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Stockholm Institute for Financial Research, Saltmätargatan 19A 11, SE-113 59 Stockholm, Sweden
Phone: +46-8-728 51 20, Fax: +46-8-728 51 30, E-mail: info@sifr.org, Web: www.sifr.org



Rental Expectations and the

Term Structure of Lease Rates

Eric Clapham and Åke Gunnelin



Executive Summary

This paper analyzes the relationship between rental expectations and the term structure

of lease rates. An important question is whether the term structure contains information

regarding expectations of future rents. That is, can we expect an expectations hypothesis

similar to that of interest rates to hold? In a rigorous form the expectations hypothesis

states that forward rents are unbiased estimates of future spot rents. We examine the

conditions under which this holds true and what factors that bias such a hypothesis.

We use a continuous time lease valuation framework, in which both the short lease

rate and the short interest rate are stochastic. Since the setting is non-parametric, we are

able to distinguish among relationships that hold in general and those that arise from

specific models. We show that the same factors that bias the expectations for interest

rates (stochastic interest rates and risk aversion) also bias the expectations hypothesis for

lease rates. That is, the shape of the term structure of lease rates is not directly related

to objective rental expectations. Instead it depends on risk-neutral rental expectations,

the correlation between interest rates and rents and the volatility of interest rates. The

term structure is upward-sloping if risk-neutral rental expectations are positive and vice

versa (ignoring the effect of interest rate uncertainty). The volatility of the interest rate

matters in two ways. Firstly, it has a direct effect if there is correlation between the short

rent and short interest rate. The sign of this effect is opposite to that of the correlation

coefficient, i.e. an increase in the correlation makes the term structure more downward-

sloping. Secondly, increasing interest rate volatility changes the term structure of interest

rates and thereby indirectly the term structure of rents. With a constant drift rate in the

short rent, the effect is such that the absolute value of the slope of the term structure of

rents increases

By parameterizing the model we show that the magnitude of the bias of the expec-

tations hypothesis can be quite large. For example, a small increase in the risk aversion

parameter can make an upward-sloping term structure turn downward sloping holding

the objective expectation constant. Similar effects are obtained when changing the cor-

relation between interest rates and rents or changing the interest rate volatility. We con-

clude that it is important to carefully analyze the effect of risk aversion and interest rate

uncertainty before trying to infer objective rental expectations from the term structure of

lease rates.
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Abstract

We consider the term structure of lease rates in a general setting where both

the interest rate and the short rent are stochastic. Our framework is applicable to

any leasing market, but we focus on real estate. We find that the ”expectations

hypothesis” of lease rates, i.e. that the forward rent is an unbiased estimator of the

future short rent, requires similar assumptions as in interest rate theory to hold. To

study the magnitude of the bias we parameterize our general framework. The sim-

ulations show that different realistic parameter values for risk aversion and interest

rate stochastics can generate widely different shapes of the rental term structure,

holding the objective rental expectations constant. As a result, an expected increase

in rent may very well be consistent with a downward-sloping term structure and

vice versa.

There has recently been an increasing interest in lease valuation. Particular attention has
been given to the term structure of lease rates, that is, the determination of equilibrium
lease rates for different contractual terms. One important issue is the extent to which
the shape of the term structure is related to expectations of future market rents.

This paper uses a continuous time lease valuation framework in which both the short
lease rate and the short interest rate are stochastic. It is applicable to any valid rent
and interest rate process, as well as any leasing object, although we mainly discuss real
estate. By using a non-parametric setting it is possible to distinguish among relationships
that hold in general and those that arise from specific models. Previous work has also
used a deterministic interest rate. Several general expressions relating to the equilibrium
term structure of lease rates are derived. Among other things, this allows us to analyze
the effect on the term structure of interest rate uncertainty, risk aversion and objective
market expectations.

Our work builds on the earlier literature on lease and term structure analysis. Al-
though this strand of the finance literature is far smaller than that dealing with the term
structure of interest rates, several papers do exist. Miller and Upton (1976) provide an
early analysis based on the equilibrium condition that the present value of lease payments
should equal the present value of the service flow from the asset. McConnell and Schal-
lenheim (1983) as well as Schallenheim and McConnell (1985) extend the analysis and
value several common types of lease contracts in a parameterized discrete time model.

∗Stockholm School of Economics (Clapham) and Stockholm Institute for Financial Research and
Royal Institute of Technology (Gunnelin). E-mail: finec@hhs.se and gunnelin@infra.kth.se. We are
grateful for valuable comments from Tomas Björk, Peter Englund and John M. Quigley. All errors are
ours.
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An important contribution is made by Grenadier (1995). He explicitly considers the
term structure in a continuous time setting. Grenadier derives the term structure in
a competitive industry equilibrium where the short rent process is endogenously deter-
mined from expectations of future demand and supply. Grenadier (2002) extends the
perfect competition equilibrium by analyzing the term structure of lease rates in an
oligopolistic property market. Grenadier (1995, 2002) also provide valuation formulas
for many common leasing arrangements, such as forward leases, leases with cancellation
or renewal options and indexed leases.

The shape of the term structure in Grenadier’s models is determined by expectations
of future short term lease rates. In a market in which the short rate is expected to
increase, Grenadier argues that the term structure should be upward-sloping since lessors
otherwise would prefer to roll over short term leases to take advantage of increasing short
lease rates. The opposite will be the case when the short rate is expected to decrease.
In an intermediate case, in which the short rate is expected to increase in the short run
but thereafter come down again, the term structure can be expected to be single humped
(that is, at first upward- and then downward-sloping).

The equilibrium term structure in Grenadier (1995, 2002) thus suggests an “expecta-
tions hypothesis” similar to that of interest rates. It is well known that the expectations
hypothesis for interest rates does not hold in general, i.e. the forward rate is not an unbi-
ased estimator of the future short rent (for a thorough discussion, see Cox et al. [1981];
a more recent contribution is Frachot [1996]). We show that the same factors that bias
the expectations hypothesis for interest rates, namely stochastic interest rates and risk
aversion, also bias the expectations hypothesis for lease rates. Furthermore, by parame-
terizing the framework and undertaking simulations we show that the magnitude of the
bias can be large. Different sets of realistic parameter values for the interest rate and risk
aversion can generate widely different term structures even though the rent expectation
under the objective probability measure is kept constant. For example, the slope of the
term structure is very sensitive to risk aversion towards rent. A small increase in risk
aversion can make an upward-sloping term structure turn downward-sloping and vice
versa. Similarly, changing the correlation between interest rates and rents or changing
the interest rate volatility can invert the term structure. Hence, our simulations show
that careful analysis of the risk aversion prevailing in the market and of interest rate-
and rent stochastics is required before trying to infer objective rental expectations from
the term structure.

The paper is organized as follows: In section one, we present the continuous time
framework used and review forward rental agreements. In section two we derive and
analyze the term structure of lease rates. In particular we consider the expectations
hypothesis and the relationship between the rental and bond market term structure.
Further, section three applies the framework and presents a simple parameterized model.
Section four presents a brief conclusion.

1 The model

We consider a frictionless market containing bonds and contracts on the service flow from
a standardized asset. We will think of the asset mainly as property, but it could be any
asset. The basic objects of study are two stochastic processes:

• The instantaneous spot rent per unit time, denoted Xt. The rental income over an
infinitesimally short time period dt is thus Xtdt.

• The short interest rate, denoted rt.
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For ease of presentation we assume that the asset corresponds to only one leasing
unit and we also abstract from operating costs. Hence, the value of the asset Ht equals
the present value of all future lease payments from the single leasing unit.

The spot rent may be modelled as an exogenous process, or be endogenously deter-
mined through some form of equilibrium condition. For instance, several papers model
Xt as an exogenous geometric Brownian motion with constant drift rate (e.g. Stanton
and Wallace, 2002), while in the model of Grenadier (1995), the spot rent is a function
of current demand and supply. We do not at this stage parameterize Xt, as we wish to
study properties that hold for any valid spot rent process. For the rent process to be
valid it must be non-negative and such that Ht < ∞, for all t.

The technical setup is the general continuous time framework, as presented in e.g.
Björk (1998). We thus use the ”risk-neutral pricing” method where processes are adjusted
to reflect risk aversion in the market and discounting is done with the risk free short
interest rate. Originally the use of risk-neutral pricing was motivated using arbitrage
arguments for a traded asset. However, as argued by Rubinstein (1976) and commonly
applied in e.g. the real options literature, risk-neutral drift rates can also be inferred from
general equilibrium arguments. This makes it possible to use risk-neutral pricing even
in the presence of market imperfections. Risk-neutral expectations are denoted using
notation EQ

t [·].
The asset value is defined as the present value of future spot rents,

Ht = EQ
t

[∫
∞

t

e−
∫

s

t
ruduXsds

]
. (1)

We also introduce notation δt = Xt/Ht. The quantity δt is thus the continuous dividend
yield, or payout ratio. The local drift rate of the asset will as usual be equal to the risk
free rate less the dividend yield, or rt − δt, under the risk-neutral measure.

Recently the technique known as change of numeraire has seen increased use (for a
textbook treatment see Björk [1998]). This technique will be useful when considering
forward contracts in the next section. Usually, we think of the bank account as the
numeraire, but any asset may be used, for instance a bond. For the arbitrage free price
process πt on the stochastic claim X paid out at T we therefore have that,

πt = EQ
t

[
e−

∫
T

t
rsds

· X

]
= p(t, T )ET

t [X ] . (2)

Simply put, we account for the correlation between the two objects by switching to a
new measure, known as the T -forward neutral measure. The term p(t, T ) is the price at
t of a standardized zero coupon bond giving one certain unit of account at time T . It is
as usual defined as the risk-neutral expectation over the short interest rate rt:

p(t, T ) = EQ
t

[
e−

∫
T

t
rsds

]
. (3)

1.1 Forward contracts

When deriving an expression for the term structure of lease rates, it is convenient to have
an expression for forward contracts on the spot rent stream or the asset. This is also
necessary for a discussion of the expectations hypothesis. We therefore begin by deriving
expressions for these objects.

A forward contract is such that the holder of the contract pays a fixed amount deter-
mined today and receives a stochastic amount at a future date. The contract is set up
such that its initial value is zero. In our case, forward contracts could be made on both
the underlying rent stream and the asset.
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We define1 f(t, T ) as the forward rate for renting the asset over an infinitesimally
short interval at T . Thus,

EQ
t

[
e−

∫
T

t
rsds (f(t, T ) − XT )

]
= 0. (4)

Since f(t, T ) is known at time t it can be moved out of the expectation:

f(t, T ) =
EQ

t

[
e−

∫
T

t
rsdsXT

]

p(t, T )
. (5)

It follows directly from (2) and (5) that f(t, T ) can be written as,

f(t, T ) = ET
t [XT ] . (6)

The asset forward price F (t, T ) must similarly be,

F (t, T ) = ET
t [HT ] . (7)

By inserting the definition of HT into (7) and applying iterated expectations we obtain,

F (t, T ) =

∫
∞

T
p(t, s)f(t, s)ds

p(t, T )
. (8)

In particular,

Ht = F (t, t) =

∫
∞

t

p(t, s)f(t, s)ds. (9)

2 Term structure of lease rates

The underlying approach for determining the equilibrium term structure follows the
basic principle used in Miller and Upton (1976), McConnell and Schallenheim (1983),
Schallenheim and McConnell (1985), Grenadier (1995, 2002) and Stanton and Wallace
(2002). The starting point is that leasing is equivalent to purchasing the service flow
from the underlying asset for a specified period of time. In equilibrium the rent on leases
of all maturities must adjust in such a way that the present value of the rental payments
equal the present value of the acquired service flow.2 From this equilibrium relationship
it is straightforward to derive the term structure.

We denote by R(t, T ) the fixed rate at time t for using the asset from time t to time
T . The present value of the lease payments must be equal to the present value of the
service flow the asset provides during the same period:

EQ
t

[∫ T

t

e−
∫

s

t
rudu (R(t, T ) − Xs) ds

]
= 0. (10)

1Some equivalent approaches to represent the instantaneous forward rate are given in appendix A.1.
2This approach abstracts from transaction costs. For an in-depth discussion of transaction costs see

Miceli and Sirmans (1999). In their static two-period model transaction costs are pivotal and induce
landlords to offer lower rent on longer leases in order to minimize the turnover. Thus, their model
implies that the term structure of real estate lease rates should generally be downward-sloping. However,
this result is partly an effect of keeping the rent constant over the two periods. Higher rent in the
second period would allow for an upward-sloping term structure. Nevertheless the result suggests that
incorporating transaction costs in our model would result in less upward-sloping (more downward sloping)
term structure for any given set of model parameter values.
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That is,

R(t, T ) =
EQ

t

[∫ T

t
e−

∫
s

t
ruduXsds

]

∫ T

t
p(t, s)ds

. (11)

As shown below, expression (11) can be re-expressed in terms of forward rates, either on
the short rent or the asset:

R(t, T ) =

∫ T

t
p(t, s)f(t, s)ds
∫ T

t
p(t, s)ds

(12)

R(t, T ) =
Ht − F (t, T )p(t, T )

∫ T

t
p(t, s)ds

. (13)

The latter representation is similar to the one used by Grenadier (1995, 2002).3 We now
show the results in (12) and (13). The nominator in (11) can be re-expressed in terms
of the instantaneous forward rates or in terms of the forward asset price. In the former
case we have,

EQ
t

[∫ T

t

e−
∫

s

t
ruduXsds

]
=

∫ T

t

EQ
t

[
e−

∫
s

t
ruduXs

]
ds =

∫ T

t

p(t, s)Es
t [Xs] ds =

∫ T

t

p(t, s)f(t, s)ds. (14)

From this formula (12) follows immediately. In order to prove (13) we have the following
calculations:

EQ
t

[∫ T

t

e−
∫

s

t
ruduXsds

]
=

∫ T

t

p(t, s)f(t, s)ds

=

∫
∞

t

p(t, s)f(t, s)ds −

∫
∞

T

p(t, s)f(t, s)ds

= Ht − p(t, T )F (t, T ). (15)

This result has the interpretation that we may think of buying the asset at t while
simultaneously entering into a forward contract to sell the asset at T .

2.1 Properties of the term structure

By taking the limit of (11) we obtain,

lim
T→∞

R(t, T ) =
Ht∫

∞

t
p(t, s)ds

= r̃tHt. (16)

In the above, r̃t denotes the yield-to-maturity of a consol bond4. Further, when the
length of the lease goes to zero,

R(t, t) = f(t, t) = Xt = δtHt. (17)

3Grenadier (1995, 2002) prefers to work in terms of a call option with zero exercise price, rather than
forward contracts. These methods are equivalent as explained in appendix A.1.

4A consol bond gives an infinite continuous payment stream of one unit of account. Its yield-to-
maturity, or internal rate of return, is the constant discount rate that gives the same present value of
the payment stream as the market price:

Cot =

∫
∞

t

p(t, s)ds =

∫
∞

t

e−r̃t(s−t)ds =
1

r̃t
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By differentiating (12) with respect to T we obtain,

∂R(t, T )

∂T
=

p(t, T )
∫ T

t
p(t, s)ds

[f(t, T ) − R(t, T )] . (18)

As seen by expression (18) the term structure of lease rates is locally increasing in T
whenever f(t, T ) > R(t, T ) and vice versa. When f(t, T ) = R(t, T ) it follows that R(t, T )
has a stationary point. The relationship between f(t, T ) and R(t, T ) is very similar to
the relationship between marginal and average costs in basic microeconomics. It can
be seen that R(t, T ) is a weighted average of instantaneous forward rates. Therefore if
f(t, T ) is a consistently increasing or decreasing function of T , then so is R(t, T ). Also,
if f(t, T ) is strictly concave or convex, then so is R(t, T ). Note also that even if f(t, T )
tends to infinity or zero as T increases, R(t, T ) still converges to the annuity of the asset
price. Very informally, R(t, T ) is a smoothed version of f(t, T ).

It is tempting to compare the term structure of rents to the term structure of zero
coupon bond yield. However, we are swapping a stochastic short rent process for a
constant payment. The natural analogy to the term structure of rents is therefore the
term structure of swap rates, denoted Rr(t, T ), in the bond market. To see why this is so,
note that if the short rent process is replaced by the short interest rate in the definition
of the swap rate given by (10) we obtain,

EQ
t

[∫ T

t

e−
∫

s

t
rudu (Rr(t, T ) − rs) ds

]
= 0. (19)

This is this the same expression as for the term structure for lease rates, but with
the short interest rate instead of the short rent. Solving for Rr(t, T ) gives after some
manipulations,

Rr(t, T ) =
1 − p(t, T )
∫ T

t
p(t, s)ds

. (20)

This is also a version of the result reported by Duffie and Singleton (1997). Note the
similarity with (13) above.

In appendix A.1 we further consider forward lease agreements over discrete future
intervals. In appendix A.2 we derive the real or indexed term structure and in appendix
A.3 the term structure in the presence of credit risk is considered.

2.2 The expectations hypothesis

Grenadier (1995, 2002) argues that the shape of the term structure of lease rates should
reveal expectations of future short lease rates. This hypothesis has an obvious parallel
to the expectations hypothesis of interest rates, which loosely says that the slope of the
yield curve is related to expectations of future short interest rates. A more rigorous form
of the expectations hypothesis states that forward interest rates are unbiased estimates
of expected future interest rates. As is familiar, this form of the expectations hypothesis
only holds if the interest rate is deterministic. With uncertain interest rates, the bias of
the hypothesis will depend on the stochastic properties of the short interest rate and the
degree of risk aversion against interest rate uncertainty that is prevailing in the market.

In this section we examine the factors that might bias a similar expectations hypothe-
sis of lease rates. Continuing the parallel to interest rates, we formulate the expectations
hypothesis as in Grenadier (2002):

f(t, T ) = EP
t [XT ] , (21)

that is, the forward lease rate is an unbiased estimate of the future short lease rate.
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We now study the expectations hypothesis more carefully and we give the instanta-
neous forward rate again for convenience:

f(t, T ) = ET
t [XT ] =

EQ
t

[
e−

∫
T

t
rsdsXT

]

p(t, T )
. (22)

The expectations hypothesis is therefore always true under the forward neutral mea-
sure. This is different for each maturity however, and has no simple link with objective
expectations.

The forward rate in (22) can be rewritten using the definition of covariance:

f(t, T ) = EQ
t [XT ] +

CovQ
t

(
e−

∫
T

t
rsds, XT

)

p(t, T )
. (23)

Therefore, if at least one the two processes rt and Xt is deterministic or they are uncor-
related under Q, then the result reduces to,

f(t, T ) = EQ
t [XT ] , (24)

that is, the expectations hypothesis holds true under the risk-neutral measure. Note
that covariance is in levels rather than stochastic increments. Even if the increments of
the stochastic processes for the short rent and short interest rate are independent under
the objective probability measure, it may still be that the processes are dependent in
levels under the subjective probability measure Q. This is because the drift adjustments
when moving to the subjective probability measure may in general be stochastic and
correlated.

Further, if the short rent is deterministic or the economy is risk-neutral with respect
to at least that process, then the distinction between the objective and the risk-neutral
measure disappears. We then obtain,

f(t, T ) = EP
t [XT ] . (25)

To summarize, we find that if the short rent is deterministic, then the instantaneous
forward lease rate is an unbiased estimator of future rents. This is somewhat similar to
the expectations hypothesis of interest rates, which holds if and only if the interest rate
is deterministic. However, the expectations hypothesis for rents may hold even if the
short rent is stochastic. This is the case if the market is risk-neutral towards the rent
process while either the short interest rate is deterministic or the short rent and the short
interest rate are uncorrelated in levels under Q. Since these requisites are unlikely to hold
empirically, we would not expect to find a property market in which the expectations
hypothesis of rents holds fully.

The fact that the expectations hypothesis does not hold in the general case implies
that the shape of the term structure is not directly related to objective rent expecta-
tions. The shape instead depends on (i) the risk-neutral drift rate of the rent, (ii) the
Q-covariance between the short rent and the short interest rate and (iii) the term struc-
ture of interest rates. Some intuition for this can be given by first examining expression
(23). Firstly, all else equal, the forward rent is an increasing function of the risk-neutral
drift rate of the short rent. Secondly, the forward rate also depends on the Q-covariance
between rent changes and interest rate changes. The more positive (negative) the co-
variance, the higher (lower) the forward rate. Thirdly, the covariance term is weighted
by the inverse of the corresponding zero coupon bond price. Thus, the forward rate also
depends on the term structure of interest rates.
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The definition of the fixed lease rate R(t, T ) implies that it is a weighted average
of instantaneous forward rates with declining weights. Thus the level of forward rates
feeds into the level of the fixed rate. Further, from expression (18) we see that the term
structure curve, given by R(t, T ), is locally upward-sloping (downward-sloping) when the
instantaneous forward lease rate is higher (lower) than the fixed lease rate of the same
maturity. In conclusion, the shape of the term structure is a function of the forward
rates and therefore depends on the three factors given above.

2.3 Interpretation of the term structure

Since the analysis above holds for any valid parameterization of the short lease rate
and interest rate processes, we can interpret the term structure results in the previous
literature within our framework. In Grenadier (1995) and Stanton and Wallace (2002)
investors are risk averse but the interest rate is deterministic. These assumptions yield
the version of the expectations hypothesis given by expression (24), i.e. the expectations
hypothesis holds under the risk-neutral measure. Hence the shape of the term struc-
ture is determined by risk-neutral rent expectations. The monotonically upward-sloping
(downward-sloping) term structure in the simulations in Grenadier (1995) is obtained
when the risk-neutral drift rate is strictly positive (negative). The single humped term
structure is obtained when the risk-neutral drift rate of the short rent is decreasing in
the time argument and goes from positive to negative. Similarly, the empirically esti-
mated term structures in Stanton and Wallace (2002) should be related to risk-neutral
rent expectations. In Grenadier (2002) investors are risk-neutral and the interest rate
is deterministic. With this setup the expectations hypothesis, according to expression
(25), holds under the objective probability measure. Hence in this model the shape of
the term structure has a one to one correspondence to rental expectations under the
objective probability measure.

Our results underline that one needs to be careful when interpreting empirical term
structures in the property market. Only with the tight restrictions that either the rent is
deterministic or alternatively that market participants are risk-neutral and that interest
rates are deterministic or uncorrelated with the rent, is it possible to directly infer ob-
jective market expectations from the shape of the term structure. As a result, the short
rent may easily be expected to decrease under the risk-neutral measure but increase
under the objective measure. Hence, an expected increase in the rent level may very
well be consistent with a downward-sloping term structure. The opposite scenario, i.e.
that the term structure is upward-sloping when the short rent is expected to decrease
is, however, arguably more unlikely (ignoring effects of interest rate uncertainty). This
would require the risk-neutral drift rate to be higher than the objective drift rate, which
is a less likely scenario in the real world. Furthermore, different scenarios of interest
rate uncertainty can also lead to different term structures for the same objective rent
expectations. In section 3 we parameterize our model to develop an understanding for
the degree to which the expectations hypothesis is distorted in different scenarios for risk
aversion and interest rate uncertainty.

3 A parameterized model

As demonstrated in section 2, the ability to infer market expectations about the level of
future lease rates from the term structure depends upon on how seriously the expectations
hypothesis is distorted by risk aversion and interest rate uncertainty. In this section, we
parameterize the framework derived in section 2 and perform simulations to study these
questions. For tractability we first assume a simple geometric Brownian motion rent
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process and a Vasicek short interest rate process. In section 3.3 we also consider a mean
reverting rent process.

Thus assume the following under Q:

drt = η(α − rt)dt + σrdW 1
t (26)

dXt = µXtdt + σxXtdW 2
t (27)

dW 1
t dW 2

t = ρdt. (28)

The risk-neutral drift rate µ is defined as,

µ = µP
− λσx, (29)

where µP is the objective drift rate and λ is the market price of risk. Note that in
the general case, the market price of risk can be stochastic and time dependent; in this
parameterization we however assume a constant market price of risk.

Further, by using the definition of f(t, T ) it can be shown that (see appendix A.3 for
a derivation, where Vasicek bond prices are also given),

f(t, T ) = Xte
µ(T−t)−σzσrρ

η

(
T−t− 1−e−η(T−t)

η

)

. (30)

The term structure of lease rates is easily derived using earlier results. That is,

R(t, T ) = Xt

∫ T

t
p(t, s)e

µ(s−t)−σxσrρ

η

(
(s−t)− 1−e−η(s−t)

η

)

ds
∫ T

t
p(t, s)ds

. (31)

Note that the expression for the instantaneous forward rate is analytical, while expression
(31) is easily solved by means of a numerical integration.

3.1 Effect of risk aversion

In the following we analyze how risk aversion affects the term structure of lease rates. To
suppress the effect of interest rate uncertainty, we assume a constant interest rate, that
is η = 0 and σr = 0.

For the numerical analysis we will use the following base case parameters:

µP = 0.04 λ = 0.15
σx = 0.20 r = 0.06
Xt = 1.

In the base case the risk-neutral drift rate of the rent, µ = µP − λσx = 0.04− 0.15 · 0.20
= 0.01, or 1%.

Figure 1a displays the base case. A constant positive risk-neutral drift rate implies,
as discussed in section 2, a monotonic upward-sloping term structure of the rent when
the interest rate is deterministic.

Figure 1b shows the term structure when the risk aversion parameter is increased to
0.25, i.e. the risk-neutral drift rate is reduced to −1%. As discussed in section 2 and
shown in the figure, a negative risk-neutral drift rate implies a downward-sloping term
structure.

Note that the objective drift rate of the rent is the same in both scenarios, i.e. the
dramatic difference between the shape of the term structure in the two figures is only
attributed to a slight change in assumptions regarding risk aversion. It is worth stressing
that both choices of risk aversion parameter are compatible with risk-return relationships
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that typically can be found in the property market. This statement can be motivated in
the following way.

Assume for tractability that the interest rate is constant and that the short rent
follows a geometric Brownian motion, i.e. the base case scenario. With these assumptions
the definition of the property value given by expression (1) simplifies to Ht = Xt/ (µ − r).
Hence, since r and µ are constants, the rent process and the property value processes
are identical and consequently they have the same risk-neutral drift rate. Since we know
from the general discussion in section 1 that the risk-neutral drift rate of the asset price is
equal to the risk free rate less the payout ratio (δ), we have that µ = r−δ. A risk-neutral
drift rate of the rent and the property value of µ = 1%, as in the base case, implies a
property market in which the payout ratio equals δ = r − µ = 6% − 1% = 5% and the
required total rate of return equals µP + δ = 4% + 5% = 9%. In the second scenario, the
payout ratio and the required total rate of return equals 7% and 11% respectively. Both
these scenarios can realistically be found in the property market.

Figure 1c shows the term structure when the base case is changed by substituting
the positive objective drift rate for a negative drift rate of 1%, that is µP = −0.01. As
expected the term structure is downward-sloping since the risk-neutral drift rate is even
more negative, namely −4%. Theoretically it would be possible to obtain a positive
term structure when the objective drift rate of the short rent is negative, but this would
require an assumption of a negative risk aversion parameter (since we assume a constant
interest rate), which we find less likely.

3.2 Effect of interest rate uncertainty

We now go on to study the impact of interest rate uncertainty and the correlation between
the short interest rate and the short rent. The following parameters are used:

µP = 0.04 λ = 0.15
σx = 0.20 η = 0.10
α = 0.06 σr = 0.03
Xt = 1. rt = 0.06

The above parameters again gives a risk-neutral drift rate of the short rent equal to 1%,
i.e. µ = 0.01. Figure 2a-d show the simulation results. In addition to the case with
σr = 0.03 there is also a thinner line corresponding to σr = 0.02. As seen in the figures,
different assumptions regarding correlation changes the term structure significantly. The
higher the correlation, the more downward sloping the term structure becomes. Also the
volatility of the short interest rate matters. If the correlation between the short rent and
the short interest rate is positive, then a higher interest rate volatility will make the term
structure more downward sloping (or as an intermediate effect single humped). In case
of negative correlation, the reverse relationship holds true.

In Grenadier (1995, 2002), a single humped term structure is associated with expec-
tations of new property supply in the medium term. However, as the above shows, the
humped shape can also be the result of interest rate uncertainty.

3.3 Effect of trend reverting rent

In the previous sections rents are assumed to follow a lognormal distribution with con-
stant drift term. The literature on rental adjustment processes suggest, however, that the
rent process is better described as mean-reverting or trend-reverting. Recent examples
are Hendershott et al. (1999) and Hendershott et al. (2002). In these adjustment mod-
els, rents are constrained to return to their long run average. The gap between actual
and trend level rent is found to have explanatory power for rent changes and suggests
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that rents revert towards the average rent level. Hendershott et al. (2002) also estimates
error correction models, in which they find significant error correction coefficients, which
also indicates reverting rents.

In this section we present a parameterization of our basic model that allow for trend
reversion in the rent process. As in Lo and Wang (1995), we implement trend reversion
in a continuous time setting by modelling the logarithm of the stochastic process as a
trending Ornstein-Uhlenbeck process. Thus assume under Q a Vasicek short interest
rate and a log spot rent process, Zt = lnXt, that follows a trending Ornstein-Uhlenbeck
process:

drt = η(α − rt)dt + σrdW 1
t (32)

dZt = [γ(µt − Zt) + µ] dt + σzdW 2
t (33)

dW 1
t dW 2

t = ρdt. (34)

Further, by using the definition of f(t, T ) it can be shown that (see appendix A.5),

f(t, T ) =

(
Xt

eµt

)e−γ(T−t)

e
µT−

σzσrρ

η

(
1−e−γ(T−t)

γ
−

1−e−(η+γ)(T−t)

η+γ

)
+

σ2
z

4γ (1−e−2γ(T−t))
. (35)

This is a simple way of modelling rents that follow a long term trend but due to occasional
shocks or business cycles, are pushed away from the trend level. When this happens,
rents tend to be pulled back to the trend level. When the economy is off the trend, the
best forecast is that it will eventually converge back to trend, but nothing beyond that,
i.e. when new major shocks might occur, can be predicted. In appendix A.4 it is further
shown that the specification of Zt is also consistent with a trend-reverting rent under the
objective probability measure.

To study the effect of trend-reversion on the term structure we use a constant interest
rate and further,

µ = 0.01 γ = 0.2
σz = 0.20 r = 0.04

Figure 3a-c displays the term structure in the case when the initial rent is at its trend
value (Xt = 1) as well as 50% below and 50% above. Since the rent in Figure 3b initially
is below its trend value, the risk-neutral drift rate is initially higher than when rent is
at its equilibrium. Hence, for shorter terms, the slope of the term structure curve is
steeper compared to Figure 3a. When the rent follows a geometric Brownian motion the
term structure can only be single humped as an effect of interest rate uncertainty. When
rents are trend reverting, a single humped term structure can also occur due to the trend
reversion. The humped term structure in Figure 3c occurs because the risk-neutral drift
rate of the rent goes from negative (the short term reversion effect) to positive.

Finally, Figure 3d plots the case when the drift rate is negative (µ = −0.01), but the
rent is currently 50% below trend. This leads to a term structure with humped shape
that is initially upward sloping. For shorter lease, the positive mean reversion effect is
larger than the drift effect.

3.4 Discussion of simulation results

The simulations show that risk-aversion, interest rate uncertainty and trend reversion sig-
nificantly affect the shape of the term structure in our model. These results once again
underline that great care is needed when attempting to infer expectations of future rent
from the term structure. A specific shape can be attributed to a number of scenarios
for the economy and the specific property market. Hence, in order not to draw erro-
neous conclusions regarding objective rent expectations from the term structure, careful
analysis is required.
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Gunnelin and Söderberg (2002) and Englund et al. (2002) provide empirical evidence
that can be interpreted in the light of the above simulations. Gunnelin and Söderberg
found mainly positive term structures during the pronounced upswing in the office mar-
ket of the Stockholm CBD during the 1980’s. Since risk-neutral rent expectations, as
shown in section 2.2, are pivotal for the slope of the term structure, this indicates that
the expectations were mainly positive during this time period. Although it is difficult
to measure risk-neutral expectations correctly, the fact that the risk free interest rate
was higher than the payout ratio in the Stockholm CBD during the whole time period
supports that this was the case (see discussion in section 3.1).

Since the risk-neutral drift rate typically is lower than the objective, we would, how-
ever, expect the term structure to be less steeply upward-sloping than would be the case
if objective rental expectations was the main determinant of the term structure. This
is also consistent with the findings in Gunnelin and Söderberg. During the second half
of the 1980’s, rental expectations were extremely high in the Stockholm CBD and rents
doubled during this time period. Although positive term structures were found, they
were not as steeply upward-sloping as one would expect if objective rental expectations
were the main factor determining the shape of the term structure.

Englund et al. (2002) study the term structure in the same office market during
the time period 1998-2002. The rent increase during this period was of similar magni-
tude as that during the peak of the boom in the late 1980’s. As was the case in the
study of Gunnelin and Söderberg, the very high rental increase does not translate into
steeply upward-sloping term structures. Instead, for most of the years the estimated term
structures are trendless or slightly positive. If we once again look at risk-neutral rental
expectations, this result seems plausible. The risk-free interest rate was lower than the
payout ratio during the whole period under study, indicating that risk-neutral expecta-
tions were low or even negative. It should, however, be pointed out that the use of the
difference between the interest rate and the payout ratio as an indicator of risk-neutral
expectations is based on the assumption that the rent is at its trend value. The fact
that rents doubled from 1998 to 2002 indicates that this was not the case. Considering
the severe down-turn of the Stockholm property market in the first half of the 1990’s,
it is more likely that the rental market exhibited a positive mean- or trend-reversion.
As shown in Figure 3b and 3d, when rents are below trend, the term structure is more
upward-sloping compared to when rents are at the trend level. Hence, taking trend rever-
sion into consideration, the negative difference between interest rates and payout ratio
may very well be consistent with a slightly positive term structure. Another possible
explanation could be that correlation between interest rates and rents in the Stockholm
office market was negative, which as shown in Figure 2, tends to increase the slope of the
term structure. However, since no study has attempted to model the covariance under
the risk-neutral measure between interest rate levels and rent levels in the Stockholm
CBD, we cannot confirm or reject this hypothesis.
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4 Conclusion

In this paper we have extended previous work on the term structure of lease rates by
deriving equilibrium relationships in a general continuous time setting where both the
short rent and the short interest rate is uncertain. Since the framework is non-parametric
our results hold under very general conditions.

We show that risk aversion and interest rate uncertainty can significantly bias an
expectations hypothesis of lease rate similar to that of interest rates. It is the risk-neutral
expectation of future rents, not the objective, that in combination with the characteristics
of the interest rate process determine the relationship between expected future lease rates
and forward lease rates. As a result, objective expectations about future rent levels can
not be directly inferred from an inspection of the lease term structure. The effect of risk-
aversion and interest rate uncertainty on equilibrium rents in the local property market
must first be taken into consideration when interpreting the term structure. To directly
infer market expectations from an inspection of the term structure, without considering
these aspects, can lead to erroneous conclusions.
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A Appendix

A.1 Term structure relationships

The fixed forward rate at t for renting over the future period [T1, T2], to be paid contin-
uously during the contract period, is denoted RF (t, T1, T2). Based on the principle that
equivalent contracts have the same price, the following obtains:

R(t, T2)

∫ T2

t

p(t, s)ds = R(t, T1)

∫ T1

t

p(t, s)ds + RF (t, T1, T2)

∫ T2

T1

p(t, s)ds. (A.1)

By solving for the forward rate and using the definitions for the term structure of lease
rates in (12) and (13) in section 2, we can express the forward contract as follows:

RF (t, T1, T2) =

∫ T2

T1
p(t, s)f(t, s)ds

∫ T2

T1
p(t, s)ds

. (A.2)

RF (t, T1, T2) =
F (t, T1)p(t, T1) − F (t, T2)p(t, T2)∫ T2

T1
p(t, s)ds

. (A.3)

Grenadier (1995, 2002) prefers to work in terms of call options with zero exercise price
rather than forward contracts. This contract differs from a forward on the house only in
that payment is made at origin rather than at maturity. Thus, to avoid arbitrage:

C(Ht, 0, T ) = p(t, T )F (t, T ) =

∫
∞

T

p(t, s)f(t, s)ds. (A.4)

Section 2 expresses several results in terms of the instantaneous forward rate, but this
can also also be reversed:

f(t, T ) = −
∂C(Ht, 0, T )/∂T

p(t, T )
(A.5)

f(t, T ) = R(t, T ) +
∂R(t, T )

∂T
·

∫ T

t
p(t, s)ds

p(t, T )
(A.6)

f(t, T ) = lim
δ→0

RF (t, T, T + δ). (A.7)

The result (A.5) is obtained by differentiating (A.4) with respect to T . Result (A.6)
follows by differentiating the expression for the term structure of lease rates in (12) with
respect to T . Finally, (A.7) follows from (A.2). The first and last relationships above
are given by Grenadier (2002) for the case with constant interest rate. In principle the
above relationships could be used to compute an empirically observed term structure,
and then calibrate it to some model.

Although we have considered continuous rent payments, one could also think of pay-
ments in discrete installments. If payments are made at n time points t1, ..., tn then the

fixed rate becomes, Rd(t, T ) = R(t, T )
∫ T

t
p(t, s)ds/

∑n
k=1 p(t, tk).

A.2 Term structure with indexing

A real contract denoted RR(t, T ) is adjusted according to the change in some stochastic
index, denoted It, which can be thought of for instance as the consumer price index.
Grenadier (1995) considers this case with a constant interest rate. With a stochastic

17



interest rate, it is useful to introduce notation pR(t, T ) for a real bond that gives one
inflation adjusted unit of account:

pR(t, T ) = EQ
t

[
e−

∫
T

t
rsds

·
IT

It

]
= p(t, T )ET

t [IT ] /It. (A.8)

The payment streams must have the same present value:

RR(t, T ) =

∫ T

t
p(t, s)ds

∫ T

t
pR(t, s)ds

R(t, T ) =

∫ T

t
f(t, s)p(t, s)ds

∫ T

t
pR(t, s)ds

. (A.9)

From (A.8) we can see that the difference in expected nominal yield between the nominal
and real bond depends on three factors: expected increase in the price index (inflation),
risk aversion against inflation, and correlation between nominal interest rates and the
price index. A negative risk-neutral drift rate in the price index, or correlation between
the index and the short rent may lead to a higher real rent than nominal rent. The
correlation between the rent process and the index has no affect on the term structure
of real lease rates.

Rather than paying a constant rate, it could be specified to adjust according to some
deterministic scheme. We denote that by ϕs. That is, the initial rent becomes,

Radj(t, T ) =

∫ T

t
p(t, s)f(t, s)ds

∫ T

t
ϕsp(t, s)ds

=

∫ T

t
p(t, s)ds

∫ T

t
ϕsp(t, s)ds

R(t, T ). (A.10)

Arguably the simplest implementation is the case when the rent is adjusted at a constant
rate φ,

ϕs = eφ(s−t). (A.11)

A.3 Term structure and credit risk

Now assume that the lessee may go bankrupt, as in Grenadier (1996). We model
bankruptcy using the indicator function Ωs (indicator for non-bankruptcy is Ωs). The
indicator function may in turn depend on fundamental firm characteristics, which are
left unspecified here. If the lessee goes bankrupt, then the lessor can release at the going
market rate, but can only recoup a fraction 1 − ω due to transaction costs (this follows
Grenadier, 1996). The lessee with credit risk pays rate Rc(t, T ), as opposed to R(t, T ).
Equilibrium pricing satisfies,

EQ
t

[∫ T

t

e−
∫

s

t
rudu

·
(
ΩsR

c(t, T ) + Ωs(1 − ω)Xs − Xs

)
ds

]
= 0. (A.12)

We introduce notation, pc (t, s) = EQ
t

[
exp

(
−

∫ s

t
rsdu

)
· Ωs

]
, as this has the interpreta-

tion of a risky bond. If rent is not correlated with default risk a particularly simple
expression obtains,

Rc(t, T ) =

∫ T

t
f(t, s) [ωp(t, s) + (1 − ω)pc(t, s)] ds

∫ T

t
pc (t, s) ds

.

One possible implementation of default risk would be a constant hazard rate of κ, in-
dependent of other processes, which would imply that pc(t, T ) = p(t, T )e−κ(T−t). Note
that if the lessor cannot recover any of the revenue lost from bankruptcy, i.e. ω = 1, then
Rc(t, T ) ≥ R(t, T ) because pc (t, s) ≤ p (t, s) . Consider the case when ω is low, i.e. there
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are low or no transaction costs associated with default. Even in this case the default risk
is not innocuous to the pricing problem: For instance, if the default occurs in a market
with increasing rent the lessor can release at a higher rate. In the latter case, default
risk is actually beneficial to the lessor (see also Grenadier, 1996, for a discussion based
on an economic model of bankruptcy).

A.4 The parameterized model

We have the following two processes for the short rent and the short interest rate:

drt = η(α − rt)dt + σrdW 1
t

dXt = µXtdt + σxXtdW 2
t (A.13)

dW 1
t dW 2

t = ρdt. (A.14)

Thus analytic bond prices follow Vasicek (1977). The price of a zero coupon bond is,

p(t, T ) = EQ
t

[
e−

∫
T

t
rsds

]
= eA(t,T )−B(t,T )rt . (A.15)

Here the following definitions apply,

B(t, T ) =
1

η

[
1 − e−η(T−t)

]
. (A.16)

A(t, T ) =
[B(t, T ) − (T − t)]

[
α − σ2

r/2
]

a2
−

σ2
rB

2(t, T )

4a
. (A.17)

Risk-neutral bond dynamics may be expressed as,

dp(t, T ) = rtp(t, T )dt + v(t, T )p(t, T )dW 1
t , (A.18)

v(t, T ) = −
σr

η

[
1 − e−η(T−t)

]
. (A.19)

The rent process thus has the following Qs dynamics:

dXt = (µ + v(t, s)σxρ) Xtdt + σxXtdW 2,s
t . (A.20)

Further,
∫ s

t

v(u, s)du =

= −
σr

η

∫ s

t

[
1 − e−η(s−u)

]
du

= −
σr

η

∣∣∣∣u −
e−η(s−u)

η

∣∣∣∣
s

t

= −
σr

η

(
(s − t) −

1 − e−η(s−t)

η

)
. (A.21)

Hence,

f(t, s) = Es
t [Xs] = Xte

µ(s−t)+σxρ
∫

s

t
v(u,s)du (A.22)

∫ T

t

p(t, s)f(t, s)ds = Xt

∫ T

t

p(t, s)e
µ(s−t)−σxσrρ

η

(
(s−t)− 1−e−η(s−t)

η

)

ds. (A.23)

The expression for R(t, T ) becomes,

R(t, T ) = Xt

∫ T

t
p(t, s)e

µ(s−t)−σxσrρ

η

(
(s−t)− 1−e−η(s−t)

η

)

ds
∫ T

t
p(t, s)ds

. (A.24)
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A.5 The parameterized model with trend reversion

When the short interest rate follows a Vasicek process and the log rent process follows a
trending Ornstein-Uhlenbeck process, the latter has Qs dynamics as follows:

dZt = [γ (µt − Zt) + µ + v(t, s)σZρ] dt + σZdW 2,s
t . (A.25)

Further,

∫ s

t

e−γ(s−u)v(u, s)du =

= −
σr

η

∫ s

t

[
e−γ(s−u)

− e−(η+γ)(s−u)
]
du

= −
σr

η

∣∣∣∣
e−γ(s−u)

γ
−

e−(η+γ)(s−u)

η + γ

∣∣∣∣
s

t

= −
σr

η

(
1 − e−γ(s−t)

γ
−

1 − e−(η+γ)(s−t)

η + γ

)
(A.26)

Hence,

f(t, s) = Es
t [Xs]

=

(
Xt

eµt

)e−γ(s−t)

e
µs−

σzσrρ

η

(
1−e−γ(s−t)

γ
−

1−e−(η+γ)(s−t)

η+γ

)
+

σ2
z

4γ (1−e−2γ(s−t))
.

Note that,

lim
γ→0

[
1 − e−γ(s−t)

γ

]
= s − t.

This gives the special case when γ = 0.
The rent process may follow a trending Urnstein-Ohlenbeck process both under P

and Q, given specific assumptions of risk aversion. We assume that risk aversion against
the log rent process λz = q(γt+1). If we define µP = µ+qσz then the objective dynamics
are,

dZt =
[
γ(µP t − Zt) + µP

]
dt + σzdW 2

t .

That is, the rent is trend reverting under the objective measure.
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