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Preface

This book continues the series started in 1990 by Rulph Chassaing and Darrell

Horning’sDigital Signal Processingwith the TMS320C25 andwhich has reflected the

development of successive generations of digital signal processors by Texas Instru-

ments.More specifically, each book in this series has complemented a different one of

the inexpensive DSP development tools promoted by the Texas Instruments Univer-

sity Programme for teaching purposes. A consistent theme in the books has been the

provision of a large number of simple example programs illustrating DSP concepts in

real-time in a laboratory setting.

It was Rulph Chassaing’s belief, and also mine, that hands-on teaching of DSP,

using hardware development kits and laboratory test equipment to process analog

audio frequency signals, is a valuable and effective way of reinforcing the theory

taught in lectures.

The contents of the books, insofar as they concern fundamental concepts of

digital signal processing such as analog-to-digital and digital-to-analog conversion,

FIR and IIR filtering, the Fourier transform, and adaptive filtering, have changed little.

Every year, in the context of university teaching, brings another set of students

wanting to study this material. However, each successive book has concerned a

different hardware development kit. The latest hardware development kit to be

promoted by the Texas Instruments University Programme is the Logic PD

OMAP-L138 eXperimenter.

This book is suitable for senior undergraduate and postgraduate electrical

engineering students who have a basic knowledge of C programming and of linear

systems theory.

The architecture of Texas Instruments’ DSP devices has reached a level of

complexity that places assembly language programming out of reach of such students.

Certainly, I have found that it is beyond the scope and time available in a digital signal

processing class. Even some of the optimized DSP functions supplied by Texas

Instruments in support libraries are written in C rather than assembly language.

For this reason, this book does not contain chapters concerning processor

architecture or assembly language programming.

The OMAP-L138 is a dual-core processor, the capabilities of which are far

beyond what can be covered in a single text. This book uses only a fraction of its

features in order to provide teaching materials specifically for DSP.

It is intended and hoped that this book will prove a useful resource for anyone

involved in teaching or learning DSP and as a starting point for teaching or

learning more.
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Chapter 1

OMAP-L138 Development

System

. OMAP-L138 processor

. Code Composer Studio� IDE version 4

. Use of the OMAP-L138 eXperimenter

. Programming examples

This chapter gives an overview of the OMAP-L138 processor and Logic PD’s Zoom

OMAP-L138 eXperimenter development system. It describes how to install and start

using version 4 of Texas Instruments (TI) Code Composer Studio integrated devel-

opment environment (IDE). Two example programs that demonstrate hardware and

software features of the eXperimenter board and of the Code Composer Studio IDE

are presented. It is recommended strongly that you review these examples before

proceeding to subsequent chapters.

1.1 INTRODUCTION

The Logic PD Zoom OMAP-L138 eXperimenter kit is a low-cost development

platform for the Texas Instruments OMAP-L138 processor. This device is a dual-core

system on a chip comprising anARM926EJ-S general-purpose processor (GPP) and a

TMS320C6748 digital signal processor. In addition, a number of peripherals and

interfaces are built into the OMAP-L138 as shown in Figure 1.1.

The eXperimenter makes a significant number of the OMAP-L138 interfaces

available to the user, as shown in Figure 1.2. This book is concerned with the

development of real-time digital signal processing (DSP) applications and therefore

makes use of the DSP (C6748) side of the device and of the TLC320AIC3106

(AIC3106) analog interface circuit (codec) connected to the OMAP-L138’s

Digital Signal Processing and Applications with the OMAP-L138 eXperimenter, Donald Reay.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Figure 1.1 Functional block diagram of OMAP-L138 processor. (courtesy of Texas Instruments)

Figure 1.2 Logic PD Zoom OMAP-L138 eXperimenter baseboard (courtesy of Logic PD).
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multichannel audio serial port (McASP). The ARM side of the device is not used by

the examples in this book. Connection to a host PC running theCodeComposer Studio

IDE is via XDS100v1 JTAG emulation built in to the eXperimenter. The Code

Composer Studio IDE enables software written in C or assembly language to be

compiled and/or assembled, linked, and downloaded to run on the C6748. Details of

the OMAP-L138, TMS320C6748, TLC320AIC3106, eXperimenter, and Code Com-

poser Studio IDE can be found in their associated datasheets [1–5] and in the TI

wiki [6]. The purpose of this chapter is to introduce the installation and use of the

eXperimenter for hands-on DSP experiments.

1.1.1 Digital Signal Processors

Adigital signal processor is a specialized form ofmicroprocessor. Its architecture and

instruction set are optimized for real-time digital signal processing. Typical optimi-

zations include hardware multiply accumulate (MAC) provision, hardware circular

and bit-reversed addressing capabilities (for efficient implementation of data buffers

and fast Fourier transform (FFT) computation), and Harvard architecture (indepen-

dent program and data memory systems). In many respects, digital signal processors

resemble microcontrollers. Typically, they provide single-chip computer solutions

integrating on-board volatile and nonvolatile memory and a range of peripheral

interfaces, and have a small footprint, making them ideal for embedded applications.

In addition, digital signal processors tend to have low power consumption require-

ments. This attribute has been extremely important in establishing the use of digital

signal processors in cellular handsets. However, the distinctions between digital

signal processors and other more general-purpose microprocessors are blurred. No

strict definition of a digital signal processor exists and semiconductor manufacturers

apply the term to products exhibiting some, but not necessarily all, of the above

characteristics as they see fit.

Digital signal processors are used for a wide range of applications, from

communications and control to speech and image processing. They are found in

cellular phones, disk drives, radios, printers, MP3 players, HDTV, digital cameras,

and so on. Specialized (particularly in terms of their on-board peripherals) DSPs are

used in electric motor drives and in a range of associated automotive and industrial

applications. Overall, digital signal processors are concerned primarilywith real-time

signal processing. Real-time processing means that the processing must keep pace

with some external event, whereas non real-time processing has no such timing

constraint. The external event to keep pace with is usually the analog input. While

analog-based systems with discrete electronic components including resistors and

capacitors are sensitive to temperature changes, DSP-based systems are less affected

by environmental conditions such as temperature. Digital signal processors embody

the major advantages of microprocessors. They are easy to use, flexible, and

economical.

Texas Instruments OMAP-L138 device combines a C6748 DSP with an

ARM926EJ-S general-purpose processor to produce a dual-core solution for

1.1 Introduction 3



handheld and other embedded applications. ARM926EJ-S provides the benefits of a

32-bit RISC processor, well suited to implementing user interfaces and running

operating systems.

C6748 is a member of the Texas Instruments TMS320C6000� DSP family of

digital signal processors. Its architecture is very well suited to numerically

intensive calculations and it is one of TI’s most powerful digital signal processors.

More specifically, as a member of the C674x family, it combines C64x� DSP

fixed-point and C67x� DSP floating-point architectures in one core, as illustrated

in Figure 1.3.

1.2 HARDWARE AND SOFTWARE TOOLS

Most of the examples presented in this book involve the development and testing of

short programs intended to demonstrate fundamental DSP concepts in a laboratory

setting. To perform the experiments described in the book, a number of hardware and

software tools are required.

(1) ALogic PDZoomOMAP-L138 eXperimenter kitThis package includes the

following:

(a) Three separate circuit boards, a baseboard, a 4.300 LCD, and an OMAP-

L138 SOM-M1. OMAP-L138 SOM-M1 must be connected to the

baseboard, as described in the instructions included in the eXperimenter

kit. The LCD is not used in the experiments in this book and therefore

need not be connected to the baseboard.

(b) A universal serial bus (USB) cable that connects the eXperimenter board

to a host PC.

(c) A 5 V universal power supply for the eXperimenter board.

(2) A host PC This is used to run the Code Composer Studio IDE. The

eXperimenter board is connected to a USB port on the host PC.

Figure 1.3 TheC674x combines C64x fixed-point and C67x floating-point DSP architectures. (courtesy

of Texas Instruments).
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(3) Code Composer Studio software, version 4 The eXperimenter kit includes a

DVD containing Code Composer Studio software version 4. Alternatively,

the Code Composer Studio IDE may be downloaded from the Texas

Instruments wiki at http://processors.wiki.ti.com/index.

php/Download_ CCS. Code Composer Studio software provides an IDE,

bringing together C compiler, assembler, linker, and debugger.

(4) Board support libraryBoard-level support routines specific to eXperimenter

are not supplied with the kit, but may be downloaded from the Logic

PD website at http://www.logicpd.com/product-support.

Access to the board support libraryBSL file 1017292A_OMAP-

L138_GEL_BSL_Files_v2.3.zip requires a login and product

registration.

(5) TMS320C674x DSP library A number of example programs make use

of optimized DSP routines from this library. It can be downloaded from

the Texas Instruments wiki at http://processors.wiki.ti.com/

index.php/C674x_DSPLIB or from the Texas Instruments website

at http://focus.ti.com/docs/toolsw/folders/print/

sprc900.html.

(6) DSP/BIOS� software Kernel Foundation Platform Support Package

(PSP) This is used for examples in Chapter 7. Details of how to download

file BIOSPSP_01_30_00_06_Setup.exe, which is part of the

OMAP-L138 and C6748 software development kits (SDKs) may

be found at http://processors.wiki.ti.com/index.php/

GSG_C6748:_Installing_the_ SDK_Software.

(7) An oscilloscope, spectrum analyzer, signal generator, headphones, micro-

phone, and loudspeakersThe experiments presented in subsequent chapters

of this book are intended to demonstrate digital signal processing concepts in

real-time, using audio frequency analog input and output signals. In order to

appreciate these concepts and to get the greatest benefit from the experi-

ments, some forms of signal source and sink are required. As a bare

minimum, an audio source with line level output and either headphones or

loudspeakers are required. Greater benefit will be accrued if a signal

generator is used to generate sinusoidal, and other, test signals and if an

oscilloscope and spectrum analyzer are used to display, measure, and

analyze input and output signals. Many modern digital oscilloscopes incor-

porate FFT functions, allowing the frequency content of signals to be

displayed. Alternatively, a number of software packages that use a PC

equippedwith a sound card to implement virtual instruments are available. In

this book,Goldwave is used, which may be downloaded from www.gold-

wave.com.

(8) The files and example programs listed and discussed in this book are

included on the partner website ftp://ftp.wiley.com/public/

sci_tech_med/signal_processing.

1.2 Hardware and Software Tools 5



1.2.1 Zoom OMAP-L138 eXperimenter Board

The eXperimenter board is a powerful, yet inexpensive, development system with

the necessary hardware and software support tools for real-time signal proces-

sing [4]. From the point of view of the example programs in this book, it is a

complete DSP system. The board, which measures approximately 5� 7 inches,

includes a 375MHz OMAP-L138 processor and a 16-bit stereo codec

TLV320AIC3106 (AIC3106) for analog input and output. Numerous other inter-

faces are provided by the eXperimenter but are not used by the example programs in

this book.

The onboard codec AIC3106 [3] uses sigma–delta technology that provides

analog-to-digital conversion (ADC) and digital-to-analog conversion (DAC) func-

tions. It uses a 24.576MHz system clock and its sampling rate can be selected from a

range of alternative settings from 8 to 48 kHz.

The eXperimenter boards each include 128MB of synchronous dynamic RAM

(mDDR SDRAM) and 8MB of NOR flash memory. Two 3.5mm jack socket

connectors on the boards provide analog input and output: LINE IN for line level

input and LINEOUT for line level output. The status of eight user DIP switches on the

board can be read from within a program running on the processor and provide a

simple means of user interaction. The states of two LEDs on the board can be

controlled from within a program running on the processor.

1.2.2 C6748 Processor

The DSP core in the OMAP-L138 device (L138) is a C6748 DSP based on Texas

Instruments very long instruction word (VLIW) architecture and is very well suited to

numerically intensive algorithms. The internal programmemory is structured so that a

total of eight instructions can be fetched every cycle. With a clock rate of 375MHz,

the C6748 is capable of fetching eight 32-bit instructions every 1/(375MHz) or 2.67

ns. As part of the C674x family, it incorporates both floating-point and fixed-point

architectures in one core.

Features of the C6748 include 326 kB of internal memory (32 kB of L1P program

RAM/cache, 32 kB of L1D data RAM/cache, and 256 kB of L2 RAM/cache), eight

functional or execution units composed of six ALUs and two multiplier units, an

external memory interface addressing 256MB of 16-bit mDDR SDRAM, and 64 32-

bit general-purpose registers. In addition, theOMAP-L138 features 128 kBof on-chip

RAM shared by its C6748 and ARM9 processor cores [1].

1.2.3 Code Composer Studio IDE

Code Composer Studio software provides an IDE for real-time digital signal

processing applications based on the C programming language. It incorporates a

C compiler, an assembler, and a linker. It has graphical capabilities and supports

real-time debugging. Version 4 of the Code Composer Studio IDE is based on the
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open-source Eclipse framework [7], widely used in embedded systems

development.

Code Composer Studio software is project based. A Code Composer Studio

software project comprises all the files (or links to all the files) required in order to

generate an executable file. In addition, a Code Composer Studio software project

contains information about exactly how files are to be used in order to generate an

executable file. Compiler/linker options can be specified.

A number of debugging features are available in Code Composer Studio

software, including setting breakpoints and watching variables, viewing memory,

registers, andmixedC and assembly code, graphing results, andmonitoring execution

time.

Communication between the Code Composer Studio IDE and the eXperimenter

is via a USB connection and the XDS100v1 JTAG emulation [8] built into the board.

Compared to previous versions, Code Composer Studio software version 4 separates

code development and debugging activities through the use of perspectives. Per-

spectives are sets of windows, views, and menus and as a default Code Composer

Studio software provides a default C/Cþþ perspective, including, among others,

Project View, Editor, and Outline windows, and a default Debug perspective,

including Debug, Disassembly, and Console views. Users may customize these

perspectives or create new ones. The View menu gives an idea of the many other

windows available.

1.2.4 Installation of Code Composer Studio Software
Version 4 and Support Files

The example programs described in this book are intended to be used with Code

Composer Studio software version 4 and were tested using version 4.2.1. Code

Composer Studio software is supplied on a DVD as part of the eXperimenter kit or

alternatively may be downloaded from the Texas Instruments wiki at http://

processors.wiki.ti.com/index.php/Download_CCS. Installation

instructions for Code Composer Studio software are included on the DVD.

A typical (default) location for the files is c:\Program Files\Texas

Instruments\ccsv4, but this is not mandatory. The default location for the

Code Composer Studio IDE was used during preparation of the example programs

in this book. Once installed, an icon with the labelCode Composer Studio v4 should

appear on the desktop, as shown in Figure 1.4.

The example programsmake use of theLogic PDBSLwhichmay be downloaded

from http://www.logicpd.com/product-support. During preparation of this book and

testing of the example programs, the BSL was installed at c:\omapl138.

Some example programs make use of the optimized c674x DSPLIB library of

digital signal processing routines [9] that may be downloaded from http://

processors.wiki.ti.com/index.php/C674x_DSPLIB. During prepa-

ration of this book and testing of the example programs, it was installed at c:

\C6748_dsp_1_00 _00_11.
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Example programs in Chapter 7 make use of the DSP/BIOS software kernel

foundation PSP. During testing of the example programs, the SDK that includes the

PSP was installed according to the instructions at http://processors.wiki.

ti.com/index.php/GSG_C6748:_Installing_the_SDK_Software,

resulting in installation of PSP at c:\C6748_dsp_1_00_00_11

\pspdrivers_01_30_01.

The files accompanying this book should be copied to c:\eXperimenter

so that, for example, files relating to this chapter may be found in folder c:

\eXperimenter\L138_chapter1.

Alternative locations for the various software tools described are possible, but

corresponding changes to some of theBuild Propertieswithin Code Composer Studio

software that are shown in this book would have to bemade. The path names used and

detailed instructions given in this book assume that the software tools have been

installed as just described.

1.3 INITIAL TEST OF THE EXPERIMENTER USING A
PROGRAM SUPPLIED WITH THIS BOOK

Follow these instructions in order to quickly test the correct installation of the

software tools and the eXperimenter board:

(1) Connect the eXperimenter board to the host PC using the USB cable

provided. There are two mini-USB sockets on the eXperimenter. The

socket used for connection to the host PC is Emulation USB port (J21),

located adjacent to the 9-way D-type RS232 serial debug port

(Figure 1.2).

(2) Make sure that all the Boot mode DIP switches (S7) are OFF, except for

DIP switches #5 and #8 that should be ON (Figure 1.2). This sets the

appropriateBootMode (EMUDebug) for the usemade of the eXperimenter

in this book.

(3) Connect a line level audio source, for example, the output from a PC sound

card, to the LINE IN socket on the eXperimenter. Make sure that the output

level from the source is sufficiently low that it will not damage the input

circuits of the AIC3106 codec.

(4) Connect either headphones or loudspeakers to the LINEOUT socket on the

eXperimenter.

(5) Connect the power supply provided to the eXperimenter board.

Figure 1.4 Code Composer Studio software desktop icon.
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(6) Switch on the eXperimenter using the Power Switch. The Power On LED

(D5) should light.

(7) Launch Code Composer Studio software by double-clicking on the Code

Composer Studio v4 icon on the desktop. You should see a splash screen as

shown in Figure 1.5 and then a pop-up window similar to that shown in

Figure 1.6.

(8) Enter c:\eXperimenter\L138_chapter1 as a workspace, as

shown in Figure 1.6 and click OK. Next, you should see a welcome screen

as shown in Figure 1.7. Click on the Start using CCS icon in the top right-

hand corner and Code Composer Studio should start in the C/Cþþ

perspective, but show no projects in the Project View window.

The Code Composer Studio software version 4 debugger makes use of a

Target Configuration file containing details of the hardware system being

debugged. For the example programs in this book, target configuration

file L138_experimenter.ccxml is provided. It is located in folder

c:\eXperimenter\L138_support.

Figure 1.5 Code Composer Studio software version 4 splash screen.

Figure 1.6 Code Composer Studio software version 4 pop-up window.
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Figure 1.7 Code Composer Studio software version 4 Welcome screen.

(9) Copy the target configuration file L138_eXperimenter.ccxml

from c:\eXperimenter\L138_support to the default location

used by the Code Composer Studio IDE for target configuration files, that

is, c:\Documents and Settings\YOUR_ID\user\CCSTar-

getCon-figurations if you are using Window XP, or c:\User

\Your_ID\user\CCSTargetConfigurations if you are using

Windows 7.

(10) Copy file C6748.gel from folder c:\eXperimenter\L138_

support to c:\Documents and Settings\YOUR_ID\user

\CCSTargetConfigurations if you are using Window XP, or c:

\User\Your_ID\user\CCSTargetConfigurations if you are

using Windows 7. This general extension language (GEL) script is run

every time you Connect to Target in the debugger and carries out a number

of important initialization procedures on the eXperimenter.

(11) In theC/Cþþ perspective, selectView> Target Configurations, right-click

onL138_eXperimenter.ccxml, underUser Defined and select Set as

Default.TheProjectViewwindowshould thenappear as shown inFigure1.8.

(12) Launch the debugger by selecting Target > Launch TI Debugger. This

should cause Code Composer Studio to switch from the C/Cþþ perspec-

tive to the Debug perspective, including a Debug window as shown in

Figure 1.9. If Code Composer Studio software does not automatically

switch to the Debug perspective, you can do so using the Debug button in

the top right-hand corner of the Code Composer Studio IDE window, as

shown in Figure 1.10.
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