
Sound Systems on Linux: From the Past To the Future

Takashi Iwai <tiwai@suse.de>

SuSE Linux AG, Nuremberg, Germany

Linux 2003 Conference, Edinburgh, Scotland

1 Introduction: The Past

1.1 Life with Audio Cards

The development of audio and sound support on the

Linux system has a long history. It has been imple-

mented since the early version of Linux system. Before

starting on a journey to the world of Linux sound sys-

tem, let’s take a short glance at the history of PC audio

cards.

In the old good days until the middle 1990’s, the sound

cards equipped on the PC were all ISA cards. Their

typical feature was SoundBlaster16 compatible, that is,

16 bit stereo PCM (pulse code modulation) playback

and capture1 . Almost all DOS and Windows games

at that time supported the SB16-compatible cards. It

had an MPU401 (a serial MIDI) interface shared with

a joystick port. It satisfied the demands of both hobby

gamers and musicians. The full-duplex capability was

not a must.

The advanced feature at that time was the support of

MIDI WaveTable and MOD playback on hardware like

GUS and SB AWE cards. In the professional area, there

were a few audio cards with the multiple channel and

digital I/O interfaces. However, it was very rare that

such a card works on a Linux system. Little users and

manufacturer were interested in this regard.

The situation has varied slowly. The bus was changed

from ISA to PCI. And almost all consumer audio cards

have been based on AC97 codec2. It provides enough

1In this text, we call the recording of audio data as capture to

prevent the confusion of meanings.
2Originally, codec stands for “compression and decompression”.

However, It’s often used in different manners. Here in the case of au-

dio cards, codec corresponds to the analog-digital-converter (ADC) or

digital-analog-converter (DAC) function or the chip for it (like AC97

codec).

functionality for a desktop and a laptop PC including

the full-duplex capability. There are variety of AC97

chips. Some of them supports multi-channel playback,

and some even with a support of digital I/O. In the pro-

fessional and so-called “pro-sumer” range, the multi-

channel I/O with high quality (24 bit, 96 or 192 kHz)

became mandatory. Many such cards support the digi-

tal I/O over S/PDIF or AES/EBU, too.

Usually, the evolution follows (or is brought from) its

needs. In the case of audio cards, there have been two

significant changes between the past and the present sit-

uations above: MP3 and DVD. The former makes it

possible to distribute the PCM data stream in low band-

width. As mentioned above, MIDI playback capabil-

ity was regarded more importantly in the earlier days.

Because of the MP3 and other compression technique,

the distribution of audio over network takes now usu-

ally the PCM data directly instead of rendered audio

data like MIDI and MOD. The CPU consumption is no

longer a problem thanks to Moore’s law. Eventually, the

hardware-support of MIDI and MOD playbacks with

WaveTable and FM syntheses became less interesting

nowadays.

The another, DVD, brought the strong demand of multi-

channel (5.1) and digital I/O capabilities. These capa-

bilities are now standard even on an integrated sound

chip on the motherboard of a desktop PC.

Another thing to be noted is the recent growth of pop-

ularity of USB audio devices. The device are really

handy and easy. It’s ready to use without opening a

box (and no more screwdriver!). Although the USB 1.1

realizes only limited features because of its bandwidth,

mostly requested features like multi-channel and/or dig-

ital I/O are supported on many devices.

1



1.2 Life with Linux

Now let’s back to the topic of our lovely Linux. In gen-

eral, there are two basic components which build the

sound system: the sound device driver and the sound

server. The former is the hardware abstraction in the

lower level, while the latter gives more high-end capa-

bilities like multiplex access and mixing. In other OS

like Windows, the boundary between these two compo-

nents is not clear. The driver does some heavy jobs like

mixing in the kernel, too. On the Linux system, how-

ever, these are regarded still separately. In the following

section, the sound drivers and the typical sound servers

in the past are explained briefly.

OSS

The core part of the sound system is the sound de-

vice drivers. On the Linux kernel, the OSS (Open

Sound System) drivers have been employed as the stan-

dard sound drivers. The OSS drivers — which were

originally written by Hannu Savolainen and formerly

called as different names like USS/Lite, VoxWare and

TASD — has currently two different versions. One is

the free software included in the recent standard Linux

kernel tree (OSS/Free) and another is the commercial

binary-only drivers distributed by 4Front Technologies

(OSS/Commercial)[1]. Both drivers have been evolved

in different directions, but both of them still have (al-

most) the API compatibility, based on the earlier ver-

sion of OSS.

The hardware support on the Linux system has been,

unfortunately, relatively poor in comparison with Win-

dows and MacOS. Some drivers were available only by

the OSS/Commercial version, especially for the new

cards and models. Positively looking, this means that

Linux users had at least some support for most of popu-

lar audio cards. However, on the other hand, they were

not free – in the sense of freedom, too. This situa-

tion has remained until recently, because many hard-

ware vendors didn’t like to provide the enough techni-

cal information to write a fully functional device driver

as the open-source.

The OSS provides a simple and easy API[2]. The API

was designed for the audio cards at the old ages, mainly

16bit two-channel playbacks and captures. The API fol-

lows the standard Unix-style via open/close/read/write

system calls. The memory mapping (mmap) is also sup-

ported, so that the audio data can be transferred more

efficiently. The mixer is represented as (up to 32) play-

back volumes, an input-gain, and a capture source se-

lector.

The applications are supposed to open and ac-

cess directly the device files, such as /dev/dsp or

/dev/mixer. The format and buffers are controlled via

specific ioctl’s. The raw MIDI bytes can be sent or re-

ceived via a raw MIDI device file. In addition, there is

a so-called “sequencer” device, which is used to handle

the MIDI events in the higher level with the sequential

timing control.

EsounD

Many sound cards support only one PCM stream for

each playback and capture, and the driver allows one

process to access it exclusively. That is, if you access

to a device from two or more applications at the same

time, only one application can run and others will be

blocked until it quits the operation. For solving this

problem, a sound server is introduced. Instead of read-

ing and writing a device file, applications access to a

sound server, which accesses to the device exclusively

on behalf. For multiple playbacks, a sound server reads

multiple PCM streams from several applications and

writes a mixed stream to the sound device (mixing func-

tion). For the capture direction, on the contrary, a sound

server writes the PCM streams from the device to any

accessing applications (multiplexing). Also, the sam-

ples being played by EsounD can be captured (loop-

back).

One of the commonly used applications for this pur-

pose is EsounD[3]. EsounD stands for the “Enlightened

sound daemon”. Lately, GNOME adapted this program

as its standard sound server, too.

EsounD provides the fundamental mixing and mul-

tiplexing capabilities of playback and capture PCM

streams. The PCM streams are read/written through

a simple Unix or TCP/IP socket. It is capable also to

communicate over network. A simple authentication is

implemented, too. The API is defined in libesd library,

which is a quite straight-forward implementation in C.

EsounD has many different audio I/O drivers not only

for Linux but also for other Unix systems. There are

2



OSS and ALSA (described later) drivers for Linux, cur-

rently. However, only one of them can be built in at the

compile time.

aRts

KDE, a big competitor of GNOME, adapted another

program as its standard sound server. This server pro-

gram, aRts[4], was originally written as the “analog re-

altime synthesizer”. Obviously it was inspired by the

analog modular synthesizer system which was popular

in 1970’s. It consists of small basic components, and

each of them can be “patched” with cables. aRts uses

its own IPC method called MCOP for the patching in-

stead of real cables. MCOP is similar with CORBA but

much optimized for the data streaming (in fact, the ear-

lier version of aRts used CORBA). The audio data is

transferred over a Unix or TCP/IP socket.

As a sound server, aRts provides more ambitious fea-

tures than EsounD. In theory, any effects can be in-

serted by patching modules. Modules are implemented

as shared objects which are loaded dynamically onto

the server. aRts has also MIDI control capability. As

it’s based on the CORBA-like communication model,

aRts has also good network transparency.

The default language binding of aRts API is C++. Al-

though there is a C wrapper on the C++ binding, the

function is limited.

1.3 Always Problems in Life

Hard Life with OSS

As mentioned above, the OSS API is quite simple and

easy. In fact, there are many audio applications to sup-

port it. However, the “simple and easy” means, in other

words, that it doesn’t support high-end audio functions.

Namely,

1. The non-interleaved format3 is not supported.

2. Supported sample formats are limited.

3. It forces applications to access the device files di-

rectly.

3The format where the samples are placed separately in the dis-

crete buffer (or position) for each channel. That is, a group of mono

streams is handled as a single multi-channel stream.

4. The support of digital I/O is quite poor. IEC status

bits cannot be handled.

5. The mixer implementation is very limited.

The first two points lead to severe problems with the the

progress of audio cards. Although many modern cards

are capable to use such formats, the driver still can-

not handle them but only the traditional 16 bit 2 chan-

nel stereo format. Especially, the non-interleaved for-

mat is essential for many professional cards with multi-

channels.

The handling of sample formats is not as trivial as it

appears. Even a linear sample format can have different

styles depending on the byte order and the size. For

example, 24 bit samples can be packed either in 3 bytes,

4 bytes LSB or 4 bytes MSB. In addition, two different

byte-orders for each case. All they express the same

value!

The third point above might look not too critical. How-

ever, this is a serious problem if any pre- or post-

processing is required for the samples before sending

or after receiving them. A typical case is that the codec

chip supports only a certain sample rate, here 48 kHz

is assumed . For listening to a music taken from a CD,

the sample rates must be converted from 44.1 kHz. In

the OSS, this conversion is always done in the kernel

although such a behavior is regarded “evil”. This is be-

cause applications access to the device file directly, and

there is no room between the application and the driver

to process this kind of data conversion.

The fourth point is the problem appearing on the mod-

ern audio cards, too. The digital I/O interface transfers

often non-audio data streams like A52 (so-called AC3)

format. Many digital interfaces require the proper set

up of the IEC958 (S/PDIF) status bits to indicate sev-

eral important conditions such as the non-audio bit and

the sample rate. This information cannot be passed on

the OSS drivers in a consistent way.

The last point comes from the simplicity of mixer ab-

straction. For example, a matrix mixer, or a state-list el-

ement cannot be implemented with the standard mixer

API. The only solution for such a non-standard thing is

to use a private ioctl.

Pain with Sound Servers

Introducing a sound server solves some of the problems

above. For example, the sample rate conversion should

3



be a job of a sound server. However, this doesn’t solve

everything. There is one important condition. This ar-

gument will be valid if (and only if) all applications sup-

port the same sound server.

Unfortunately the current situation is not ideal. Al-

though more and more applications are born, few of

them try to support EsounD or aRts natively. One of the

reasons is that there are different platforms and difficult

to choose the only one solution. And applications can

run well even without support of such a sound server

when the developer feels the sound server annoying and

doesn’t use it. This kind of problem would be solved in

future once if the desktop system matures, though.

The real problem lying on the sound system in the past

is that, again, it was not written for the modern architec-

tures. It works quite well for simply playing a bell over

PCM, listening to a music, or recording samples from a

microphone. However, if you write a serious high-end

audio application which needs to handle the multiple

channels with 24 bit samples, there is no way around.

Latency and Synchronization

There are additional things to consider for building a

high-end audio system. One of the important factor is

latency. The word “latency” may be referred in many

different fields. In this text, it means the time delay be-

tween the application and the actual I/O. In general, the

smaller latency corresponds to a faster response. Thus,

getting the smaller latency is extremely important for a

real-time audio application.

The latency is introduced in different places. In the case

of playback over a conventional sound server, the sam-

ples are sent from an application to the analog output

through the following path:

1. The digital samples are written on the application

buffer.

2. Data are copied to the sound server over socket.

3. Several streams are mixed on the sound server

buffer.

4. Mixed data wrote to the device driver.

5. DMA transfer.

6. Through DAC you get analog signals.

The total latency is determined by the buffer size of ap-

plications and the buffer size of sound server, plus the

internal latency of the driver and the chip itself (up to

1 or 2 ms). The problem of the path above is that a

certain latency must happen because of the additional

buffer on the sound server. Also, the overhead of data

copy between the application and the sound server is the

another source of latency.

Moreover, the reliability of task scheduling on the

Linux is another problem. The response of a process is

not deterministic on a multi-process system like Linux.

This response can be improved by a real-time (RT)

scheduling. However, the RT-scheduling on the stan-

dard Linux kernel doesn’t perform well under several

conditions. For example, the heavy disk access or the

graphic access may block the RT-scheduling in the or-

der of 100 ms.

The buffer latency above must be enough large to assure

to satisfy this system latency. But how much latency is

supposed indeed? In fact, the latency in the real world

is also fairly high, but it is not noticed usually. For ex-

ample, when the listener stands two meter away from

the box, there is already latency about 5.9 ms. So, what

matters?

The answer is the synchronism. If each stream can be

handled independently (e.g. playing a music and a bell

at the same time), the acceptable latency should be rel-

atively high. You might not notice a clear difference in

the latency of 10 ms or more long time. On the other

hand, if data streams must be processed synchronously,

or the processed signals may be rerouted, the latency

must be enough small.

From this perspective, the mechanism used in the con-

ventional sound servers is not suitable for the synchro-

nized operation. As already noted, it works well for a

simple use, but not for the serious high-end audio appli-

cations which require the real-time processing and the

synchronization of streams.

Connectivity

Another missing feature in the past system is the con-

nectivity. Although the sound servers above already

accept multiple access of applications, the connection

between applications cannot be changed or configured

arbitrarily. Suppose that you run two different applica-

tions to output PCM streams and record from a server.

4



With the past server systems, you cannot switch the

connections on the fly.

The same situation can be found in the area of MIDI.

The MIDI streams are not handled properly by the

sound servers, too. The multiplex access and the dis-

patching are missing in the conventional system.

And the last missing connectivity is the connection of

people. Each project and each audio application was

developed independently in most cases, and they were

rarely involved with each other.

1.4 Back To The Future

For the better support of audio hardwares, a new sound

driver project was started by Jaroslav Kysela and oth-

ers. The firstly supported card was Gravis UltraSound

card only. Lately the project targeted the general sup-

port of other cards and was renamed “Advanced Linux

Sound Architecture” (ALSA)[5]. The functionality of

ALSA has been constantly improved. The range of

sound cards supported by ALSA has become always

wider including many high-end audio cards. The ALSA

drivers were integrated into the 2.5 kernel tree officially

as the next standard sound drivers.

The situation around the system latency of Linux kernel

gets improved with the recent development. Andrew

Morton’s low-latency patchset[7] and Robert Love’s

preemption patchset[8] solved the scheduler-stalling

problem significantly. In the 2.5 kernel series, the lat-

ter was already included, and the codes were audited to

eliminate the long stall in many parts. With the tuned

Linux kernel, it’s even possible to run the audio system

in 1 or 2 ms latency[9].

The change happens also in the community. There have

been more and more active communications and dis-

cussions over the mailing list. Some hardware vendors

have been involved with the development of ALSA, too.

The most important results are LADSPA (Linux audio

developer simple plugin API) plugins[10] and JACK

(Jack Audio Connection Kit)[12]. Both were born and

shaped up from the discussion on the Linux audio de-

veloper mailing-list[6].

LADSPA is a plugin API for general audio applications.

It’s very simple and easy to implement in each audio

application. There are many plugins for every effect

(most of them are written by Steve Harris[11]).

The latter, JACK, is a new sound server for the pro-

fessional audio applications. JACK was primarily de-

veloped by Paul Davis, and employed as the core au-

dio engine of ardour, a harddisk recorder program. It is

based on the completely different design concept from

the conventional Linux sound servers. It is aimed to

glue the different audio applications with the exact syn-

chronization. Together with the ALSA and the low-

latency kernel, JACK can run in a very short latency.

The number of applications supporting JACK has been

growing now.

Finally at this point, we are back to the present stage.

In the following sections, the implementation and tech-

nical issues of ALSA, JACK and other projects related

with the sound system are described.

2 ALSA

2.1 Characteristics of ALSA

ALSA was designed to overcome the limitation of exist-

ing sound drivers on Linux. In addition to the support of

high-end audio cards, the ALSA was constructed with

the following basis:

• Separate codes in kernel- and user-spaces

• Common library

• Better management of multiple cards and multiple

devices

• Multi-thread-safe design

• Compatibility with OSS

Fig. 1 depicts the basic structure of ALSA system and

its data flow. The ALSA system consists of ALSA

kernel drivers and ALSA library. Unlike the OSS,

ALSA-native applications are supposed to access only

via ALSA library, not directly communicating with the

kernel drivers. The ALSA kernel drivers offer the ac-

cess to each hardware component, such as PCM and

MIDI, and are implemented to represent the hardware

capabilities as much as possible. Meanwhile, the ALSA

library complements the lack of function of the cards,

and provides the common API for applications. With

this system, the compatibility can be easily kept even

5



OSS API

Linux Kernel

ALSA Library API

ALSA-Library

Plugins

(Conversion, Routing, etc)

Hardware access

OSS

Application

Native ALSA

Application

OSS Emulation

Module
Audio Hardware

OSS

Application

Native ALSA

Application

MIDIPCM Control Sequencer

ALSA Kernel API

ALSA

Kernel Driver

OSS API

OSS Userspace

Emulation

(libaoss)

LD_PRELOAD

Figure 1: Basic Structure and Flow of ALSA System

if the kernel API is changed, because the ALSA library

can absorb the possible internal changes and keep the

external API consistent.

The following components are supported by ALSA.

PCM

The PCM is full-duplex as long as the hardware sup-

ports. The ALSA PCM has multiple layers in it. Each

sound card may have several PCM devices. Each PCM

device has two “streams” (directions), playback and

capture, and each PCM stream can have more than one

PCM “substreams”. For example, a hardware support-

ing multi-playback capability like emu10k1 has mul-

tiple substreams. At each open of a PCM device, an

empty substream is assigned for use. The substream

can be also specified explicitly at its open.

The ALSA supports quite wide range of formats. For

example, the linear formats from 8 to 32 bit, 32/64 bit

float, non-linear formats like µ-Law and ADPCM. The

multi-channel samples can be placed in both the inter-

leaved and the non-interleaved format according to the

hardware. The high-end audio cards like RME Ham-

merfall and HDSP run on the ALSA with the 26 chan-

nel non-interleaved mode.

The digital I/O interface is implemented differently ac-

cording to the hardware. In most cases, an independent

PCM device is provided for the IEC958. In other cases,

the output type is switched via a control (mixer) switch.

Such a difference of implementation is absorbed by

the ALSA library’s configurator in the user-space level.

The IEC958 status bits are accessed usually via a con-

trol element as described in the next section.

The PCM streams which are operational synchronously

can be linked with each other, so that they can be oper-

ated together in the sample-wise accuracy. The linkage

of streams is even possible among any streams of any

cards. In this case, the accuracy of synchronized opera-

tion is not assured, but the application can handle them

uniformly.

There is a virtual card (snd-dummy) module which

emulates the PCM devices. This works just like

/dev/null file for playback and /dev/zero file for

capture. Applications can write PCM data with the

given condition to the virtual PCM device but it’s never

played actually. This function is useful if an appli-

cation (e.g. a video-game program) requires the au-

dio functionality inevitably but there is no audio device

equipped.

Controls

The controls to the card is implemented on the univer-

sal control interface. This includes the mixer and card-

6



specific run-time configurations. The control interface

is very flexible to represent the different styles of mixer

configuration on different audio cards. In contrast to the

simplistic implementation of OSS, the ALSA control

interface is implemented to give the all possible func-

tions.

The control elements are managed in a single array

(list). Each control element is identified by a name

string and an index number. Several different types of

data can be handled, such as boolean, integer, enumer-

ated items and byte arrays.

The representation of mixer is dependent on the hard-

ware. Many mixer elements have both an integer ele-

ment for the volume or the attenuation and a boolean

element for the mute switch. The multi-channel vol-

umes can be implemented either in multiple control el-

ements (differently identified by index) or an array in a

single control element.

The capture source selection (e.g. line-in, microphone,

etc) is one of the difficult cases. If the hardware al-

lows multiple capture sources and mixes them on it, the

ALSA also provides the possibility to choose multiple

sources. On the other hand, when the hardware has an

input MUX, which is an exclusive switch, the ALSA

provides usually an enumerated list to let users choose

the one.

The digital (IEC958) I/O status bits are stored in

the byte array. The applications can access to this

control to change the behavior of digital I/O inter-

face, for example, to toggle the no-audio data or con-

sumer/professional data bit. Some bits correlated with

the sample rate are changed also by the PCM functions

automatically when the PCM sample rate is determined.

MIDI

The raw MIDI byte streams are accessed via a device

file. Applications can simply read and write these de-

vice files for receiving and sending MIDI byte data.

There are several ioctl’s for the buffer management and

some extra commands. But they are not necessary in

most cases.

Sequencer

The ALSA sequencer is a highly abstracted MIDI sys-

tem. It handles MIDI event packets to deliver to the

given destination. It supports the multiplex access. The

events can be either scheduled in priority queues for

later delivery or dispatched immediately.

When connected to the ALSA sequencer core, each ap-

plication creates a “client”. A client includes one or

more “ports”. The events are transferred through these

ports. In practice, the ALSA sequencer port corre-

sponds to the MIDI port, and 16 MIDI-channels are as-

signed to each port.

Many applications use the ALSA sequencer as the

MIDI dispatching system because of its connectivity ca-

pability. Applications can connect to the sequencer sys-

tem arbitrarily to send or receive MIDI event packets.

The connection can be changed dynamically on the fly

as a patch-bay.

There is also a virtual MIDI card which converts the

MIDI byte stream to the ALSA sequencer event pack-

ets, and vice versa. This is useful for the applications

which talk only with a raw MIDI device.

Timer

ALSA provides also a generic timer interface. The

timer events are informed either via read/poll system

call or via asynchronous signal. As default, the sys-

tem timer and the RTC can be chosen as a global timer

source. When the hardware provides more accurate

timer sources, the card-specific timer is created, too.

A noteworthy feature is the PCM timer. Each PCM cre-

ates a timer which generates the clock at each period4

boundary, thus is synchronized with the PCM stream

completely. This timer is used to control the timing of

multiple streams in the dmix plugin, which will be ex-

plained later.

Hardware-Dependent Device

The hardware-dependent (hwdep) device is purely

driver-specific, and the whole system calls to the de-

vice are defined by the driver. Any non-standard fea-

tures such as the firmware or DSP loading can be im-

plemented on this device.

4The period is the size at which the hardware generates the inter-

rupt during the DMA transfer of audio data. It’s called fragment in

OSS.

7



2.2 ALSA Drivers

Basic Design

The ALSA kernel drivers consist of three layers. The

low-level layer corresponds to the functions which ac-

cess to the hardware and is written as callback func-

tions. The middle-level layer is the core part of ALSA

drivers including the common routines for each differ-

ent component (PCM, etc). The top-level layer is the

entry point for each card which creates the device en-

tries with the callback table to the corresponding low-

level functions. Because of this separation, a driver de-

veloper can concentrate on the top and low-level access

functions and forget about the whole complicated data

flow.

Each card entry and the related hardware com-

ponents are hold in the common container struct

(snd_device_t) uniformly. All components are man-

aged in a list assigned to each card, so that all com-

ponents can be traced from the top-level. This mech-

anism helps for the consistent destruction and for con-

trolling the disconnection of devices via hotplug. When

a device is disconnected, the ALSA driver swaps the

file descriptor table for that device in order to prevent

the further access to it, and then calls the disconnection

callbacks of all assigned components. The destructor

will be called eventually from a workqueue which waits

until the jobs of all component are finished.

The design of ALSA kernel API is also based on a tra-

ditional Unix style. The hardware is accessed via nor-

mal open, close, read, write and ioctl system calls. The

readv and writev system calls are offered also for the

non-interleaved PCM samples to access efficiently in

the vector form. The poll system call is implemented in

all components, too.

Memory Mapping

The memory mapping is the most efficient method to

transfer the data between user-space and kernel-space.

It works like a charm. However, it also has some disad-

vantages:

• Not all hardwares support mmap.

• The buffer size is restricted by the hardware. The

possible size is different on each chip.

Thus, when applications use large buffers (for exam-

ple, an MP3 player), the mmap is not suitable. Rather a

simple read/write makes the code cleaner. The mmap

gives the best performance for real-time applications

with small buffers, which are sensitive to the latency.

Like OSS drivers, ALSA driver provides the mmap ca-

pability, too. The application can map the DMA buffer

of the driver onto the user-space, so that the data trans-

fer is done simply by writing audio data on the buffer

without extra copy.

In addition to this normal mmapped buffer, ALSA maps

also the control and the status records onto the user-

space. The control record contains the current sample

position at which the application is processing (called

“application pointer” in ALSA). The status record con-

tains the current sample position at which the DMA is

processing (called “hardware pointer”) and the current

status. With this mapping, the context switching be-

tween user and kernel modes can be reduced dramati-

cally, since the application can read and write directly

the current state of the driver. In theory, if the audio

thread runs in its own accurate timing, it can stay in

the user mode and never needs to call any system calls.

However, usually an application needs to call poll to

get synchronized with the real time.

The PCM capture buffer is mapped not in read-only but

read-write mode. This condition is required because

many applications need to write the data on the cap-

ture buffer to mark up the buffer position. Due to this

requirement, the playback and the capture streams are

divided to different device files.

PCM Configuration

The PCM configuration is one of the most complicated

part in the ALSA drivers. Since each hardware has its

own limitation, the application needs to negotiate the

proper configuration, such as, which type of format,

which sample rate, how big the buffer size is or how

many periods are allowed. The ALSA has two different

configuration types. One is called “hardware parame-

ters” (hw-params), which are the fundamental proper-

ties for the PCM stream, such as the sample format,

sample rate, number of channels, the buffer size, the

period size, etc. Another is called “software param-

eters” (sw-params), which are optional properties for

the precise controls. For example, how the driver be-

8



haves when underrun/overrun (called “xrun” in ALSA)

occurs, or at which timing the DMA starts.

The difficulty of this configuration is that there are dif-

ferent types of limitations depending on the hardware.

Some chip supports only certain sample rates, and some

supports the rate based on a certain clock only. Or, in

a more complicated case, the possible number of chan-

nels changes with the defined format and sample rate,

etc, etc.

These conditions are defined as “constraints” in the

driver. At each time a certain condition is changed,

the parameter space is evaluated throughout the defined

constraints and reduced to the possible values. Finally,

after all conditions are given by the application, the best

condition is chosen from the parameter space.

Buffer Management

The DMA buffer is supposed to be physically contin-

uous on many devices. The fragmentation of memory

pages is one of the unsolved problems on a system like

Linux. When a kernel runs for a long time, the memory

pages are fragmented and it becomes difficult to allo-

cate the continuous pages which are enough large for

the DMA buffer.

Also, many chips have the limitation of upper memory

area for the DMA buffer. ISA cards use the memory

under 16MB address. And some PCI chips have 28 or

30 bit limit. The allocation of pages is more difficult in

such a case.

For solving this problem, ALSA provides a special

module, snd-page-alloc. This module is independent

from other ALSA modules and can be loaded in the

early boot stage where the pages are not fragmented

severely yet. When loaded, it checks the PCI (and

other) device entries whether the pre-defined devices

are found. If any matching device is found, the mod-

ule tries to allocate the buffers in advance.

This module also manages the buffers allocated later

by the ALSA card modules. The buffers are reserved

even after the ALSA card module is unloaded, so that

the same buffers can be used for the next reload. This

mechanism prevents the buffer exhaust phenomenon

when the ALSA modules are loaded/unloaded automat-

ically via kmod.

A few audio chips can use the scatter-gather (SG)

buffer. ALSA also supports this type of buffer with help

of kernel paging mechanism. The driver and applica-

tion can access to the buffer linearly through the virtual

memory.

2.3 ALSA library

ALSA Plug-ins

The ALSA library is located between the ALSA drivers

and the applications, and it works as the entrance to the

ALSA system. It provides the consistent ALSA library

API for controlling the devices. However, the role of

ALSA library is more than that.

As shortly mentioned, ALSA library plays a role to fill

the gap between the required function by the applica-

tion and the supported function by the hardware. This

is done by so-called “plugins”. The plugin is a dynam-

ically loadable object. There are many different stan-

dard plugins provided in the ALSA library. Many of

them work for the conversion of data, for example, the

sample format, the sample rate, number of channels, in-

terleaved and non-interleaved formats, etc. When appli-

cation requests a configuration which is not supported

by the hardware, ALSA library loads the necessary plu-

gins automatically and does the conversion in run time.

Both the hardware-native and the conversion cases are

handled transparently. Hence, the application doesn’t

have to know what is being done in the ALSA.

The plugin works not only for the conversion but also

as the user-space driver. For example, applications can

access to different systems like JACK or IEEE1394

(FireWire) consistently via ALSA library API. The dif-

ference of API is hidden inside the plugin.

An advanced use of plugin is the combination of PCM

devices. The several different PCM devices can be com-

bined virtually as one PCM device. For example, you

can build a virtual 5.1-channel PCM device combined

from three different cards where each of them supports

the two channel stereo playback.

ALSA Library API

The ALSA library API is designed to express the ALSA

hardware abstraction straightforwardly. Thus, the li-

brary API itself doesn’t add any new features. The li-

brary is in fact a wrapper to the system calls for the

direct hardware access. But the application can use the

9



same API for the access via plugins, too. This is one of

the purpose of ALSA library.

Currently the ALSA library API is provided only in C.

The syntax of ALSA library API is unique. It’s based

on the opaque struct style. Most of all structs referred

in the ALSA library API are not defined but only de-

clared. Each function takes only the struct pointer as ar-

guments. For example, the typical code to open a PCM

device would be like below:

int err;

snd_pcm_t *handle;

err = snd_pcm_open(&handle,

“default”, SND_PCM_PLAYBACK,

0);

where the handle struct snd_pcm_t is nowhere defined.

Another example is the code to retrieve the current sta-

tus of a PCM stream:

snd_pcm_status_t *status;

snd_pcm_status_alloca(&status);

snd_pcm_status(handle, status);

current_state =

snd_pcm_status_get_state(status);

Here the status record struct snd_pcm_status_t

is again not defined. It is allocated dynam-

ically via snd_pcm_status_alloca() func-

tion, and the struct field state is retrieved by

snd_pcm_status_get_state() function indirectly.

This strange behavior is chosen for the future exten-

sion. By hiding the struct definition inside the library,

the binary-compatibility of the API is kept consistently

even after the definition of the struct is changed in fu-

ture. Because of this way of implementation, the func-

tions become fairly redundant. This can be more better

and elegantly expressed once if the API is written in

C++.

2.4 OSS Compatibility

One of the most important issues in the development of

ALSA is the compatibility with OSS. In fact, ALSA can

emulate the OSS API quite well.

As found in Fig. 1, there are two routes for the OSS em-

ulation. One is through the kernel OSS-emulation mod-

ules, and another is through the OSS-emulation library.

In the former route, an add-on kernel module communi-

cates with the OSS applications. The module converts

the commands and operates the ALSA core functions.

This route is easy to set up and works effectively in most

cases.

In another route, the OSS applications run on the top

of ALSA library. The ALSA OSS-emulation library

works as a wrapper to convert the OSS API to the ALSA

API. Since the OSS application accesses the device

files directly, the OSS-emulation wrapper needs a hack

using LD_PRELOAD environment variable. The OSS-

emulation library is then pre-loaded for the OSS appli-

cation so that it replaces the system calls to the sound

devices with its own wrapper functions. In this route,

the OSS applications can use all functions of ALSA,

including the plugins and mmap.

In the former route, some high-end audio cards don’t

work properly because of the difference of hardware

configurations. Although the kernel OSS emulation

module has also conversion functions, only the mini-

mal subset is implemented there. In the latter route, on

the other hand, the difference can be reduced with the

help of plugins in the ALSA library. The application

can use the mmap mode even on the hardware with the

non-interleaved formats. However, this route requires a

dirty hack using LD_PRELOAD as its cost, instead.

3 Evolution of Sound Servers

3.1 JACK

Callback Model

The JACK is designed for the high bandwidth data

transfer. This means also that it is not intended to run

on the network system. It’s rather a base for a desktop

audio workstations (DAW). The primary goal of JACK

is, as already mentioned, to achieve the sound server

for the professional audio applications. This implies the

following requirements:

• Synchronized operations in a low latency

• Highly flexible connectivity among application

For performing the audio transfer with the exact syn-

chronization, JACK system is based on the callback

10



model. This is another programming paradigm in com-

parison with the traditional Unix style model. In this

model, each audio processor (called “client” in JACK)

is executed passively at the moment when the audio

data must be handled on the buffer immediately. For

the playback, the callback is invoked when the audio

data is to be filled on the buffer. For the capture, the

callback is invoked when the audio data is ready to read

from the buffer.

On the system based on the traditional style, each ap-

plications read or write whenever they want. Thus, the

audio streams are handled without synchronization. In

the case of callback model, on the contrary, the syn-

chronization of data-flow is assured in the sample-wise

accuracy since the timing to call each callback is de-

termined by the server. The same strategy is taken

in other modern audio systems like CoreAudio[13] or

ASIO[14].

JACK handles only the 32bit float as its audio data

unlike the other conventional sound servers. Also, it

assumes only the non-interleaved format, i.e. mono

streams for multi channels. These differences may

make the porting of existing audio applications a bit

harder, in addition to the difference of programming

style described above.

Basic Structure

Fig. 2 shows the basic flow diagram of the JACK sys-

tem. There is a JACK server daemon running as a cen-

tral sound server, and each application accesses to the

JACK server as a client. A client has several ports, and

the connection between ports are flexible and can be

changed on the fly. This concept is quite similar with

the ALSA sequencer.

The JACK sound server communicates with the sound

engine (e.g. the sound driver) exclusively as well as

other sound server systems. The JACK supports sev-

eral platforms for the sound engine. In addition to the

ALSA, PortAudio[15] and Solaris drivers are imple-

mented currently.

JACK has two different types of clients: internal and

external clients. The internal client is a kind of plugin.

It’s a shared object running inside a JACK server. On

the other hand, the external client is a thread running

independently. This multi-thread communication is the

advanced and unique feature of JACK, which is not seen

in CoreAudio or ASIO.

JACK

server

daemon

ALSA

External

JACK

client

Internal

client

Internal

client

External

JACK

client

External

JACK

client

Internal

client

JACK API

ALSA API

Figure 2: JACK flow diagram

Being executed in a server process, the internal client

runs without context switching, and thus it’s more ef-

ficient than the external client from the perspective of

performance. For the development perspective, an ex-

ternal client is easier to develop and debug, because it

is in fact a part of the application. Also, it’s more tough

against the unexpected program failure.

The data transfer in JACK is very efficient. Basically,

JACK tries to implement the “zero-copy” data trans-

fer. The JACK server runs in the mmap mode for the

data transfer between JACK server and the ALSA. The

audio-data buffer between a JACK server and a JACK

client is shared via the IPC shared memory. Only the

control messages are communicated through FIFO of a

normal socket.

In the callback model, each JACK client is executed as

an FIFO sequentially. The execution path of clients fol-

lows the connection graph. When a client callback is

called, it reads the data from the JACK server or another

client, processes it, then writes to the next. With this

style, the change of the graph connection/disconnection

can be handled more easily.

JACK API

JACK provides a highly abstracted API for the au-

dio applications. It’s very simple and dedicated to

the callback-style programming. Since the low-level

configuration for the audio driver is determined in the

JACK server level, JACK clients don’t have to deal with

such a subtle thing. Instead, each client needs to con-

centrate on the creation, destruction and connection of

11



ports, and the process of the audio thread itself. A

thread is created automatically when an external client

starts.

The JACK application developer needs to pay attention

to the multi-thread programming. A JACK client is

supposed to run always on the multi-thread. The data

should be handled with lock-free methods, and the au-

dio thread must not be blocked by others.

Unlike the ASIO or other systems, JACK accepts more

flexible hardware configuration. While ASIO uses only

two periods (called “double buffer”) to get the ideally

lowest latency, JACK can handle arbitrary number of

periods with the arbitrary size (which are specified by

the command line options of JACK daemon). Some au-

dio chips like YMF-PCI prefer more than two periods

to run stably because of the chip design. Such a chip is

often designed to be driven via timer interrupts instead

of DMA-transfer interrupts. Anyway, these difference

of hardwares can be hidden inside the JACK server, and

applications are free from the hardware restrictions.

3.2 ALSA dmix / dsnoop plugins

The ALSA dmix and dsnoop plugins are one of the ad-

vanced features which have been recently added. The

letter “d” in dmix and dsnoop stands for “direct”. These

plugins preform as well as a normal sound server do,

that is, sharing the PCM device among different appli-

cations for mixing, multiplexing and loopback. How-

ever, they are not quite a sound server. More exactly

writing, these plugins do not require any server process

unlike the conventional systems. In the dmix/dsnoop

plugin, the hardware buffer itself is shared by all ap-

plications “directly”, instead of exclusive control by a

server process.

In the conventional server system, there is a central

server process, and applications access to it for mix-

ing and multiplexing the stream. The server gathers the

data from connected applications, mixes them and then

sends to the sound driver. Because of the gather-and-

mix strategy, there must be a significant latency. And

the RT-scheduling, which is necessary for reducing the

latency on the Linux system, may also lead to permis-

sion and security problems.

In the dmix/dsnoop plugins, on the other hand, each ap-

plication writes/reads the shared hardware buffer by it-

self concurrently. Thus, there is no latency introduced

by the mediation of a sound server. Every application

can play and capture the audio data with very low la-

tency even without the dedicated RT-scheduling.

For sharing the PCM hardware buffer, the dmix/dsnoop

plugin employs simply an mmap method. For the syn-

chronization of the processing pointer (also required

during the draining), the ALSA timer interface is used.

Since the destination PCM stream is referred as the

timer source, the timing to update the period can be ac-

curately informed to applications.

The dsnoop plugin is a loopback/multiplexer for the

capture, and applications can simply copy audio data

from the shared hardware buffer. The another, dmix

plugin, is a dynamic mixer for the playback, and this

needs more complex handling like below because of the

saturation problem.

The dmix plugin has a common sum-buffer in addition

to the hardware buffer. This sum-buffer is shared via

IPC shared memory, too. For ease of calculations, the

dmix plugin handles only 16 and 24 bit integer samples.

The data in the sum-buffer is always 32bit integer.

The basic idea of dmix plugin is that each application

adds its own sample to the existing sample value on

the shared hardware buffer dynamically. If the resultant

sample value overflows the 16/24 bit range, it must be

saturated. The sum-buffer is used for this check. The

task to compute the addition and the saturation-check

becomes complicated because of the possible concur-

rent access to the buffers. Two atomic operations are re-

quired at least: one for the addition and one for the com-

parison. The typical add-and-saturation code would

look like below:

sample = *src;

old_sum = *sum;

if (*dst == 0) /* atomic operation */

sample -= old_sum;

*sum += sample; /* atomic operation */

do {

old_sum = *sum;

sample = SATURATION(old_sum);

*dst = sample;

} while (*sum != old_sum);

where dst is the shared hardware buffer pointer, sum is

the sum-buffer pointer, and src is the source buffer. In

the first atomic operation, the sum-buffer is initialized,

12



and then the current sample is added on the sum-buffer.

The succeeding do-while loop performs the saturation

and the substitution to the hardware buffer.

The demerit of the dmix plugin is that this lock-free

algorithm is more expensive than the implementation

in the server-client model. Also, because of the atomic

operations, it’s not implemented on all architectures yet.

Another note is that the dmix/dsnoop plugins are not

designed for the arbitrary connections. They are pro-

vided as an alternative to the simple sound server. Al-

though the CPU consumption of dmix plugin is higher

than the others, these plugins are promising for normal

consumer purposes, because the ALSA applications can

run through these plugins without rewritten at all.

3.3 Other Projects

The sound servers for the network system is still an

open question. For the generic sound server belongs

to the traditional style like EsounD and aRts, there is a

new project, MAS (media application server)[16]. The

design of MAS is similar with the conventional sound

servers, based on the open/read/write model. It is a

modular system like aRts. The advantage of MAS is

its tight binding with the X server. The MAS supports

several different protocols for the remote data transfer.

The protocol can be chosen depending on the network

condition. In the worst case, the data can be even tun-

neled through the X protocol.

Since MAS is still under heavy development, it’s still

too early to evaluate the performance with other ad-

vanced systems. However, this looks like a good so-

lution for the environment with many machines con-

nected over a LAN.

Another interesting system having the similar concept

is GStreamer[17]. This is aimed to achieve a universal

platform for the whole multimedia including both video

and audio. The system is monolithic and each module is

implemented as a plugin shared object, as well as many

other systems. There are large number of modules al-

ready available on GStreamer.

In the area of the broadcasting of audio (and video)

streams, a promising project is Helix DNA[18]. This

is a collaboration work between the open-source com-

munity and the big player like RealNetworks. Its aim

is to provide the comprehensive cross-platform for the

boradcasting system, including its standard API and the

client/server applications. The project is still in the

early development stage, and the support of ALSA is

not finished yet.

There are so many different things for the single theme

— the sound system. And you might have the ques-

tion: Which platform should we choose? This is, in-

deed, a very difficult question to answer. The key for

the possible solution is to define a portable API. The

PortAudio[15] is a good candidate for this. It supports

very wide range of OS and sound systems (including

both ALSA and OSS) with the same consistent API.

PortAudio provides both the traditional and the callback

style APIs. Thus, it can be a suitable solution to melt the

solid gap between the different architectures like JACK

and OSS.

4 The Future: a.k.a. TODO

4.1 Problems of ALSA

Now, let us take a look at the current problems and what

will (or should) happen in the future. Regarding to the

ALSA, first of all, what should be done is to improve its

usability. The current ALSA is full of complexity.

There have been many rumors that the ALSA is

so difficult to set up compared with the OSS. It’s

partly true — there are more configurations (e.g. in

/etc/modules.conf) necessary to make the system run-

ning properly (although such settings are not always re-

quired if one runs only ALSA native applications). In a

convenient future, such a problem will disappear when

all the major distributors support ALSA primarily.

Besides, there are still more things to consider in this re-

gard. The ALSA is a hardware abstraction. The ALSA

covers the hardware capability as much as possible.

This policy sometimes leads to the too complex repre-

sentation. For example, some chips show hundreds of

controllable mixer elements, and it’s of course too much

for end-users. More higher abstraction is needed for the

more intuitive usage.

Also, there is no user-friendly editor for the ALSA con-

figuration files, and no enough example configuration

files provided. There is no good way to set up the

IEC958 status bits, too. This situation tends to prevent

the user to try the advanced features, unfortunately.

13



Finally, the lack of documentation has been a major

problem of ALSA project. This is the most important

thing to be fixed in the future above all.

4.2 On JACK

JACK is promising and many applications are support-

ing it in fact. However, it’s still not prefect in every case.

The most frequently appearing problem is its response

and stability.

Even though JACK is designed to cooperate with the

ALSA tightly, it happens sometimes that the system

takes too long response time than expected. This re-

sults in the xrun on the JACK system. In most cases,

it’s the configuration failure for the certain sound chips.

But it also lies on the JACK mechanism, too.

Because the process of audio data is executed through

the connection graph, the whole system is blocked once

when the execution of a client is stalled by some rea-

son. This phenomenon may be reduced when more

JACK clients are written as the internal clients. The

internal clients would have no task switching problems

like above. Also, the performance of JACK on the SMP

system can be more optimized by the dynamic evalua-

tion of execution paths.

As well as the ALSA suffers, a similar problem remains

on JACK, too. It’s not easy to provide the ideal con-

figuration and the ideal environment for the JACK sys-

tem. This is not JACK’s fault, but rather related to the

Linux distribution. Since the RT-scheduling might be

involved with the permission and the security problems,

it cannot be used so conveniently in the major Linux

distributions, which are more sensitive to these prob-

lems. This will be hopefully improved in the future,

once when JACK is recognized as a standard system for

the professional audio applications.

4.3 Future of Audio Devices

The present will become the past when time continues

to proceed. Surely, the audio device will be kept im-

proved in future, too. Here, as the final note, the au-

thor would like to try to describe some expectations

of the future audio devices and the possible problems.

The following different directions can be considered de-

pending on the demand.

More Features

The hardware will be equipped with more features such

as the hardware encoding of high-compression format

like MPEG or Vorbis, or the hardware encoding of the

multi-channel formats (A52, DTS). Together with the

use of broadband network like ADSL, the broadcast of

video/audio streams will be no longer only for profes-

sionals.

This will bring us a problem. The handling of encoded

formats is not yet realized well on the ALSA. Since the

encoding format usually takes the variable bit rate, a

change or an extension of the current model would be

needed in near future, too.

The structural audio might become an interesting field

in the future. This is analogy to the 3D support hap-

pening in the recent development of graphic cards. In-

stead of rendering 3D graphics, the sound effects like

3D spacializing may be implemented on the chip when

the surround system becomes more popular.

Higher Quality

The surround system will be more complicated, and

more channels will be used such as 6.1 or 7.1 channels.

The 6.1 speaker system and the audio cards supporting

such an environment came just in the consumer market

at this moment.

The more important improvement for the quality is the

support of 24 and 32 bit samples. Also more audio cards

may support the float format, too. The sample rate will

be also based on 96 or 192 kHz as standard.

These increase of audio spec may be dependent on the

popularity of the new media, such as upcoming DVD-

audio and SACD. As long as people are satisfied with

the old-good CD, the drastic change in this regard might

not happen, though.

In any cases, this direction of changes wouldn’t be a

big problem for the existing system. Most of features

have been already implemented, and enough tested on

the advanced audio cards.

More Convenience

Hotplug devices will be more popular. At this moment,

it is fairly difficult to guess whether FireWire or USB2

14



dominates. But both specs are enough high to replace

the existing PCI audio cards. In the future, only the on-

board (integrated) audio chip and the hotplug devices

might remain in the market.

From the viewpoint of Linux system, this would require

the better support of user-space drivers. This implies the

reliable kernel scheduling to assure the exact timing for

the isochronous transfer on user-space.

References

[1] 4Front Technologies, OSS/Commercial home-

page: http://www.opensound.com

[2] 4Front Technologies, OSS programmers guide,

v1.1: http://www.opensound.com/pguide/

oss.pdf

[3] EsounD project homepage: http://www.tux.

org/~ricdude/EsounD.html

[4] aRts project homepage: http://www.

arts-project.org

[5] ALSA project homepage: http://www.

alsa-project.org

[6] Linux Audio Developers (LAD) mailing-list

homepage: http://www.linuxdj.com/audio/

lad/

[7] Andrew Morton, low-latency patchset for 2.4 ker-

nels: http://www.zip.com.au/~akpm/linux/

schedlat.html

[8] Robert Love, preemptive patchset: http://www.

tech9.net/rml/linux/

[9] Resources about low-latency at LAD site:

http://www.linuxdj.com/audio/lad/

resourceslatency.php3

[10] Richard Furse, Linux Audio Developer’s Simple

Plugin API (LADSPA) homepage: http://www.

ladspa.org/

[11] Steve Harris, SWH Plugins: http://plugin.

org.uk/

[12] JACK project homepage: http://jackit.sf.

net

[13] Apple Computer Inc., CoreAudio: http:

//developer.apple.com/audio/coreaudio.

html

[14] Steinberg, ASIO developer information area:

http://www.steinberg.net/en/ps/support/

3rdparty/asio_sdk/

[15] PortAudio homepage: http://www.portaudio.

com/

[16] MAS project homepage: http://www.

mediaapplicationserver.net

[17] GStreamer project homepage: http://www.

gstreamer.net/

[18] Helix Community homepage: https://www.

helixcommunity.org/

15


