is why this analyte has been on the experimental table. The discussion also centered on Endrin Ketone and Endrin Aldahyde being breakdown products from Endrin if laboratory GC instruments are not functioning properly. Since the Endrin concentration range for the FoPT is 2-20 ug/L, it makes sense for the Endrin Ketone range to be 4-20 ug/L, to match the current range listed for Endrin Aldehyde.

Carl suggested that the concentration range be extended to 20 ug/L. He also suggested using the new regression equation. At 20 ug/L the limits look like 50-124%. At 4 ug/L, it is 50-147%. Currently it is a fixed limit of +/- 45%.

A motion was made by Jeff for a concentration range of 4 - 20 ug/L for Endrin Ketone with the newly derived regression equation with the coefficients presented in the table distributed by Jeff on 12/21/09. The motion was seconded by Dan Dickinson and the motion passed unanimously.

Summary -

	FoPT	Concentration	Acceptance
Analyte	Category	Range	Limits
			Newly derived regression equation with the coefficients presented in the table distributed by leff on
Endrin ketone	Pesticides	4 – 20 ug/L	12/21/09.

3. New Items

Carl will not be attending the TNI meeting in Chicago. An alternate presenter will need to be assigned. Carl will still look at preparing a presentation.

4. Next Meeting

The next meeting of the Chemistry FoPT Subcommittee will be January 12, 2010, at 12PM EST.

Action Items are included in Attachment C and Attachment D includes a listing of reminders.

The meeting ended at 1:29 pm EST. (Motion - Jeff, Second- Eric. Unanimously approved.)

Attachment A

Participants TNI Chemistry FoPT Subcommittee

Members	Affiliation	Contact Information
Carl Kircher,	Florida DOH	904-791-1574
Co-Chair		carl_kircher@doh.state.fl.us
Present		
Brian Boling,	Oregon DEQ	
Co-Chai		Boling.Brian@deq.state.or.us
Absent		
Amy Doupe	Lancaster Laboratories,	717-656-2300 x1812
Abaant	Inc.	aldoupe@lancasterlabs.com
Jeff Lowry	ERA	303-431-8454
Present		jlowry@eraqc.com
Chuck Wibby	Wibby Environmental	303-940 -0033
		cwibby@wibby.com
Absent		
Eric Smith	TestAmerica	615-726-0177 x1238
		eric.smith@testamericainc.com
Present		
Dan Tholen	A2LA	231-929-1721
Procont		I nolen.dan@gmail.com
Stenhen Arnie	Absolute Standards Inc	203-281-2917
		stephenarpie@mac.com
Present		stephenalple@mac.com
Dan Dickinson	New York, DOH	518-485-5570
		dmd15@health.state.ny.us
Present		
Stacey Fry	E.S. BABCOCK & Sons,	951-653-3351 x238
	Inc.	sfry@babcocklabs.com
Present		
Jim		860-947-2121
		mousejr@nu.com
Present		
Ilona Taunton,	INI	828-712-9242
Program Administrator		tauntoni@msn.com
Present		

Attachment B

NELAC PT for Accreditation Fields of Proficiency Testing with PTRLs Drinking Water Effective July 1, 2010

			Red = Previous Experimental Analytes		Blue = New Analyte/Header			Magenta = Changes		
Matrix	EPA Analyte Code	NELAC Analyte Code	Analyte ^{1,2}	Conc Range	a	Acceptanc	e Criteria b	3,4,5,6 C	d	NELAC PTRL ⁷
			Microbiology	CFU/100 mL						CFU/100 mL
Drinking Water Drinking	0254	2500	Total Coliform ^{8,9,10}		Nine out of	ten correc	ct with no	false ne	egatives	Not Applicable
Water	0255	2530	Fecal Coliform ^{8,9,10}		Nine out of	ten correc	ct with no	false ne	gatives	Not Applicable
Water		2525	E.coli ^{8,9,10}		Nine out of	ten correc	ct with no	false ne	egatives	Not Applicable
				CFU (MPN)/mL						CFU (MPN)/mL
Drinking Water	0258	2555	Heterotrophic Plate Count (MF, PP) ¹¹	5 to 500	Lo	og transfor	m Mean :	± 2 SD		2
Drinking Water	0258	2555	Heterotrophic Plate Count (MPN) ¹²	5 to 500	Lo	og transfor	m Mean :	± 2 SD		2
				CFU (MPN)/100 mL						CFU (MPN)/100 mL
Drinking Water Drinking		2525	E.coli (MF) ¹¹	20 to 200	Lo	og transfor	m Mean :	± 2 SD		2
Water		2525	E.coli (MPN) ¹²	20 to 200	Lo	og transfor	m Mean :	± 2 SD		2
Drinking Water Drinking	0255	2530	Fecal Coliform (MF) ¹¹	20 to 200	Lo	og transfor	m Mean :	± 2 SD		2
Water	0255	2530	Fecal Coliform (MPN) ¹²	20 to 200	Lo	og transfor	m Mean :	± 2 SD		2

Drinking Water	0254	2500	Total Coliform (MF) ¹¹	20 to 200	Log transform Mean ± 2 SD	2
Water	0254	2500	Total Coliform (MPN) ¹²	20 to 200	Log transform Mean ± 2 SD	2
			Trace Metals	µg/L		µg/L
Drinking Water Drinking	0235	1000	Aluminum	130 to 1000	$\pm 20\%$ at < 500 $\pm 15\% \ge 500$ fixed acceptance limit	104
Water	0140	1005	Antimony	6 to 50	±30% fixed acceptance limit	4.2
Water	0001	1010	Arsenic	5 to 50	±30% fixed acceptance limit	3.5
Water	0002	1015	Barium	500 to 3000	±15% fixed acceptance limit	420
Water Drinking	0141	1020	Beryllium	2 to 20	±15% fixed acceptance limit	1.7
Water	0226	1025	Boron	800 to 2000	±15% fixed acceptance limit	680
Water Drinking	0003	1030	Cadmium	2 to 50	±20% fixed acceptance limit	1.6
Water	0004	1040	Chromium	10 to 200	±15% fixed acceptance limit	8.5
Drinking Water Drinking		1045	Hexavalent Chromium (VI)	5 to 50	±20% fixed acceptance limit	4.0
Water	0091	1055	Copper	50 to 2000	±10% fixed acceptance limit	45
Drinking Water Drinking	0284	1070	Iron	100 to 1800	$\pm 20\%$ at < 250 $\pm 15\% \ge 250$ fixed acceptance limit	80
Water	0005	1075	Lead	5 to 100	±30% fixed acceptance limit	3.5
Drinking Water Drinking	0236	1090	Manganese	40 to 900	±15% fixed acceptance limit	34
Water	0006	1095	Mercury ¹³	0.5 to 10	±30% fixed acceptance limit	0.35
Drinking Water Drinking	0237	1100	Molybdenum	15 to 130	±15% fixed acceptance limit	13
Water	0142	1105	Nickel	10 to 500	±15% fixed acceptance limit	8.5
Drinking Water	0007	1140	Selenium	10 to 100	±20% fixed acceptance limit	8.0

Drinking	0000	1150	Cilver	20 to 200	1200/ fixed ecceptored limit	14
Drinking	0008	1150	Silver	20 10 300	±30% lixed acceptance limit	14
Water	0143	1165	Thallium	2 to 10	±30% fixed acceptance limit	1.4
Water	0238	1185	Vanadium	50 to 1000	±15% fixed acceptance limit	42
Water	0239	1190	Zinc	200 to 2000	±15% fixed acceptance limit	170
Drinking			Nutrients	mg/L		
Water	0009	1810	Nitrate as N	3 to 10	±10% fixed acceptance limit	2.7
Water		1820	Nitrate + Nitrite as N	3 to 10	±15% fixed acceptance limit	2.6
Water	0092	1840	Nitrite as N	0.4 to 2	±15% fixed acceptance limit	0.34
Water	0261	1870	Ortho-Phosphate	0.5 to 5.5	±15% fixed acceptance limit	0.43
			Minerals	mg/L		mg/L
Drinking Water	0287	1575	Chloride	20 to 160	±15% fixed acceptance limit	17
Water	0010	1730	Fluoride	1 to 8	±10% fixed acceptance limit	0.90
Water	0145	2000	Sulfate	25 to 250	±15% fixed acceptance limit	21
Water	0286	1125	Potassium	10 to 40	±15% fixed acceptance limit	8.5
Water	0029	1155	Sodium	12 to 50	±15% fixed acceptance limit	11
Water	0283	1035	Calcium	30 to 90	±15% fixed acceptance limit	26
Water	0285	1085	Magnesium	2 to 20	±15% fixed acceptance limit	1.7
Water	0025	1550	Ca Hardness as CaCO ₃	75 to 225	±15% fixed acceptance limit	64
Water		1755	Total Hardness as CaCO ₃	83 to 307	±15% fixed acceptance limit	71

			Inorganic Disinfection By-Products	µg/L					µg/L
Drinking Water Drinking	0193	1535	Bromate	7 to 50	±30% f	ixed accept	ance limit		4.9
Water Drinking	0260	1540	Bromide	50 to 300	±15% f	ixed accept	ance limit		42
Water Drinking	0194	1570	Chlorate	60 to 180	±30% f	ixed accept	ance limit		42
Water	0195	1595	Chlorite	100 to 1000	±30% f	ixed accept	ance limit		70
Drinking			Misc Analytes	mg/L					mg/L
Water Drinking	0027	1505	Alkalinity as CaCO ₃ /L	25 to 200	0.9738	1.3564	0.0190	1.1222	23
Water Drinking	0253	1520	Asbestos	1.5 to 20 MF/L	study mean ± 0.4 SI units		0.6037	0.0731	1.4 MF/L
Water Drinking		1620	Corrosivity	-4 to +4 SI units	fixed acceptance				Not Applicable
Water	0146	1635	Cyanide ¹⁴ Dissolved Organic Carbon	0.1 to 0.5	±25% f	ixed accept	ance limit		0.075
Water		1710	(DOC)	1.2 to 4.9	0.9744	0.0960	0.0402	0.0700	1.0
Water Drinking		1895	Perchlorate	4 to 20 µg/L	±20% f	ixed accept	ance limit		3.2 µg/L
Water Drinking	0026	1900	рН	5 to 10 units	± 0.2 unit	s fixed acce	ptance lim	it	Not Applicable
Water Drinking	0022	1945	Residual Free Chlorine	0.5 to 3.0	1.0000	0.0004	0.0776	0.0246	0.37
Water Drinking		1990	Silica as SiO ₂	5 to 75	±15% f	ixed accept	ance limit		4.2
Water Drinking	0288	1610	Specific Conductance	250 to 2500 µmhos	±10% f	ixed accept	ance limit		225 µmhos
Water Drinking		2025	Surfactants - MBAS	0.1 to 1.0	0.9804	0.0054	0.0673	0.0348	0.020
Water Drinking		1940	Total Residual Chlorine	0.5 to 3.0 200 to 450 as	1.0000	-0.0048	0.0723	0.0065	0.40
Water Drinking	0024	1955	Total Filterable Residue	measured	study mean		0.1956	-6.683	135
Water	0263	2040	Total Organic Carbon	1.2 to 4.9	0.9873	0.0565	0.0643	0.0769	0.93

Drinking Water	0023	2055	Turbidity	0.5 to 8 NTU	1.0185	0.074	0.0623	0.0761	0.37 NTU
Water		2060	UV 254 Absorbance	0.05 to 0.7 cm-1	0.9919	0.0043	0.0872	0.0034	0.038 cm-1
Purge a	nd Trap	Organic	Parameters						
			Regulated VOCs ¹	µg/L					µg/L
Drinking									
Water	0039	4375	Benzene	2 to 20	± 40% at < 10 ±	20% ≥ 10 fi>	ked accepta	ance limit	1.2
Drinking	0007	4455	Carban Tatraablarida	0 to 20	+400/ at $=40$ +	$200/ > 10 f_{\rm b}$		ana linait	1.0
Vater	0037	4455	Carbon Tetrachioride	Z to 20	$\pm 40\%$ at < 10 \pm	20% 210 fb	ked accepta	ance limit	1.2
Water	0049	4475	Chlorobenzene	2 to 20	+ 40% at < 10 +	20% > 10 fix	ved accenta	ance limit	12
Drinking	00-3		Childrobenzene	2 10 20	1 40 % at < 10 1	20/0 = 10 11/			1.2
Water	0054	4610	1.2-Dichlorobenzene	2 to 20	± 40% at < 10 ±	20% ≥ 10 fix	ked accepta	ance limit	1.2
Drinking			,						
Water	0041	4620	1,4-Dichlorobenzene	2 to 20	± 40% at < 10 ±	20% ≥ 10 fix	ked accepta	ance limit	1.2
Drinking									
Water	0035	4635	1,2-Dichloroethane	2 to 20	± 40% at < 10 ±	20% ≥ 10 fix	ked accepta	ance limit	1.2
Drinking									
Water	0034	4640	1,1-Dichloroethylene	2 to 20	± 40% at < 10 ±	20% ≥ 10 fi>	ked accepta	ance limit	1.2
Drinking	0040	4045	Ois 1.0 Disklars attacks	0.45.00		000/ > 40 5			4.0
Water	0043	4645	CIS-1,2-Dichloroethylene	2 to 20	\pm 40% at < 10 \pm	$20\% \ge 10$ fb	ked accepta	ance limit	1.2
Drinking Water	0042	4700	Trans 1.2 Dichloroothylono	2 to 20	$\pm 40\%$ at < 10 \pm	20% > 10 fiv	vod accont	anco limit	1 0
Drinking	0042	4700	Dichloromethane	2 10 20	± 40 /0 al < 10 ±	20 /0 2 10 11			1.2
Water	0055	4975	(Methylene Chloride)	2 to 20	+ 40% at < 10 +	20% > 10 fix	ked accepta	ance limit	12
Drinkina	0000	1010		2 10 20	_ 10/0 dt 10 _	2070 - 10 13			
Water	0044	4655	1,2 Dichloropropane	2 to 20	± 40% at < 10 ±	20% ≥ 10 fi>	ked accepta	ance limit	1.2
Drinking							•		
Water	0048	4765	Ethylbenzene	2 to 20	± 40% at < 10 ±	20% ≥ 10 fix	ked accepta	ance limit	1.2
Drinking									
Water	0053	5100	Styrene	2 to 20	± 40% at < 10 ±	20% ≥ 10 fix	ked accepta	ance limit	1.2
Drinking			<i> </i> .	0 / 00	400/ 4 40	000/0000			4.0
Water	0040	5115	letrachloroethylene	2 to 20	\pm 40% at < 10 \pm	$20\% \ge 10$ fix	ked accepta	ance limit	1.2
	0047	E140	Taluana	2 to 20	+400/ at <40.1	200/ > 10 5	ad accent	anaa limit	1.0
Drinking	0047	5140	I UIUEIIE	2 10 20	± 40% at ≤ 10 ±	$20\% \le 10$ II)	keu accepta		1.2
Water	0036	5160	1 1 1-Trichloroethane	2 to 20	+ 40% at < 10 +	20% > 10 fiv	red accents	ance limit	12
vvalor	0000	5100		2 10 20	\pm +0 /0 at > 10 ±				1.4

Drinking				
Water	0061	5165	1,1,2-Trichloroethane	2 to 20
Drinking Water	0038	5170	Trichloroethylene	2 to 20
Water	0076	5155	1,2,4-Trichlorobenzene	<mark>2</mark> to 20
Water	0032	5235	Vinyl Chloride	<mark>2</mark> to 50
Water	0090	5260	Total Xylenes	2 to 50
Drinking			Regulated Trihalomethanes	µg/L
Water Drinking	0019	4395	Bromodichloromethane	<mark>5</mark> to 50
Water	0018	4400	Bromoform	<mark>5</mark> to 50
Water	0020	4575	Chlorodibromomethane	<mark>5</mark> to 50
Water	0017	4505	Chloroform	<mark>5</mark> to 50
Purge ar	nd Trap	<u>Organic</u>	Parameters	
			Unregulated VOCs ¹	µg/L
Drinking Water Drinking		4370	T-amylmethylether (TAME)	5 to 50
Water	0067	4385	Bromobenzene	2 to 20
Water	0089	4390	Bromochloromethane	2 to 20
Water	0069	4950	Bromomethane	5 to 50
Water		4420	Tert-Butyl Alcohol	10 to 100
Water	0079	4435	n-Butylbenzene	2 to 20
Water	0086	4440	Sec-Butylbenzene	2 to 20
Drinking	0085	4445	Tert-Butylbenzene	2 to 20

\pm 40% at < 10 \pm 20% \geq 10 fixed acceptance limit	1.2
\pm 40% at < 10 \pm 20% \geq 10 fixed acceptance limit	1.2
\pm 40% at < 10 \pm 20% \geq 10 fixed acceptance limit	1.2
±40% fixed acceptance limit	1.2
\pm 40% at < 10 \pm 20% \geq 10 fixed acceptance limit	1.2
	µg/L
±20% fixed acceptance limit ¹⁵	4.0
±20% fixed acceptance limit ¹⁵	4.0
±20% fixed acceptance limit ¹⁵	4.0
±20% fixed acceptance limit ¹⁵	4.0
	µg/L
\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	3.0
\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	1.2
\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	1.2
±40% fixed acceptance limit	3.0
±40% fixed acceptance limit	6.0
\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	1.2

 $\begin{array}{ll} \pm 40\% \mbox{ at } < 10 \pm 30\% \ge 10 \mbox{ fixed acceptance limit} & 1.2 \\ \pm 40\% \mbox{ at } < 10 \pm 30\% \ge 10 \mbox{ fixed acceptance limit} & 1.2 \end{array}$

Water						
Drinking	0070	4405		F (F S		
vvater Drinking	0070	4485	Chloroethane	5 to 50	±40% fixed acceptance limit	3.0
Water	0068	4960	Chloromethane	5 to 50	±40% fixed acceptance limit	3.0
Drinking Water	0071	4535	2 Chlorotoluono	2 to 20	$\pm 40\%$ at $< 10 \pm 30\% > 10$ fixed accontance limit	1.2
Drinking	0071	4000	2-Chioroloidene	2 10 20	$\pm 40\%$ at $> 10 \pm 50\% \ge 10$ inxed acceptance limit	1.2
Water	0072	4540	4-Chlorotoluene	2 to 20	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	1.2
Drinking Water	0057	4595	Dibromomethane	2 to 20	+40% at < 10 + 30% > 10 fixed acceptance limit	12
Drinking	0007	4000	Dibromomethane	2 10 20		1.2
Water	0066	4615	1,3-Dichlorobenzene	2 to 20	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	1.2
Drinking Water	0088	4625	Dichlorodifluoromethane	5 to 50	+40% fixed acceptance limit	3.0
Drinking	0000	4025	Dichlorodindoromethane	5 10 50		5.0
Water	0056	4630	1,1-Dichloroethane	2 to 20	\pm 40% at < 10 \pm 30% ≥ 10 fixed acceptance limit	1.2
Drinking						
Water	0059	4660	1,3-Dichloropropane	2 to 20	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	1.2
Urinking Water	0060	4665	2.2-Dichloropropage	2 to 20	+40% at < 10 + 30% > 10 fixed acceptance limit	12
Drinking	0000	4005	2,2-Dichloropropane	2 10 20		1.2
Water	0058	4670	1,1-Dichloropropene	2 to 20	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	1.2
Drinking						
Water	0152	4680	Cis-1,3-Dichloropropene	2 to 20	\pm 40% at < 10 \pm 30% \ge 10 fixed acceptance limit	1.2
Drinking	0450	4005	Trans 4.2 Disklansmanns	0.45.00		4.0
Vater	0153	4685	Trans-1,3-Dichloropropene	2 to 20	\pm 40% at < 10 \pm 30% \ge 10 fixed acceptance limit	1.2
Water		4770	Ethyl-t-butylether (ETBE)	5 to 50	+ 40% at $< 10 + 30\% > 10$ fixed acceptance limit	3.0
Drinking		4110		0.000		0.0
Water	0081	4835	Hexachlorobutadiene	5 to 50	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	3.0
Drinking						
Water	0084	4900	Isopropylbenzene	2 to 20	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	1.2
Drinking		0075	Di is annons dath an (DIDE)	5 to 50	1.400 at 1.40 ± 200 > 10 fixed accordance limit	2.0
Vater		9375	DI-Isopropyletner (DIPE)	5 to 50	\pm 40% at < 10 \pm 30% \ge 10 fixed acceptance limit	3.0
Water	0083	4910	4-Isopropyltoluene	2 to 20	+ 40% at $< 10 + 30\% > 10$ fixed acceptance limit	12
Drinking			Methyl_tert_butylether			
Water		5000	(MTBE)	5 to 50	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit	3.0
Drinkina		5005	Naphthalene	5 to 50	$\pm 40\%$ at < 10 $\pm 30\% \ge 10$ fixed acceptance limit	1.2
5		-	· · · · · · · · · · · · · · · · · · ·			

Water Drinkin

Drinking				
Water	0078	5090	n-Propylbenzene	2 to 20
Water Drinking	0063	5105	1,1,1,2-Tetrachloroethane	2 to 20
Water	0065	5110	1,1,2,2-Tetrachloroethane	2 to 20
Water	0077	5150	1,2,3-Trichlorobenzene	5 to 50
Water	0087	5175	Trichlorofluoromethane	5 to 50
Water	0064	5180	1,2,3-Trichloropropane	2 to 20
Water		5185	(Freon 113)	5 to 50
Water	0075	5210	1,2,4-Trimethylbenzene	2 to 20
Water	0082	5215	1,3,5-Trimethylbenzene	2 to 20
B : 11			Additional VOCs ¹	µg/L
Drinking Water		4570	1,2-Dibromo-3- chloropropane (DBCP)	2 to 20
Water		4585	Ethylene Dibromide (EDB)	2 to 20

Extractable Organic Parameters

			Pesticides ¹	µg/L
Drinking Water Drinking	0093	7005	Alachlor	2 to 20
Water	0256	7025	Aldrin	0.4 to 2
Water Drinking	0094	7065	Atrazine	3 to 30
Water Drinking		7130	Bromacil	2 to 40
Water		7160	Butachlor	8 to 80
Drinking	0097	7250	Chlordane (technical)	2 to 20

1.2	\pm 40% at < 10 \pm 30% \ge 10 fixed acceptance limit
1.2	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit
1.2	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit
3.0	\pm 40% at < 10 \pm 30% \ge 10 fixed acceptance limit
3.0	±40% fixed acceptance limit
1.2	$\pm 40\%$ at < 10 $\pm 30\% \ge 10$ fixed acceptance limit
3.0	±40% fixed acceptance limit
1.2	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit
1.2	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit
µg/L	
1.2	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit
1.2	\pm 40% at < 10 \pm 30% \geq 10 fixed acceptance limit

				µg/L
±45%	1.1			
0.8453	-0.0077	0.2054	0.0048	0.15
±45% ±45% fixed acceptance limit	1.6 1.1			
0.8796 ±45%	0.7839 fixed accepta	0.1805 ance limit	0.2030	4.5 1.1

Water					
Drinking Water Drinking	0258	7470	Dieldrin	0.5 to 3	0.9418
Water	0011	7540	Endrin	0.1 to 5	±30%
Water	0095	7685	Heptachlor	0.4 to 5	±45%
Water	0096	7690	Heptachlor Epoxide (beta)	0.2 to 5	±45%
Water	0172	6275	Hexachlorobenzene	0.5 to 4	0.8546
Water	0112	6285	Hexachlorocyclopentadiene	2 to 30	0.7942
Water	0012	7120	Lindane	0.2 to 5	±45%
Water	0013	7810	Methoxychlor	10 to 100	±45%
Water		7835	Metolachlor	8 to 80	0.8477
Water		7845	Metribuzin	2 to 60	0.7942
Water		7875	Molinate (Ordram)	2 to 40	acceptance lim
Water	0259	8045	Propachlor	1 to 4	1.0037
Water	0113	8125	Simazine	4 to 40	0.7811
Water	0014	8250	Toxaphene (total)	3 to 20	±45%
Water	0244	8295	Trifluralin	1.0 to 5	0.9013
Drielier			Carbamates & Vydate ¹	µg/L	
Water	0098	7010	Aldicarb	15 to 50	1.0183
Water	0099	7015	Aldicarb Sulfone	19 to 50	0.9909
Water Drinking	0100	7020 <mark>8080</mark>	Aldicarb Sulfoxide Baygon	15 to 50 15 to 100	0.8943 ±30%
.					

0.9418	0.0450	0.1607	0.0199	0.32
±30%	fixed accepta	ance limit		0.070
±45%	fixed accepta	ance limit		0.22
±45%	fixed accepta	ance limit		0.11
0.8546	0.0277	0.1954	0.0199	0.22
0.7942	0.0799	0.2990	0.1179	0.24
±45%	fixed accepta	ance limit		0.11
±45%	fixed accepta	ance limit		5.5
0.8477	1.5874	0.1813	0.1005	5.3
0.7942	0.5152	0.2934	0.1413	0.64
eptance limit	t			1.1
1.0037	-0.0645	0.1832	0.0418	0.48
0.7811	0.9474	0.2832	0.369	1.0
±45%	fixed accepta	ance limit		1.6
0.9013	-0.0331	0.1513	0.1195	0.33
				µg/L
1.0183	-0.5229	0.1175	0.1852	11
0.9909	0.4106	0.1356	-0.8493	16
0.8943	1.1141	0.1078	0.3643	11
±30%	inxed accepta	ance imit		10

Water				
Drinking Water		7195	Carbaryl	20 to 100
Drinking				
Water	0101	7205	Carbofuran	15 to 150
Water		7710	3-Hydroxycarbofuran	15 to 75
Water		7800	Methiocarb	15 to 100
Water	0245	7805	Methomyl	15 to 90
Water	0114	7940	Oxamyl (Vydate)	30 to 80
Extractab	ole Organ	nic Para	imeters	
			Herbicides ¹	µg/L
Drinking				
Water	0262	8505	Acifluorfen	15 to 50
Water		8530	Bentazon	20 to 140
Water	0015	8545	2,4-D ¹⁶	5 to 150
Water		8560	2,4-DB	15 to 100
Drinking Water		8553	Dacthal acids (total)	10 to 100
Drinking Water	0115	8555	Dalapon	10 to 150
Drinking Water	0247	8595	Dicamba	5 to 100
Drinking Water		8600	3,5-Dichlorobenzoic acid	10 to 100
Drinking Water	0116	8620	Dinoseb	6 to 50
Drinking Water Drinking		8605	Dichloroprop	20 to 120
Water	0137	9390	Diquat ¹⁷	8 to 40
Drinking	0138	7525	Endothall ¹⁸	90 to 500

0.9067	0.1798	0.0938	-0.0024	14
±45%	fixed accepta	ance limit		8.3
0.9343	-0.2013	0.0718	0.4949	10
±30%	fixed accepta	ance limit		10
0.9867	-0.2117	0.0964	-0.1849	12
0.9781	0.2296	0.1273	-0.7009	23
				µg/L
0.8871	0.1105	0.0885	5.4843	1.5
±50%	fixed accepta	ance limit		10
±50%	fixed accepta	ance limit		2.5
0.8236	1.9181	0.1825	1.3935	6.0
±50%	fixed accepta	ance limit		5.0
0.6178	1.0356	0.3451	2.3812	1.0
0.8118	0.8711	0.2789	0.0923	1.9
0.9052	-0.1670	0.2369	1.2766	1.5
0.8433	-1.1850	0.2958	0.1879	0.95
±50%	fixed accepta	ance limit		10
0.7102	1.729	0.385	-1.4335	4.1
0.849	9.3243	0.2733	-1.0969	38

Water									
Drinking Water	0139	9411	Glyphosate	375 to 800	0.9285	41.0369	0.0677	10.6168	320
Water		9528	Paraquat	8 to 100	±50%	fixed accepta	ance limit		4.0
Water	0102	6605	Pentachlorophenol	1 to 100	±50%	fixed accepta	ance limit		0.50
Water	0117	8645	Picloram	10 to 70	0.8189	0.0626	0.2888	0.2204	2.0
Water	0016	8650	2,4,5-TP (Silvex)	5 to 150	±50%	fixed accepta	ance limit		2.5
Water		8655	2,4,5-T	10 to 100	0.8309	1.1211	0.2183	0.5680	3.9
Distant			Organic Disinfection By- Products	µg/L					µg/L
Water	0165	4460	Chloral Hydrate	4 to 30	0.9300	-0.4088	0.3306	0.3088	0.40
.			Haloacetic acids	µg/L					µg/L
Drinking Water	0250	9315	Bromochloroacetic Acid	10 to 50	±40%	fixed accepta	ance limit		6.0
Drinking Water	0157	9357	Dibromoacetic Acid	10 to 50	±40% f	ixed accepta	nce limit ¹⁵		6.0
Water	0158	9360	Dichloroacetic Acid	10 to 50	±40% f	ixed accepta	nce limit ¹⁵		6.0
Water	0160	9312	Monobromoacetic Acid	10 to 50	±40% f	ixed accepta	nce limit ¹⁵		6.0
Water	0161	9336	Monochloroacetic Acid	10 to 50	±40% f	ixed accepta	nce limit ¹⁵		6.0
Water	0162	9642	Trichloroacetic Acid	10 to 50	±40% f	ixed accepta	nce limit ¹⁵		6.0
Drinking			Regulated VOCs ¹	μg/L					µg/L
Water	0045	4570	chloropropane (DBCP)	0.1 to 2	±40%	fixed accepta	ance limit		0.06
Water	0046	4585	Ethylene Dibromide (EDB)	0.05 to 2	±40%	fixed accepta	ance limit		0.03

Drinking			Unregulated VOCs ¹	µg/L
Water		5180	1,2,3-Trichloropropane	0.2 to 2.0
Drinking			Adipate/Phthalate ¹	µg/L
Water		5670	Butylbenzylphthalate	10 to 50
Water	0134	6062	Di(2-Ethylhexyl) Adipate	8 to 50
Water	0136	6065	Di(2-Ethylhexyl) Phthalate	9 to 50
Water		5925	Di-n-butylphthalate	10 to 50
Water		6070	Diethylphthalate	10 to 50
Water		6135	Dimethylphthalate	10 to 50
Water		6200	Di-n-octylphthalate	10 to 50
<u>Extracta</u>	ble Orga	nic Para	ameters	
			PCBs in Water ²	µg/L
Drinking Water	0118	9105	PCBs as Decachlorobiphenyl ¹⁹	0.5 to 5
Water		8872	PCB Aroclor Identification	
			PAH ¹	µg/L
Drinking Water		5500	Acenaphthene	1 to 10
Drinking Water		5505	Acenaphthylene	1 to 10
Water		5555	Anthracene	1 to 10
Water		5575	Benzo(a)anthracene	1 to 10
Water		5585	Benzo(b)fluoranthene	1 to 10

				µg/L
±40	% fixed accepta	ance limit		0.12
				µg/L
±50	% fixed accepta	ance limit		5.0
0.9443	-0.6332	0.2375	0.752	1.6
1.012	-0.6622	0.2791	0.1121	3.1
±50	% fixed accepta	ance limit		5.0
±50	% fixed accepta	ance limit		5.0
±50	% fixed accepta	ance limit		5.0
±60	% fixed accepta	ance limit		6.0
				µg/L
±100	0% fixed accept	tance limit		0.05
Correct ide	entification of A	roclor exan	nined	
				µg/L
±50	% fixed accepta	ance limit		0.50
±50	% fixed accepta	ance limit		0.50
±50	% fixed accepta	ance limit		0.50
±50	% fixed accepta	ance limit		0.50
±50	% fixed accepta	ance limit		0.50

Drinking						
Water		5590	Benzo (g,h,i)perylene	1 to 10	±50% fixed acceptance limit	0.50
Drinking Water		5600	Benzo(k)fluoranthene	1 to 10	±50% fixed acceptance limit	0.50
Drinking Water	0122	5580	Benzo(a)pyrene	0.2 to 2.5	0.8471 -0.0040 0.1854 0.0547	0.10
Drinking Water		5855	Chrysene	1 to 10	±50% fixed acceptance limit	0.50
Water		5895	Dibenz(a,h)anthracene	1 to 10	±50% fixed acceptance limit	0.50
Water		6265	Fluoranthene	1 to 10	±50% fixed acceptance limit	0.50
Water		6270	Fluorene	1 to 10	±50% fixed acceptance limit	0.50
Drinking Water		6315	Indeno(1,2,3-cd)pyrene	1 to 10	±50% fixed acceptance limit	0.50
Drinking Water		5005	Naphthalene	1 to 10	±50% fixed acceptance limit	0.50
Drinking Water		6615	Phenanthrene	1 to 10	±50% fixed acceptance limit	0.50
Drinking Water		6665	Pyrene	1 to 10	±50% fixed acceptance limit	0.50
			Dioxin	pg/L		pg/L
Drinking Water	0252	9618	2,3,7,8-Tetrachloro- dibenzodioxin	25 to 80	0.8642 1.4865 0.1392 1.1445	17

1) For volatile, pesticide, carbamate & vydate, herbicide, adipate/phthalates and PAH standards, providers must include a minimum number of analytes using the criteria described below:

PT samples that are to be scored for one to ten analytes must include all of these analytes.

PT samples that are to be scored for ten to twenty analytes must include at least ten of these analytes or 80% ot the total, whichever number is greater.

PT samples that are to be scored for more than twenty analytes must include at least sixteen of these analytes or 60% of the total, whichever number is greater.

If the calculated percentage of the total number of analytes in the PT sample is a fraction, the fraction shall be rounded up to the next whole number.

2) One sample in every study, containing one or more Aroclors, selected at random from among the Aroclors listed (1016, 1221, 1232, 1242, 1248, 1254 or 1260) for the analysis of PCBs as decachlorobiphenyl.

3) The acceptance criteria found in <u>40 CFR Part 141</u> are incorporated herein by reference. Acceptance criteria for FoPTs not included in <u>40 CFR Part 141</u> are presented in this table. Acceptance limits are set at the Mean \pm 2 SD (Mean = a*T + b; SD = c*T + d where T is the assigned value).

Quantitative Microbiology acceptance criteria (e.g., HPC) are based on the robust participant Mean and SD determined from each respective PT study.

4) If the lower acceptance limit generated using the criteria contained in this table is less than (<) 10% of the assigned value, the lower acceptance limits are set at 10% of the assigned value, with the exception of Microbiology analytes.

5) If the lower acceptance limit generated using the criteria contained in this table is greater than (>) 90% of the assigned value, the lower acceptance limits are set at 90% of the assigned value, with the exception of Microbiology analytes.

6) If the upper acceptance limit generated using the criteria contained in this table is less than (<) 110% of the assigned value, the upper acceptance limits are set at 110% of the assigned value, with the exception of Microbiology analytes.

7) NELAC Proficiency Testing Reporting Limits (PTRLs) are provided as guidance to laboratories analyzing NELAC PT samples. These levels are the lowest

acceptable results that could be obtained from the lowest spike level for each analyte. The laboratory should report any positive result down to the PTRL. It is recognized that in some cases (especially for analytes that typically exhibit low recovery) the PTRL may be below the standard laboratory reporting limit. However, the laboratory should use a method that is sensitive enough to generate results at the PTRL shown. NELAC PTRLs are also provided as guidance to PT Providers. At a minimum for all analytes with an assigned value equal to "0", the PT Provider should verify that the sample does not contain the analyte at a concentration greater than or equal to the PTRL.

8) The ten-sample set which is provided to the participant laboratories shall contain bacteria that produces the following results when analyzed:

Positive results for total coliforms, fecal coliforms and E.coli.

Positive results for total coliforms and negative results for fecal coliforms and E.coli.

Negative results for total coliforms, fecal coliforms and E.coli.

These limits are for Presence-Absence only.

9) The ten-sample set shall be assigned lot numbers and randomly composed of samples as follows:

Two to four samples containing an aerogenic strain of Escherichia which will ensure positive results for total coliforms, fecal coliforms and E.coli.when analyzed

by any of the USEPA approved methods.

Two to four samples containing an aerogenic strain of Enterobacter species and/or other microorganism which will ensure positive results for total coliforms and negative result for fecal coliforms and E.coli. when analyzed by any of the USEPA approved methods.

One to two samples containing Pseudomonas species and/or other microorganism which will ensure negative results for total coliforms, fecal coliforms and E.coli. when analyzed by any of the USEPA approved methods.

One to two samples which do not contain any microorganism which ensure negative results for total coliforms, fecal coliforms and E.coli. when analyzed by any of the USEPA approved methods.

10) Laboratories analyzing qualitative sample sets for more than one method in a particular study shall obtain a unique ten-sample set for each method reported as specified in Footnote 9.

11) These limits are for quantitative methods using membrane filtration (MF) or pour-plate (PP) techniques.

12) These limits are for quantitative methods using most probable number (MPN) techniques.

13) Design criterion for Mercury – 1:1 (mole:mole as Hg) Mercuric Oxide and Methyl Mercuric Chloride.

14) Design criterion for Cyanide – uncomplexed e.g., Potassium Cyanide.

15) Laboratorories seeking or maintaining NELAP accreditation for Total Trihalomethanes must meet NELAC PT requirements for all 4 Trihalomethane Fields of Proficiency Testing in the given study, by technology/method (Chloroform, Bromoform, Bromodichloromethane, Chlorodibromomethane). Laboratories seeking or maintaining NELAP accreditation for Total Haloacetic Acids must meet NELAC PT requirements for 4 out of 5 regulated Haloacetic Acid Fields of Proficiency Testing in the given PT study, by technology/method (Monochloroacetic Acid, Monobromoacetic Acid, Dichloroacetic Acid, Dibromoacetic Acid, Trichloroacetic Acid).

16) Design criterion for 2,4-D – should be at least half the butyl ester.

17) Design criteria for Diquat – Starting material is Diquat Dibromide Monohydrate as required in the method. All assigned values and reported values should be as Diquat.

18) Design criteria for Endothall – Starting material is Endothall Monohydrate as required in the method. All assigned values and reported values should be as Endothall.

19) Design criteria fo of the Decachlorobiphenyl is to be calculated by the provider from the concentration of the Aroclor used to prepare the sample according to Table 1 of r Decachlorobiphenyl – The source of the Decachlorobiphenyl is one of the following Aroclors: 1016, 1232, 1242, 1248, 1254, 1260. The assigned value the USEPA Method 508A.

Attachment C

Action Items –	Chemistry	FoPT	Subcommittee
----------------	-----------	------	--------------

		ž	Expected	Actual
	Action Item	Who	Completion	Completion
13.	Prepare letter to ABs to find out their needs on analytes that may be under consideration for deletion. (3/24/09 – It was determined that these tables are used by more than just ABs. This needs to be reconsidered.)	TBD	TBD	
22.	Prepare for upcoming meetings by reviewing evaluation files that Jeff will send every 2 weeks.	All	Ongoing	
43	Prepare cover letter to go to PT Board with recommendation of the DW FoPT Table. Include discussion on Chloramben.	Carl	1/4/10	
44	Prepare DRAFT presentation for PT Caucus and distribute to subcommittee for comment.	Carl	1/5/10	
46	Distribute new DW FoPT table to subcommittee members that missed the 1/5/10 call. The need to provide feedback by noon on 1/7/09.	Ilona	1/5/10	Complete
47	Update DW FoPT table with changes discussed in 1/5/10 meeting.	Jeff	1/5/10	Complete
48	Provide feedback to the PT Board regarding Footnote 10 on the new DW FoPT Table.	Eric	1/21/09	
1			1	1

Attachment D

Duckburner / Reminders Chemistry For F Subcommittee			
	Item	Meeting	Comments
		Reference	
1	Review summary data to see if it supports a change in the acceptance criteria for DW analytes (For example, VOA, 30% instead of 20%). If data is supportive, Jeff Lowry will approach ELAB.	10-30-08	3/10/09 - Jeff has approached ELAB. They would be happy to put it in a work group – and pass it along with a letter to EPA. We need to provide them with the data.
3	Consider changing the lower limit for Vanadium on WP to 50 ug/L.	6-30-09	
4			
5			

Backburner / Reminders – Chemistry FoPT Subcommittee