

 AFRL-RW-EG-TR-2011-159

 BASIC DETONATION PHYSICS ALGORITHMS

Douglas V. Nance

AFRL/RWPC

101 W. Eglin Blvd.
Eglin AFB, FL 32542-6810

December 2011

INTERIM REPORT

AIR FORCE RESEARCH LABORATORY

MUNITIONS DIRECTORATE

 Air Force Materiel Command
Force MaterialCommand

 United States Air Force Eglin Air Force Base, FL 32542

DISTRIBUTION A. Approved for public release, distribution unlimited. 96th ABW/PA
Approval and Clearance # 96ABW-2011-0548 dated 28 November 2011.

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation, or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 96th Air Base Wing, Public Affairs Office, and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense
Technical Information Center (DTIC) < http://www.dtic.mil/dtic/index/html>.

AFRL-RW-EG-TR-2011- HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION
IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

______________________________________ _____________________________________
Craig M. Ewing, DR-IV, PhD Douglas V. Nance
Technical Adviser Program Manager
Strategic Planning and Assessment Division

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

159

ORIGINAL SIGNED ORIGINAL SIGNED

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

01-12-2011 INTERIM 01-10-2011 - 31-10-2011

Basic Detonation Physics Algorithms N/A

N/A

62602F

2502

67

63

Douglas V. Nance

AFRL/RWPC
101 W. Eglin Blvd.
Eglin AFB, FL 32542-6810

AFRL-RW-EG-TR-2011-159

AFRL/RWPC
101 W. Eglin Blvd.
Eglin AFB, FL 32542-6810

AFRL-RW-EG

AFRL-RW-EG-TR-2011-159

Distribution A: Approved for public release, distribution unlimited. (96ABW-2011-0548)
28 Nov 11

NONE

This report presents the theory behind a series of detonation physics algorithms used to simulate the detonation of a condensed
explosive. The numerical scheme implemented in this case is the Roe flux difference splitting scheme due to Glaister. This report
contains a detailed discussion of the mathematical derivation along with a printing of the source code. We also include a discussion
of methods for implementing Lagrangian tracking algorithms for solid inclusions within the condensed explosive.

detonation, explosive, flux, jacobian

UNCLAS UNCLAS UNCLAS UL
102

Douglas V. Nance

Reset

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
i

TABLE OF CONTENTS

Section Page
1 INTRODUCTION 1

 1.0 Numerical Detonation Physics 1
 1.1 A Map for this Report 2

2 GOVERNING EQUATIONS 4

 2.1 The Reactive Euler Equations 4
 2.2 Mixture Equations of State 5
 2.3 Solid Explosive Equations of State 6
 2.4 Detonation Products Equation of State 8

3 SYSTEM EIGEN-STRUCTURE 10

 3.1 Flux Jacobian Matrices 10
 3.2 Eigenvalues 12
 3.3 Eigenvectors 13

4 BUILDING THE NUMERICAL SCHEME 18

 4.1 Pressure Derivatives 18
 4.2 Finite Volume Discretization 21
 4.3 Temporal Discretization 22
 4.4 The Numerical Flux 23
 4.5 A Higher Order Scheme 25
 4.6 Boundary Conditions 27

5 PARTICLE MOTION 28

 5.1 Coupling Terms 28
 5.2 Particle Laws of Motion 29

6 RESULTS 32

 6.1 Simple Plane Wave Detonation 32
 6.2 Detonation of Pure HMX 35
 6.3 Detonation of HMX Containing Metal Particles 37

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
ii

7 CONCLUSIONS 39

8 RECOMMENDATIONS 39

REFERENCES 40

APP. A SOURCE CODE 42

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
iii

LIST OF FIGURES

Figure Page

1 Interface Notation 23

2 Problem 1 Detonation Field Density, Time 3.0 33

3 Problem 1 Detonation Field Velocity, Time 3.0 33

4 Problem 1 Detonation Field Pressure, Time 3.0 34

5 Problem 1 Detonation Field Reaction Progress Variable, Time 3.0 34

6 Numerical Detonation Solution Hayes-I/JWL in HMX at 3 μs. Horizontal Axis
 is Distance in Meters 36

7 Numerical Detonation Solution Hayes-II/JWL in HMX at 3 μs. Horizontal Axis
 is Distance in Meters 36

8 Radial Locations for Steel Particles Embedded in a Mass of Detonating HMX 37

9 Radial Velocities for Steel Particles Embedded in a Detonating Mass of HMX 38

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

1 INTRODUCTION

 Steady increases in large scale circuit integration indicate that the Twenty-First
Century will promise significant advances in High Performance Computing (HPC)
machinery. Today, one may obtain desk-side Linux systems containing eight processors
(and thirty-two or more cores) for comparatively reasonable prices. Moreover, common
laptop systems wield significant computing power with central processing unit (CPU)
speeds in the neighborhood of 3.0 GHz (maybe more by the time this report is certified)
and random access memory (RAM) storage capability in hundreds of Gigabytes (GB). In
the realm of “Big Iron”, the Department of Defense (DoD) High Performance Computing
(HPC) Modernization Office recently began operating clusters each with tens of
thousands of cores, and the Department of Energy laboratory community has even larger
systems. These developments have significant implications for the relatively small
Computational Physics research community. This research community represented by
disciplines such as high energy physics, quantum chemistry and computational fluid
dynamics has an ever increasing need for computer memory and for parallel processing
speed.

 Computational Fluid Dynamics (CFD) has drawn on HPC resources for many
years to help with aircraft and fluid system design. Some problems like high Reynolds
number direct numerical simulations are still computationally inaccessible, but these
situations are fewer in number than just one decade ago. For instance, we routinely solve
problems involving the large eddy simulation (LES) of compressible turbulence with
good results. Older techniques such as Reynolds-Averaged Navier-Stokes (RANS)
simulation now teeter on the brink of obsolescence. Moreover, massive computing power
now permits us to invade new territory previously relegated to analytical solutions
supported by many assumptions and highly simplified, under-resolved computational
studies. Quantum physics now benefits widely from HPC science in the areas of quantum
chemistry and molecular dynamics. These areas of physics now impact design
engineering. Although it occupies only a very small part of the research community,
detonation physics, a close relative of CFD, can benefit handsomely from ever more
powerful computational techniques and equipment.

1.0 Numerical Detonation Physics

 Numerical Detonation Physics applies many of the same computational
techniques employed by CFD. The primary reason is because detonations are powered by
the propagation of the detonation wave, a powerful shock wave that transforms the
unreacted explosive into detonation product species. Like the shock waves encountered in
transonic and supersonic flow, detonation waves must be “captured” in the material field
by using special numerical techniques. Gas phase detonations, e.g., the explosive burn of
acetylene gas, are true detonations but they lack some of the complexity associated with
the detonation of condensed (solid or liquid) explosives. Gas phase detonation is usually
initiated by high temperature. It follows that temperature is the dominant term in the
reaction rate expression. One should also not make light of the fact that we actually have

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

2

good, quantitative models for gas phase detonation chemistry. The science behind the
detonation of condensed explosives is not so evolved.

 The detonation of a condensed explosive is most often modeled as a shock-driven
process. Macroscopic observation seems to indicate that a shock wave is often required to
detonate these explosives. Many solid explosives simply “burn” when exposed to a
flame, at least when considered over relatively short time periods. Exposure to a shock
impulse is often needed to initiate the run to detonation for an explosive. This physics
problem is complicated greatly because of the smallness of scales concerning the
detonation wave. The detonation wave covers a thin region, a fraction of a millimeter for
most ideal or Carbon-Hydrogen-Nitrogen-Oxygen (CHNO) explosives like Trinitro-
toluene (TNT). The head of the detonation wave lies at the entrance to the detonation
reaction zone. This is the tiny region in space where the detonation chemical reactions
take place. For condensed explosives, we do not know these chemical reactions. We
know only, in some sense, their end products, and if we detonate two like samples of an
explosive, we may obtain two different product spectrums. For this reason, condensed
explosives are relatively crude chemical mixtures. Still, the detonation process itself may
be addressed by the direct application of the conservation laws for mass, momentum and
energy. This same approach is used for CFD problems, but for explosives we are required
to apply equations of state for both the unreacted explosive material and the detonation
products. It is also important that we consider heterogeneous explosives. These materials
contain non-explosive additives like plastic binders and metal particles. In future
treatments of this problem, we will also be required to treat the material behavior
(material strength versus applied stress) of the solid explosive in response to shock
excitation.

1.1 A Map for this Report

 This report is intended to assist in the process of transitioning detonation physics
algorithms into the Large Eddy Simulation with LInear Eddy Modeling in 3 Dimensions
(LESLIE3D) multiphase physics computer program. The discussions that follow describe
the algorithms applied in the source code included in Appendix A. Although these
algorithms are tested and validated to some extent, it is nont recommended that they be
coded directly into LESLIE3D. Rather, the Harten, Lax and van Leer (HLL) family of
algorithms should be used for flux difference splitting in lieu of Roe’s method. Moreover,
inhomogeneous terms in the equations should be addressed through Strang splitting.1

 The report is organized as follows. In Section 2, we describe the governing
equations for the detonation problem based upon the work of Xu et al.2 Within this set of
equations, we add the terms coupling the detonation flow field to the particle field. We
show that reaction rate, particle coupling and geometric effects may be incorporated as
source terms. The equations of state used for the solid explosive and for the detonation
products are also presented in this section. The advective terms, of critical importance in
the shock-capturing scheme, are clearly delineated. Section 3 describes the eigen-
structure for the system of governing equations. The flux Jacobian matrix is developed

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

3

for the reactive Euler equations adapted for a real gas equation of state. Then we develop
a set of eigenvalues and eigenvectors needed in order to accurately capture the detonation
wave. In Section 4, we discuss the overall numerical scheme and temporal discretization
procedure used in our detonation computer program. We also discuss the development of
the numerical flux vector in detail. Section 5 contains the terms governing the motion of
Lagrangian particles including the drag laws. In Section 6, we provide the results for
three example calculations. After performing a calculation to verify proper code
performance, we simulate the detonation of a spherical mass of HMX loaded with metal
particles. We show a series of detonation waveforms for this explosive, and we go on to
include the resulting particle trajectories and velocities. We also make some basic
comparisons between the results produced by our computer program to archival
explosive performance data for HMX. Finally, in Section 7, we draw several important
conclusions from our development. We also make recommendations for follow-on work
needed to support the installation of detonation physics algorithms in LESLIE3D.

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

4

2 GOVERNING EQUATIONS

 To address the detonation problem, we follow a body of research documented in
the general scientific literature.2 By doing so, we can escape some of the uncertainties
associated with the older programmed burn detonation models.3 We do make a departure
from the core reference in that our development disregards the issue of compaction in the
solid explosive.2 Instead, it is assumed that our explosive is a solid mass at or near the
theoretical maximum density. The present approach allows the reaction zone to be clearly
resolved within the limitations of the grid refinement. As a result, the forces applied to
particles may be resolved more accurately.

2.1 The Reactive Euler Equations

 The reactive Euler equations are frequently used to represent detonation flow
fields based upon a reaction progress equation and a mixture equation of state.2 The
equations for the conservation of mass, momentum, energy and reaction progress may be
readily expressed in vector form. The equation for a detonation field set in one space
dimension may be written as

 PRxG
xt

SSSFU

 (2.1.1)

where

 T

Eu],,,[U (2.1.2)

is the vector of conserved variables, and

 T

uPEuPuu]),(,,[2F
(2.1.3)

is the flux vector. Also,

 T

G uPEuuu
x

j]),(,,[2S (2.1.4)

 T

Rx r],,,[000S (2.1.5)

 T

ssP QF],,,[00 S (2.1.6)

We may also write the total energy per unit volume as

 2

2
ueE

 (2.1.7)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

5

where e is the internal energy per unit mass. The equation of state may be written in the
general form

),,(ePP (2.1.8)

where is the reaction progress variable.

 Vectors GS , RxS and PS contain source terms; as we have shown, these
nonhomogenous terms are kept on the right hand side of the reactive Euler equations and
may be treated independently from the advective terms. Vector GS contains the
geometric source terms that allow the system to be configured for planar, cylindrical or
spherical one-dimensional flow. To adapt (2.1.1) for planar flow, we need only set 0j

in (2.1.4). We may adapt (2.1.1) for cylindrical or spherical one-dimensional flow by
setting 1j or 2j , respectively. Vector RxS contains the reaction rate source term
governing the rate of progress for the detonation reaction. The reaction rate r may be
written in many different forms depending on the explosive.4 The term we have chosen to
use for HMX may be written as

)(

 1

N

CJP

P
kr (2.1.9)

where CJP is the Chapman-Jouquet pressure for HMX; k , N and are constants
chosen to fit experimental data.5 Note that this reaction rate law is dependent upon both
pressure and reaction progress. The source term vector PS has been added to the system
by the author. It represents the dynamic coupling between the detonation products and a
field of discrete, massive Lagrangian particles. The coupling is based upon both
momentum and thermal effects.6 The specific forms of the coupling terms are presented
in a later section.

2.2 Mixture Equations of State

 For the detonation problem, relevant equations of state are cast in the form of
(2.1.8). This form is complicated since pressure varies as a function of density, internal
energy per unit mass and reaction progress. In this analysis, the reaction progress variable
is analogous to a species mass fraction commonly used in reacting gas flows. Moreover,
it is used to compute the specific internal energy for the detonating mixture by forming a
weighted sum of the equation of state (EOS) for the solid explosive and the EOS for the
detonation products. The resulting expression for specific internal energy is called the
mixture EOS.2 Our governing equations (2.1.1), discretized in accordance with the finite
volume method, rely upon the mixed cell approach. Each flow cell is assumed to contain
a mixture – part solid explosive and part detonation products. The mixture fraction is
given by the reaction progress variable , and is defined as the mass fraction of the

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

6

detonation products in the cell. The density within a cell is the sum of the densities for the
solid (s) and gas (g) phases, respectively, i.e.,

 gs (2.2.1)

so is given by

 g (2.2.2)

and

1s (2.2.3)

Hence, we have that is the mass fraction of the gas (detonation products) phase. We
also assert that the internal energy for a given finite volume cell may be expressed as

 sg eee)(1 (2.2.5)

where ge and se are the specific internal energies for the gas and solid phases,
respectively. This mixing rule differs from the archived approach based upon specific
volume, but to date, we have not been successful in applying Xu’s closure.7 Assume the
same pressure for both phases with each phase having its own equation of state, i.e.,

),(Pee ggg (2.2.6)

),(Pee sss (2.2.7)

with g and s given by (2.2.2) and (2.2.3).

2.3 Solid Explosive Equations of State

 In the previous section, we showed that one part of our mixture EOS represents
the solid explosive. In the discussions that follow, we apply two different forms of an
EOS originally developed by Hayes.8 The first form of this EOS (Hayes-I) works very
well for mechanical effects.2 The Hayes-I EOS is given as

1111
0

1

0

4

0

0

0

3

0

s

s

N

s

s

s

s

s

ss Nt
P

t
g

PP
Pe

)(),((2.3.1)

where

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

7

 00 sg (2.3.2)

0

0
3

s

vs gTC
t

 (2.3.3)

)(1

0

1

4

NN

H
t

s
 (2.3.4)

In equations (2.3.1) through (2.3.4), 0P , 0T and 0s are the ambient pressure,
temperature and unloaded solid density. 0 is the Gruneisen parameter, and vsC is the
constant volume specific heat for the solid. 1H and N are parameters used to fit the EOS
to data. Table 1 lists all of the required parameters for this EOS.2

Table 1 - Hayes EOS Data for HMX

H1 1.3 x 1010 N/m2

N 9.8

Cvs 1.5 x 103 J/(Kg K)

Γ0 1.105

P0 101325 Pa

ρs0 1.9 x 103 Kg/m3

T0 300 K

 The second form of the Hayes EOS (Hayes-II) functions well mechanically but
also incorporates temperature. The Hayes-II EOS is given as

111

11
1

0

1

0

4

0

0

0

3

0

1

0

s

s

N

s

s

s

s

s

N

s

s
ss

Nt

P
t

N

H
PP

g
Pe

)(

),(

 (2.3.5)

This version of the Hayes EOS may be derived by using Reference 1; however,
additional terms are incorporated in (2.3.5) to match the behavior of (2.3.1) at ambient
pressure. The temperature of the solid explosive is given by

0

0

1

0

3

1
1

T
N

H
PP

t
PT

N

s

s
s

),((2.3.6)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

8

Together, equations (2.3.5) and (2.3.6) constitute a complete equation of state for a solid
explosive.9 These equations use the same data as is listed in Table 1 for HMX. The
Hayes-II EOS also performs very well in one-dimensional detonation studies for solid
HMX.

2.4 Detonation Products Equation of State

 As equation (2.2.5) indicates, part of the mixture EOS must address the gaseous
products resulting from the detonation of the solid explosive. For the purposes of this
work, we have selected the Jones-Wilkins-Lee (JWL) EOS.1 The JWL EOS is somewhat
controversial, but nevertheless, it is widely applied in hydrocodes. Also, many explosives
have been characterized for this EOS. We apply the JWL EOS in the following form.

0

2

2

1

1

11
1

eQ
R

R
B

R

R
APPe

g

g

g

g

g

gg

ˆ
expˆ

ˆ
expˆ),((2.4.1)

where A , B , , 1R̂ and 2R̂ are coefficients produced by curve-fitting for the explosive
under consideration. Also, note that

 011

ˆ
sRR , (2.4.2)

and
 022

ˆ
sRR . (2.4.3)

Q is the heat of detonation for the explosive, and 0e is the reference value for specific
internal energy. There is no firm rule for determining 0e , but we will define 0e as

 00 TCe vg . (2.4.4)

Table 2 - JWL Coefficients for HMX
R1 4.2
R2 1.0
ω 0.3
A 7.783 x 1011 Pa
B 7.071 x 1010 Pa

Cvg (1.1 – 0.28x10-3 ρs0) x 103 J/(Kg K)

Q [7.91 – 4.33 (10-3ρs0 -1.3)2 - 0.934 (10-3ρs0 -1.3)]
x 106 J

vgC is the constant volume specific heat for the detonation products. The data used for
HMX in the JWL EOS is listed in Table 2.2 For the studies performed later in this work,

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

9

we select one of the Hayes equations of state in combination with the JWL EOS to form a
mixture EOS.

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

10

3 SYSTEM EIGEN-STRUCTURE

3.1 Flux Jacobian Matrices

 Capturing the structure of the detonation wave constitutes a difficult numerical
issue involving the discretization of the advective term U

F

 , where

4444

3333

2222

1111

F

E

F

u

FF

F

E

F

u

FF

F

E

F

u

FF

F

E

F

u

FF

)(

)(

)(

)(

U
FA (3.1.1)

is called the flux Jacobian matrix. The term iF simply denotes the ith element of the flux
vector F . Equation (3.1.1) is already annotated with the specific elements of U . It is
important to note that our equation of state is cast in a general form, so the calculation of
the specific elements of (3.1.1) is made more complicated. The method for calculating
these matrix entries relies heavily on the derivatives of pressure taken with respect to the
conservative variables.10 For convenience, the pressure derivatives for this Jacobian are
given below. For the three-dimensional case, the detailed derivation of these pressure
derivatives is presented in Reference 11. For pressure given in the form of (2.1.8), let

e

e

e

P
P

e

P
P

P
P

,,,

;;

 (3.1.2)

then we may write the pressure derivatives as

P
Eu

PP
P

e

Eu

2

2

,,

 (3.1.3)

 e

E

P
u

u

P

,,)(
 (3.1.4)

e

u

P

E

P

,,

 (3.1.5)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

11

PP

u

,,)(
 (3.1.6)

Clearly, the pressure derivatives taken with respect to the conservative variables depend
on the pressure derivatives defined in (3.1.2). These derivatives, in turn, depend on the
specific form of the equation of state (2.1.8). Accordingly, the derivation of the elements
of (3.1.1) is a complicated process not to be presented here. Instead, the reader is referred
to a work containing like, yet detailed, mathematical derivations.11 For completeness, the
flux Jacobian matrix for (2.1.1) is given below.

uu

P
uP

uP
u

HHau

PPP
uua

e
e

ee

0

1

2

0010

2

2

22

)(
A (3.1.7)

where

PE
H

 (3.1.8)

 PP
uH e)(2 (3.1.9)

and the frozen speed of sound, a , is given by

 2
2

ePP

Pa . (3.1.10)

The derivation for this speed of sound is also archived.11

 We can also define a vector of non-conservative variables for the reactive Euler
equations as V , where

 T

Pu],,,[V . (3.1.11)

As you may surmise, the governing equations may also be written in terms of the non-
conservative variables, and we may define a non-conservative flux Jacobian matrix Â
such that11

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

12

u

ua

u

u

000
00

010
00

ˆ
2

A (3.1.12)

The derivation of the non-conservative reaction progress is a simple exercise. Observe
that the conservative form of this equation is written as

 r
xt

)()((3.1.13)

We may expand (3.1.13) as follows.

 r
x

u
tx

u

t

)((3.1.14)

The first term in (3.1.14) vanishes since it is just a scalar multiple of the continuity
equation (component one of 2.1.1), so we obtain

 r
x

u
t

 (3.1.15)

as the non-conservative reaction progress equation.

3.2 Eigenvalues

 The eigenvalues of the flux Jacobian matrix contain important information on the
physics of our detonation problem. We think of any fluid mechanics problem (as well as
most solid mechanics problems) in terms of interacting waves. The detonation problem
can be decomposed into a set of characteristic waves.2 The speeds at which these waves
propagate are given by the eigenvalues of the flux Jacobian matrix.12 For any square
matrix A , the eigenvalues are defined as the set of numbers such that

 0 IA (3.2.1)

where I is the identity matrix. We may note that the conservative matrix (3.1.7) is
heavily populated, so it is very difficult to obtain the eigenvalues by using (3.2.1).
Fortunately, the non-conservative matrix (3.1.12) is a simpler form mathematically
equivalent to (3.1.7), so these matrices must have the same eigenvalues.11 Using (2.3.1),
the eigenvalues of (3.1.12) are easily shown to be

 },,,{ auuuau (3.2.2)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

13

Note that u is an eigenvalue of multiplicity two, so there are two waves with speed u ,
i.e., the entropy and reaction progress waves both propagating at the flow velocity. The
remaining two distinct eigenvalues au denote acoustic waves.12 The dynamics of
the detonation process may be described through the interactions of characteristic waves,
but to completely describe these waves, we must determine the eigenvectors for the
detonation problem.

3.3 Eigenvectors

 In order to determine the characteristic waves for (2.1.1), we must determine the
eigenvectors for the conservative Jacobian matrix (3.1.7). When we use the term
eigenvector, in this case, we are referring to a right eigenvector.10

Definition: Given a matrix)(nnA C with a set of eigenvalues Ci , ni ,,1 , we
define the right eigenvector)(ni Cr associated to the eigenvalue i such that
 iiiA rr (3.3.1)

Equation (3.3.1) is useful in that it tells us how to find right eigenvectors. To find a right
eigenvector for (3.1.7) associated to an eigenvalue , we first define the components of
right eigenvector r . Let
 T),,,(

4321
r (3.3.2)

Now we apply (3.1.7) and (3.3.1) to create a linear system of equations in the
components of r .

4

3

2

1

4

3

2

1

2

2

22

0

1

2

0010

uu

P
uP

uP
u

HHau

PPP
uua

e
e

ee

)(
 (3.3.3)

The system (3.3.3) directly leads to a system of four eigenvector equations. The
eigenvector equations do not have a unique solution; in fact, they have an infinite number
of solutions, so care is required in structuring prospective choices for the components of
r to design a proper numerical treatment for the problem. Also, it is important to observe
that the number of linearly independent eigenvectors must be same as the order of the
system. For this detonation problem, the Jacobian matrix is of the fourth order, so we
must determine four linearly independent eigenvectors even though we have only three
distinct eigenvalues; the eigenvalue u is repeated.

We begin the process of determining some specific eigenvector components by
extracting the first eigenvector equation from (3.3.3), i.e.,

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

14

 12 (3.3.4)

We may satisfy equation (3.3.4) by choosing

 11 ; 2 (3.3.5)

Equation (3.3.5) may be used in (3.3.3) to produce the remaining three eigenvector
equations

 02 3
22

 PP

P
u

uua e
e (3.3.6)

 0
43

2

2

 P

u
P

u
i

u
HHau e)((3.3.7)

 0

4
)(uu (3.3.8)

Based upon (3.3.5), we may produce the eigenvector associated to eigenvalue u . Set

u in (3.3.8), and we see that this equation is trivially satisfied with no restrictions on

4 . Now we set u in (3.3.7) and (3.3.8); by simplifying, we can show that both of
these equations reduce to the same equation, i.e.,

 043

2
2

 PP

P
u

a e
e (3.3.9)

Since there are no restrictions on 4 , we may freely choose 4 and solve for 3 .

)(
4

3

3

ee P

P

P

a
H . (3.3.10)

By cleverly choosing the value of 4 , we produce two linearly independent eigenvectors
associated to the eigenvalue u . If we set 04 , we obtain the eigenvector

T

e

e P

P

P

a
Hu

 0,,,1

2

r (3.3.11)

Alternatively, we obtain a second eigenvector by setting 14 , so

T

e

e P

P

P

a
Hu

 111

2

),(,,

r (3.3.12)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

15

 We may also obtain the eigenvector associated to eigenvalue au ; by
returning to equation (3.3.4), let us choose

 11 ; au 2 (3.3.13)

By substituting (3.3.13) into (3.3.8), we may show that

 4 (3.3.14)

We can produce another eigenvector equation associated with this eigenvalue by using
(3.3.14) and setting au in (3.3.6). By doing so and solving for 3 , we have that

 auH 3 (3.3.15)

One may show that (3.3.13), (3.3.14) and (3.3.15) satisfy (3.3.7), and the eigenvector
associated to eigenvalue au is

 T

auHau),,,(1r (3.3.16)

 We may derive the eigenvector associated to eigenvalue au by the same
procedure. We consider (3.3.4) and then set

 11 ; au 2 (3.3.17)

Equation (3.3.8) can be applied to again obtain the result (3.3.14). By substituting
(3.3.17) and (3.3.14) into (3.3.6), we can solve for 3 ,i.e.,

 auH 3 . (3.3.18)

Subsequently, one can show that (3.3.17), (3.3.18) and (3.3.14) satisfy equation (3.3.7).
Hence, the eigenvector associated to eigenvalue au , may be written as

 T

auHau),,,(1r (3.3.19)

Equations (3.3.11), (3.3.12), (3.3.18) and (3.3.19) are the eigenvectors for the reactive
Euler equations in one dimension. We can form R , the matrix of right eigenvectors, by
allowing each eigenvector to form a column of this matrix. Hence,

10

1

1111

22

auH
P

P

P

a
H

P

P

P

a
HauH

auuuau

eeee

)(R (3.3.20)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

16

It is a straightforward although tedious exercise to show that R , the determinant of R ,
is

eP

a
32

R . (3.3.21)

So far, our development of the eigen-structure for the reactive Euler equations closely
coincides with Glaister’s derivation performed for the real gas equation of state.10 From
(3.3.21), we can see that our eigenvectors are well-defined and constitute a non-singular
system for realistic values of density and the speed of sound with 0eP . As a result, R
is invertible under the same conditions, and we can calculate the matrix of left
eigenvectors L with 1RL , and by using the adjoint matrix for R (the transpose of
the matrix of cofactors) in conjunction with the definition of the inverse matrix, we have
that

eee

e

e

eee

P

a
ua

P

P
au

P

a
uHa

auPa
P

Hua

auPa
P

Hua

P

a
ua

P

P
au

P

a
uHa

)(

)(

)())(())((

)(

2

22

22

2

2
1

2

12112
1

R
L

e

ee

ee

e

P

P
aa

P

P

P

a
aa

P

P

P

a
aa

P

P
aa

2

2

22

1212)()(
 (3.3.22)

Each row of the matrix shown in (3.3.22) is a left eigenvector for the Jacobian matrix
found in (3.1.7).

 Although we have not yet presented explicit forms for the pressure derivatives,
we have accomplished a great deal of work in this section. Equations (3.2.2), (3.3.20) and
(3.3.22) offer a complete description of the structure of the eigen-space associated with
the flux Jacobian matrix A shown in 3.1.7. Moreover, we can formulate a special
similarity transformation, i.e.,

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

17

 LΛRA (3.3.23)

or

 RALΛ (3.3.24)

and

au

u

u

au

000
000
000
000

Λ (3.3.25)

is the diagonal matrix of eigenvalues.11 Recall that matrix L is the inverse of R . Our
discussion of the numerical physics behind Roe’s scheme for the reactive Euler equations
is now complete. The Roe formulation is quite important from the theoretical standpoint,
but this method is difficult to implement for two or more non-Cartesian space
dimensions. Fortunately, other flux-based discretization methods such as the Harten, Lax
and van Leer (HLL) family of schemes can easily be applied to this problem. Moreover,
these methods do not require the calculation of pressure derivatives (yet to be discussed)
for the mixture equation of state. This fact affords greater of ease of calculation for a
production numerical scheme.

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

18

4 BUILDING THE NUMERICAL SCHEME

 In this section, we pull together all of the aspects of detonation physics and
mathematics discussed in preceding sections and dedicate our efforts to the solution of
our benchmark problem – simulating the detonation of a finite sphere of HMX. In order
to accomplish this goal, we begin by presenting detailed pressure derivatives for our
mixture equation of state. Then we discuss the details associated with our chosen
numerical integration scheme including formulation of the numerical flux vector.

4.1 Pressure Derivatives

 The purpose of this subsection is to document formulas for the pressure
derivatives (3.1.2) of the mixture equations of state. These derivatives must be computed
under the support defined by the set of primitive variables.11 In this work, we consider
two mixture equations of state. The first mixture EOS, called the Hayes-I/JWL EOS is
given by substituting (2.3.1) and (2.4.1) into (2.2.5). The second mixture EOS, referred
to as the Hayes-II/JWL EOS, is created by substituting (2.3.5) and (2.4.1) into (2.2.5).
Either mixture EOS consists of a lengthy formula, so to promote brevity in
documentation, we can relate the two mixtures equations of state to one another. If we
look carefully at the Hayes-I and Hayes-II formulas, (2.3.1) and (2.3.5), respectively, we
see that

 1

0

1

N

I

s

II

s
gN

H
ee

 (4.1.1)

These expressions for the internal energy of the solid explosive differ by only one term.
The Hayes-I/JWL mixture EOS may be written as

 g

I

s

I

M eee)(1 (4.1.2)

Hence, by using (4.1.1), we may write the Hayes-II/JWL mixture EOS as

 g

N

I

s

II

M e
gN

H
ee

 1

11
1

0

1
)()()((4.1.3)

where we have used (2.2.3). A general formula for the Hayes- K /JWL mixture EOS may
be written as

 g

N

K

II

I

s

K

M e
gN

H
ee

 1

11
1

0

1
)()()((4.1.4)

Accordingly, equations (2.3.1) through (2.3.4) may be used to expand (4.1.4) and obtain

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

19

1
11

11

111

0

1

0

2

2

1

1

5

1

0

4

0

N

K

II

N

NK

M

gN

H

eQ
R

R
B

R

R
A

ttDPe

)()(

)(
ˆ

expˆ
ˆ

expˆ

)()(

 (4.1.5)

where

 11

g
D (4.1.6)

0

0
3

 P
t (4.1.7)

4

1 tN)((4.1.8)

g

P
tt 0

45 (4.1.9)

Equation (4.1.5) may be solved for pressure, i.e.,

)()(

)(
ˆ

expˆ
ˆ

expˆ

)()(

11

11

111
1

0

11

0

2

2

1

1

5

1

0

4

0

N

NK

II

N

NK

M

gN

H

eQ
R

R
B

R

R
A

tte
D

P

 (4.1.10)

Although (4.1.10) is complicated, it is in a convenient form for differentiation through the
use of the quotient rule. We also note that (4.1.10) consists of a sum of eight terms, i.e.,

8

1

1
i

iic
D

P , (4.1.11)

so we may use linearity and differentiate each term individually. If we designate a non-
conservative variable of differentiation as q , },,{ eq , then we have that

 8

1
2

1
i

i
i

i
q

D

q
Dc

Dq

P
 . (4.1.12)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

20

Equation (4.1.12) presents a very convenient method for evaluating pressure derivatives.
Below, we list explicit equations required in evaluating (4.1.12).

 1001
111

11

e

ce
K

M

 ;;;; (4.1.13)

 011
22

2

02

2

0

2

e

c

 ;;;; (4.1.14)

01

1
1

1

3

1

0

13

2

00

3

43

1

0

3

e
N

N
tc

N

N

N

N

N

N

;)(

)(;;)(
 (4.1.15)

 0101
444

444

e

tc

 ;;;; (4.1.16)

1

1

2

15

11

2

5

5

5

1

1

5

11

1
11

0
1

R

R

R

RR

e
Ac

R

R

ˆ
expˆ)(

ˆ

ˆ
exp

ˆ

;;
ˆ

expˆ

 (4.1.17)

2

2

2

26

22

2

6

6

6

2

2

6

11

1
11

0
1

R

R

R

RR

e
Bc

R

R

ˆ
expˆ)(

ˆ

ˆ
exp

ˆ

;;
ˆ

expˆ

 (4.1.18)

 .0;1;0;; 777
077

e

eQc

 (4.1.19)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

21

0
1

11

111

8

0

8

1

0

1

0

81

8

0

1

8

e
N

N

gN

H
c

N

N

N

N

N

;)()(

)(;;)(
 (4.1.20)

We also have that

 0
11

2

e

D

g

DD ;;

 (4.1.21)

Clearly, we may use (4.1.12) through (4.1.21) to evaluate the pressure derivatives
required by the eigen-space decomposition discussed in Section 3.

4.2 Finite Volume Discretization

 Ultimately, we must discretize the governing equations (2.1.1) in order to
numerically solve the detonation problem. We may illustrate the discretization procedure
by considering a simplified form of (2.1.1), i.e.,

 SFU

xt
 (4.2.1)

where S is a vector containing all of the source terms. To enact the finite volume
discretization, we integrate (4.2.1) in 1-D space as follows

 2/1

2/1

2/1

2/1

2/1

2/1

i

i

i

i

i

i

x

x

x

x

x

x

dxdx
x

dx
t

SFU (4.2.2)

Moreover, we obtain

 2/1

2/1

2/1

2/1

2/1

2/1

i

i

i

i

i

i

x

x

x

x

x

x

dxdx
t

SFU (4.2.3)

Since the limits are fixed in the first term of (4.2.3) and since we assume that U is
continuous on the interval),(// 2121 ii xx , we may interchange the order of integration and
differentiation to find that

 2/1

2/1

2/1

2/1

2/1

2/1

i

i

i

i

i

i

x

x

x

x

x

x

dxdx
t

SFU (4.2.4)

By observing that the integral in the first term is taken over space, we may evaluate it as

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

22

)(~
//

/

/

2121

21

21

iii

x

x

xxdx
i

i

UU (4.2.5)

where iU~ is the average of),(txUU taken over space in the interval],[// 2121 ii xx .
This interval defines cell i in the finite volume grid. Because of the integration, observe
that)(~~

xii UU . If we also apply this idea to the source term, (4.2.4) becomes

)(~)(
~

////
/

/
21212121

21

21

iii

x

xii
i xxxx

dt

d i

i

SFU (4.2.6)

the so-called semi-discrete form. Hence,

 iii

ii

i

xxdt

d SFFU ~)(
~

//
//

2121

2121

1 (4.2.7)

The values of F used in (4.2.7) are evaluated at cell interfaces (natural locations for
possible discontinuities in Euler solutions). As a result, at each interface, F is evaluated
as a numerical flux through the use of an upwind discretization scheme based on the
values of iU~ defined at the cell centers. The upwind scheme, described later in
Subsection 4.4, makes use of the theory developed in Section 3.

4.3 Temporal Discretization

 The semi-discrete form (4.2.7) offers certain numerical advantages (or
disadvantages, depending on your point of view). This form effectively decouples the
temporal discretization scheme from the spatial discretization. As a result, we are free to
choose different methods for each discretization. On the other hand, one may argue that it
is unwise to decouple the time and space schemes. Why? Our shock-capturing scheme
fundamentally relies on solutions of the Riemann problem and on characteristics.12
Characteristics adjoin the time and space coordinates in an inextricable manner, so in the
strictest sense, these coordinates cannot be decoupled. This effect has led to the creation
of a large family of schemes based upon Godunov’s method that couple the time and
space discretization.13 Although we do not disagree with these ideas, our development is
evolutionary, so it is very important that we understand our space scheme at a
fundamental level. For these reasons, we will use the decoupled approach involving what
is perhaps the simplest, explicit temporal discretization method. Let us recall (4.2.7) and
discretize the time derivative with a simple forward difference. The current time level is
indicated by the superscript n .

 n

i

n

i

n

i

i

n

i

n

i

xt
SFFUU ~)(

~~
//

2121

1
1 (4.3.1)

where nn
ttt 1 is the numerical time-step, and 2/12/1 iii xxx is the spatial

stepsize. Note that (4.3.1) represents a fully explicit method; by rearranging, we obtain

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

23

x
t

n

i

n

in

i

n

i

n

i
2/12/11 ~~~ FFSUU (4.3.2)

Basically, equation (4.3.2) implements the Euler time integration method.14 The only
numerical stability control we place on (4.3.2) involves a restriction on the time-step t .
This restriction is enforced through a Courant-Friedrichs-Lewy (CFL) criterion. We
apply a factor of 0.5 to the new predicted time-step given by

ii

i

ii

pred

au

x
t

max1
min (4.3.3)

4.4 The Numerical Flux

 As we mentioned earlier, the flux vector F defined at each interface must be
evaluated via an upwind method in order to facilitate the automatic capturing of shock
waves without numerical oscillations. Our upwind method of choice is Roe’s flux
difference splitting scheme.12 To promote notational clarity, let us designate the
numerical flux vector by the symbol f while retaining the symbol F for the regular flux
vector (2.1.3) defined by the reactive Euler equations. Roe’s numerical flux vector is
simply stated below.11

))(~(LRRL UUAFFf
2

1 (4.3.4)

where A~ is the flux Jacobian matrix defined by (3.3.23) and evaluated at the interface in

Figure 1. Interface Notation

question. The (~) notation indicates that this evaluation is conducted with the use of Roe-
averaged variables. The designations L and R are best explained by referring to Figure 1.
The subscript L or R designates that the quantity is defined just to left or right of the

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

24

interface, respectively. In Figure 1, the interface is located at 2/1ix between cell i and
cell 1i . Why would the left and right interface values of some property differ? The
answer is very simple. Remember that we stated earlier that our method involves
solutions of the Riemann problem. These solutions admit discontinuities, e.g., shock
waves. Hence, by the nature of a discontinuity, the properties taken to the left and the
right of an interface differ. In the simplest view, we can say that the properties to the left
of the interface taken on the values defined in cell i ; it follows that the properties to the
right of the interface take on the values defined in cell 1i . This means of selecting the
left and right interface values renders first-order accuracy on uniform meshes. There are
other ways to define these upwind values. A higher order method is discussed in a later
subsection. Our Roe averages are computed from these upwind (L and R) variables.

 The Roe average constitutes the physically correct representation of an average at
a discontinuity conforming to the basic ideas of flux difference splitting.15 A
mathematically lengthy derivation is required to produce Roe’s formulas, so we merely
state the results.10

 RL ~ (4.3.5)

RL

RRLL uu
u

~ (4.3.6)

RL

RRLL HH
H

~ (4.3.7)

RL

RRLL ee
e

~ (4.3.8)

RL

RRLL

~ (4.3.9)

 2~

2
1~~~~

ueHP (4.3.10)

 2
2

~
~~~~


ePP

Pa                                                 (4.3.11) 

 
One may note that (3.3.20) through (3.3.22), (3.3.25) and (4.3.11) require Roe-averaged 
pressure derivatives. Recall that explicit formulas for these derivatives are presented in 
(4.1.12) through (4.1.20). The derivatives are presented in terms of the primitive 
variables, so we claim that Roe-averaged values of the pressure derivatives may be 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

25 

obtained by simply evaluating these formulas for the Roe-averaged variables presented in 
(4.3.5) through (4.3.10). In practice, this procedure seems to work well. 
 
 We may now address the practical evaluation of the numerical flux vector as it is 
defined in (4.3.4). The vectors LF  and RF  are the standard Euler flux vectors (2.1.3) 
evaluated for the upwind conservative variables LU  and RU  (or primitive variables Rq  
and Lq ), respectively. The remaining term 
 
                                                            )(~

LR UUA                                                  (4.3.12) 

 
is denoted as the numerical viscosity expression. The difference between the conservative 
variables left and right of the interface may be easily evaluated through the use of (2.1.2).  
A~  may be evaluated as follows. 

                                                            LΛRA ~~~~
                                                   (4.3.13) 

where the (~) notation indicates that all of the entries in the matrices are calculated with 
the use of averaged variables. The matrix Λ~  is created by taking the absolute value of 

each element of Λ~ , the diagonal matrix of eigenvalues. Finally, (4.3.12) is computed by 
a series of simple matrix-matrix and matrix-vector multiplications; (4.3.4) is easily 
evaluated by using vectors sums. 
 
4.5 A Higher-Order Scheme 
 
 The scheme described in the preceding subsection is only accurate to the first 
order, and it is highly dissipative, a detriment to the sharp resolution of detonation waves.  
In this subsection, we briefly describe an enhancement to the first order scheme that is 
third-order accurate on uniform grids. As you may have concluded, the left and right 
interface values are constructed from the cell-center values to the left and right of the 
interface, respectively. To increase the order of accuracy for the scheme, we instead 
reconstruct the interface values using interpolating polynomials involving more than one 
cell-center value. One way to apply this idea is through the use of a Monotone Upwind 
Scheme for Conservation Laws (MUSCL).12 The equations for the left and right interface 
variables are provided below for the interface located at 2/1i . Consider the primitive 
variable q ,   ,,, Puq . 
 

                    
















  )()())(()(

1211

1
11

4

1
ii

L

iiLiL qq
r

qqrqq              

(4.4.1) 
 
where 3/1  to achieve third-order accuracy, and 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

26 

                                                          
21

1









ii

ii
L

qq

qq
r .                                                 (4.4.2) 

 
  is a function designed to serve as a non-limiter limiter. In every case, our interpolated 
data must be monotone; otherwise, the interpolation procedure will result in the 
formation of non-physical oscillations in the numerical solution.12 The nonlinear limiter 
is designed to maintain the monotonicity of smooth sections of data when interpolated to 
high order. We have chosen the Van Albada limiter for use in this problem, i.e., 
 

                                                           
2

2

1 r

rr
r




 )(                                                   (4.4.3) 

 
The right interface variable is given by 
 

                         
















  )()())(()(

11

1
11

4

1
ii

R

iiRiR qq
r

qqrqq           (4.4.4) 

 
For this expression, the ratio used by the limiter is defined as 
 

                                                           
ii

ii
R

qq

qq
r









1

1                                                     (4.4.5) 

 
Equations (4.4.1) through (4.4.5) cannot be implemented without due cognizance. The 
left interpolant involves cell-center values located at 2i , 1i  and i . As a result, we 
must ensure that 
 
                                                      0

211
  )()( iiii qqqq                                       (4.4.6) 

 
Otherwise, the cell-center data is non-monotone, and the interface values must be set to 
the first-order values 

                                                                 
iR

iL

qq

qq


 1                                                      (4.4.7) 

 
in order to properly smooth the solution.  For the right interpolant, we must ensure that 
 
                                                     0

11
  )()( iiii qqqq                                           (4.4.8) 

 
or we must use the first-order interpolation values (4.4.7). In addition, after the criteria 
(4.4.6) and (4.4.8) are satisfied, we are required to limit on the ratios (4.4.2) and (4.4.5).  
Based on the data, these ratios may become undefined, so the limiter function (4.4.3) 
must be modified ensure that its value always remains finite. If this interpolation strategy 
is used properly, the Roe algorithm becomes a high-resolution flux difference splitting 
scheme. 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

27 

 
 
4.6 Boundary Conditions 
 
 In most cases, we cannot solve partial differential equations without applying 
boundary conditions. Even for our simple detonation problem cast in one dimension, we 
must apply boundary conditions at 0x (the center of the sphere) and at MAXxx   (the 
outer surface of the sphere). At the center of the sphere, we enforce fully reflective 
boundary conditions through the use of a ghost cell installed at 0i , i.e., 
 

                                                                 

1

1

1

1

10

ee

PP

uu








0

0

0

0





                                                    (4.5.1) 

 
We have assumed that the first flow field cell adjacent to this boundary has the index 

1i . 
 At the outer surface of the sphere, we apply extrapolated boundary conditions to 
mimic a supersonic outflow. We implement this condition by installing a ghost cell at 

MAXii  . We set conditions in this cell as follows. 

                                                          

1-IMAXIMAX

1-IMAXIMAX

1-IMAXIMAX

1-IMAXIMAX

1-IMAXIMAX

ee

PP

uu











                                             (4.5.2) 

 
Boundary conditions (4.5.1) and (4.5.2) function well for the detonation of a finite 
spherical mass of HMX. 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

28 

5 PARTICLE MOTION 
 

 In this section, we extend our discussion beyond the application of numerical 
detonation literature cited thus far. Given the level of interest in Multiphase Blast 
Explosives (MBX), it is desirable to incorporate solid particles into our detonation 
programming. This effort is new, so our treatment of solid particles is limited, to a certain 
extent. Still, our particles have realistic mass and finite radii. They are driven by the 
detonation through the use of Lagrangian laws of motion. Our particle algorithms have 
only three major limitations: 
 
 (i) The particle collection exists in the diffuse limit. Particles are assumed not to 
interact with one another. 
 
 (ii) Particles are assumed to exist as rigid spheres. The do not deform or change 
phase during the detonation event. 
 
 (iii) This model is restricted to one dimension. We can only establish initial 
particle positions along a single ray. 
 
Based on these assumptions, we can investigate the efficacy of this model in predicting 
the post-detonation conditions for a mass of solid HMX loaded with particles. 
 
5.1 Coupling Terms 
 
 We may now discuss the coupling terms (source terms) for particles presented in 
equations (2.1.1) and (2.1.6).  sF  and sQ  have relatively simple descriptions. sF  
represents the transfer of momentum between the gas phase and the particle phase while 

sQ  represents the similar transfer of thermal energy. For spherical particles, these terms 
may be written in a simple form.6  Assume that the total number of particles is pN . 
 

                                                    
dt

du
rF

p

pp

N

p

s

p

3

1 3
4 



                                          (5.1.1) 

                                                  



pN

p

ppps TTrhQ
1

2
4 )~(                                       (5.1.2) 

 
where p , pr  and pu  are the solid density, radius and velocity of the th

p  particle, 

respectively. Therefore, dtdu p /  is the acceleration of the th
p  particle. Also, T

~  is the 
temperature of the gas phase at the surface of the particle, and pT  is the particle 

temperature. Actually, T~  is the Favre-filtered temperature; this filtering operation is used 
to take the presence of turbulence into account. Our simulation is non-viscous, so we 
simply set T~  equal to the gas phase temperature T . The parameter ph  is the heat transfer 
coefficient that governs the transfer of thermal energy at the particle/fluid interface. In 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

29 

general, ph  is experimentally determined. By specifying (5.1.1) and (5.1.2), we can 
accurately describe the coupling between the gas and particulate phases. Of course, these 
equations only apply to particles of fixed mass. Additional terms (including mass 
conservation) must be specified for particles that react with the gas phase. 
 
 
5.2 Particle Laws of Motion 
 
 The detonation physics algorithms incorporate discrete, finite-mass particles, so 
we apply Lagrangian equations for tracking the movement of particles. Let px  designate 

the radial coordinate of the th
p  particle. Then we have that 

 

                                                               p

p
u

dt

dx
                                                       (5.2.1) 

 
The particle velocity pu  must be determined from the evolution equation given by a 
model.  We have two alternatives for this model; the first is called the “Spray Model” 
which may be described as follows.6 

 

                                                )(
Re

p

pp

pDp
uu

r

C

dt

du


2
16

3




                                     (5.2.2) 

 
where the particle Reynolds number pRe  is defined as 

                                                       p

p

p uu
r



2

Re                                             (5.2.3) 

 
The drag coefficient for the particle DC  is conveyed by the “Spray Drag Law”, i.e., 
 

                                    





























1000440

1000
6

1
24

32

p

p

p

p

DC

Re.

Re
Re

Re

/

               (5.2.4) 

 
 ,   and u  are the density, dynamic viscosity and velocity of the gas phase in the 
vicinity of the particle. This model is not appropriate for detonation problems, but it still 
serves well for testing. For the problem of a detonation with solid inclusions, we apply a 
high speed gas flow model originally developed for solid rocket motors. 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

30 

 The high speed gas flow model was developed for the multiphase flow field 
created by the burn of porous, powdered explosive material.16 In this case, the particle 
acceleration is given by 

                                           )( pp

p

Dpp
uuuu

m

Cd

dt

du


 2

8
.                                   (5.2.5) 

 
In order to maintain our notation consistent with the literature, (5.2.5) is written in terms 
of the particle diameter pd  instead of the radius. Also, pm  is the mass of the th

p  particle.  
This high speed drag law provides the drag coefficient through a more complicated 
calculation. First, we calculate a “Mach-zero” drag coefficient, 0DC , i.e., 
 

                     

























450

450080
370

080450

080

22

2

2212

21

0

.

..
.

).().(

.







C

CC

C

CD                 

(5.2.6) 
 
where pRe  is calculated by using (5.2.3), and 
 

                                                 42.0
Re

4.4
Re
24

1 
pp

C                                           (5.2.7) 

                                                 











p

C
Re

15075.1
3

4

1

2

1
2 




.                                        (5.2.8) 

 
In (5.2.6) and (5.22.8), we have introduced two new parameters 1  and 2 ; they are the 
volume concentrations of the gas and particle phases, respectively. These parameters 
require interpretation when considering the detonation problem. At the outset of the 
problem, the solid explosive has not been detonated, so there is no gas phase at this point.  
The best course of action is to compute the initial values of 1  and 2  based upon the 
volume of the solid explosive and the volume of particles. Since we are not simulating 
details of the shock interaction with metal particles, we calculate 1  and 2  on this basis 
of the initial calculation and maintain them fixed for the duration of the detonation. We 
must then calculate a final value of DC  based on a Mach correction.17 This correction 
exists due to the natural variation in the drag coefficient with Mach number. If we do not 
wish to implement a drag correction, then we set 0DD CC  ; otherwise the corrected value 
of DC  may be calculated from 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

31 

                                         













 63.40

427.0exp1
M

CC DD ,                                          (5.2.9) 

where 

                                                      
a

uu
M

p
 .                                                      (5.2.10) 

By using the particle velocities provided by (5.2.2) though (5.2.4) or (5.2.5) through 
(5.2.10), we may integrate (5.2.1) to determine the track of each particle through space 
during the detonation. 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

32 

6 RESULTS 
 

 From the start of this effort, several versions of our current numerical detonation 
computer code have been developed by the author. The purpose of this section is to 
present some of the results produced for typical problems. Specifically, we discuss three 
results.  The first set of results is intended to show that our detonation program is 
functioning properly and producing physically correct solutions.  In a second calculation, 
we address the numerical detonation of a spherical mass of pure HMX.  For this problem, 
we have computed results by using both the Hayes-I and Hayes-II equations of state for 
the solid explosive combined with the JWL EOS for the detonation products.  Finally, we 
discuss the results for the detonation of a spherical mass of HMX loaded with steel 
particles. 
 
6.1 Simple Plane Wave Detonation 
 
 This test problem, described in Reference 2, is used to show whether or not the 
flux difference splitting scheme is working properly. In this case, we endeavor to solve a 
Deflagration to Detonation Transition (DDT) problem in one dimension.  Both the 
explosive and the detonation products are modeled by using the calorically perfect gas 
EOS.  The associated mixture EOS is given as 
 

                                                        


Q
P

e 



)( 1

                                               (6.1.1) 

 
As discussed in Section 4, we apply fully reflective boundary conditions at 0x  and 
extrapolation conditions at MAXxx  .  For this problem, we use the reaction rate 
expression 

                                                    




















P

E
kr aexp)(1                                          (6.1.2) 

where (6.1.2) is in Arrhenius form; k  is the reaction rate constant, and aE  is a parameter 
that behaves like an activation energy. The one-dimensional domain is defined in 

120  x .  Also, we have that 10aE ; 50Q ; 4.1 , and 7k . The problem is 
initialized with 0u ; 0P , and 0  everywhere.2  The initial density distribution is 
given by 

                                           120
31

1

2



 x

x
x ,

)exp(
)( .                               (6.1.3) 

 
This density distribution initiates the reaction in the region near 0x by boosting the 
reaction rate term. 
 
 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

33 

 
Figure 2. Problem 1 Detonation Field Density, Time = 3.0 

 

 
Figure 3. Problem 1 Detonation Field Velocity, Time = 3.0 

 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

34 

 
Figure 4. Problem 1 Detonation Field Pressure, Time = 3.0 

 

             

 
Figure 5. Problem 1 Detonation Field Reaction Progress Variable, Time = 3.0 

 
This problem does not possess an “exact” solution, but Xu et al. have obtained a 

fully converged numerical solution using a mesh consisting on 3200 cells.2 This problem 
provides an excellent test detonation physics algorithms. Accordingly, we have generated 
three numerical solutions on grids comprised of 200, 800 and 3200 cells, respectively.  
The numerical solutions for density, velocity, pressure and the reaction progress variable 
are provided in Figures 2 through 5, respectively, at the dimensionless time 3.0. In each 
figure, solution plots are color-coded to correspond to the mesh used. The behavior 
shown in each plot agrees quite well with archived plots.2 We have observed only one 
anomaly in our solutions. Strangely enough, on the mesh consisting of only 200 cells, 
there are noticeable oscillations in the reaction progress variable.  These oscillations 
dissipate with increasing mesh density. The explanation for this behavior is not 
immediately evident. In some of our solutions, the reaction progress variable has been 
observed to hunt between the solid and gaseous equations of state.  In fact, this variable is 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

35 

very sensitive and couples strongly to the reaction rate.  We apply no post-solution 
filtering to this variable. Secondly, we are using a weak time integration scheme with 
poor numerical stability performance. The oscillations become less prevalent with 
increasing grid density, so the space scheme may be compensating for the time scheme. 
This phenomenon bears further investigation as this work continues. We will also re-
examine the nonlinear limiter coding.  Nevertheless, our converged solution agrees well 
with the converged archival solution.2 

 
6.2 Detonation of Pure HMX 
 
 This problem is intended to demonstrate our computer code’s capability for 
simulating the detonation of a sphere of pure HMX. This problem permits a test of our 
discretization of the geometric source term found in the reactive Euler equations (2.1.1) 
and (2.1.4). It also represents our first attempt at capturing the physics of a realistic 
detonation event. In this case, we address the detonation of sphere of solid HMX with a 
radius of 4.5 cm. The radius of the sphere is divided into 800 cells.  Figure 6 shows the 
density, velocity, pressure and reaction progress variables for the numerical solution at 
three microseconds (μs) detonation elapsed time. As you can see, the Von Neumann 
spike is clearly resolved in this solution as is the Taylor wave. Moreover, the Chapman-
Jouquet pressure is captured at the experimentally obtained value of 42 GPa. Also, the 
numerical detonation velocity has a value of 1.02 cm/μs which is very close to the 
experimentally obtained value of 0.911 cm/μs.21 Of course, the experimental value is 
generally taken from tests that mimic plane wave detonation conditions. As a result, we 
expect to calculate a different value for the spherical detonation problem. Overall, the 
results agree very closely with the archival data. We have also solved this same problem 
by using the Hayes-II/JWL mixture EOS. The results of this analysis are given in Figure 
7. It is interesting to observe that the Taylor wave is captured in this solution even more 
smoothly than it was in the preceding case. The more complex Hayes-II EOS may 
actually offer greater stability when used in the mixture EOS. This numerical solution 
also offers excellent comparisons with the Chapman-Jouquet pressure and detonation 
velocity for HMX. Both mixture equations of state show that the detonation reaction 
occurs in a nearly instantaneous manner. As you can see, the reaction progress variable 
changes in a nearly discontinuous manner at the detonation front. In either case, our 
computer programming captures the appropriate physics for the detonation, and it renders 
a wide array of physical data (far more than is shown here). 
 
 
 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

36 

 
Figure 6. Numerical detonation solution Hayes-I/JWL in HMX at 3 μs. Horizontal axis is distance in 
meters. 

 
Figure 7. Numerical detonation solution Hayes-I/JWL in HMX at 3 μs. Horizontal axis is distance in 
meters. 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

37 

6.3 Detonation of HMX Containing Metal Particles 
 
 This test case is the final detonation problem addressed by this report. We 
consider the detonation of a spherical mass of HMX loaded with a radial distribution of 
steel particles. The mass of the HMX sphere remains the same as is used for the 
preceding problem, and we still have 800 finite volume cells defined along the charge 
radius. For this example, we have placed ten particles, at uniform spacing, along the 
charge radius. The particles each have a radius of 463 μm and a material density of 7860 
kg/m3. We assume the gas viscosity has a value of 1.7x10-5 kg/(m.s). Furthermore, in this 
simulation study, we have applied the high speed flow drag law. The results for particle 
locations are presented in Figure 8 while the plot of particle velocities is given in Figure 
9. The particle tracks shown in Figure 8 clearly indicate the passage of the detonation 
wave. For particles farther away from the charge center, the particle tracks show changes 
in slope at progressively larger times.  The sudden change in track slope concurs with the 
nearly discontinuous change seen in the particle velocity traces shown in Figure 9. Also, 
in Figure 9, the effect of the drag law can clearly be seen as the particle velocities rise 
rapidly in the wake of the detonation wave then fall quickly under the action of drag in 
the region behind the wave. We have also applied the Mach correction to the rocket drag 
law. In the velocity trace for the particle closest to the charge center, we can see the 
velocity begin to level off at 4.5 μs. Available data indicates that the calculated terminal 
velocity at or near 375 m/s is an acceptable value. This simulation does not include 
thermal effects since we are still in the process of completing our detonation products 
EOS. 
  
 

 
Figure 8. Radial locations for steel particles embedded in a mass of detonating HMX 

 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

38 

 
Figure 9. Radial velocities for steel particles embedded in a detonating mass of HMX 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

39 

7 CONCLUSIONS 
 
 In this report, we have presented the governing equations for the direct numerical 
simulation of the detonation of a solid explosive material.  Proper equations of state have 
been discussed for both the solid explosive material and for the gaseous detonation 
products.  From these equations of state, we have developed a mixture equation of state 
relating the specific internal energy for the detonation to the thermodynamic pressure.  
The resulting computer program has been tested on an archival detonation problem for 
the purpose of comparison. We have presented results for the detonation of a spherical 
mass of pure HMX. 
 
 More importantly, we have incorporated particle tracking algorithms within the 
programming. As a result, the code can now explosively drive particles under the action 
of a detonation wave with coupling to a drag law. This mechanism allows the code to 
simulate the detonation of a Multiphase Blast Explosive in the diffuse limit of particle 
loading. We have built drag laws for both spray and high speed gas flow drag law into the 
code. For a test problem, we have simulated the detonation of a mass of HMX loaded 
with a radial distribution of steel particles. The trend in post-detonation velocities of these 
particles meet our expectations. 
 
8 RECOMMENDATIONS 
 
 During the months ahead, detonation physics algorithms are scheduled for 
implementation in LESLIE3D. The development of the present work has been a learning 
experience accompanied by a large number of difficulties, especially in the 
implementation of Roe’s flux difference splitting scheme. A first recommendation is that 
the HLL family of schemes be used instead. These schemes are more robust and do not 
require the use of pressure derivatives. Also, these schemes already operate well inside of 
LESLIE3D. The detonation physics solver will also benefit from the interface tracking 
scheme already coded into LESLIE3D. Clearly, the governing equation differ at the 
interface between the condensed explosive and the surrounding gas field. This situation 
necessitates an interface to maintain code stability. 
 
 The detonation physics algorithms discussed here must be adapted for curvilinear 
coordinates in three dimensions. For HLL flux forms, this process should not be difficult. 
The author has already done some work in this area. However, the pressure and specific 
volume (or density) closures associated with the mixture equation of state do require 
attention. The Gas-Interpolated Stewart-Prasad-Asay (GISPA) method requires these 
closures to address the multiphase physics of detonation. There is no unique set of 
closures available for this process, but the chosen closures must be carefull accomplished. 
Some difficulty has been encountered in the use of the specific volume closure (due to 
Xu), and this difficulty should be investigated and resolved. 
 
 The Hayes equation of state for the solid explosive is an older relationship that 
characterizes very few explosives. The Mie-Gruneisen equation of state characterizes 
many more explosive materials. That is to say, there is data available. However, the 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

40 

mixture equation of state must be rederived for the Mie-Gruneisen formulation. It may be 
combined with the JWL adiabat for the detonation products, or with another real gas state 
equation. The “Wide-Ranging” detonation equation of state may also be implemented.4 

 
 Ultimately, the particle phase algorithms discussed here must be rewritten for 
dense phase fields. The detonation of a condensed explosive with solid inclusions is a 
dense phase problem. Also, the computer program is currently not properly written even 
in the diffuse limit as regards the nonhomogeneous source terms. The integration scheme 
should be changed to reflect the use of Strang splitting.1 That is to say, the spatial 
integration scheme should be advanced in separate step from the nonhomogeneous terms. 
For the latter step, the integration should be conducted in the temporal manner at each 
grid cell just like an initial value problem. 
 
 
 
REFERENCES 
 
1. Strang, G., “On the construction and comparison of difference schemes”, SIAM J. 

Numer. Anal., Vol. 5, No. 3, pp. 506-517, 1968. 
 
2. Xu, S., Aslam, T. and Stewart, D.S., “High resolution numerical simulation of ideal 
and non-ideal compressible reacting flows with embedded internal boundaries”, 
Combust. Theory Modeling, Vol. 1, pp. 113-142, 1997. 
 
3. Bdzil, J.B., Stewart, D. S. and Jackson, T.L., “Program burn algorithms based on 
detonation shock dynamics: Discrete approximations of detonation flows with 
discontinuous front models”, Journal of Computational Physics, Vol. 174, No. 2, pp. 
870-902, 2001. 
 
4. Wescott, B.L., On Detonation Diffraction in Condensed Phase Explosives, Doctoral 
Dissertation, University at Illinois at Urbana-Champaign, 2001. 
 
5. Stewart, D.S., “Tools for Design of Advanced Explosive Systems and Other 
Investigations on Ignition and Transient Detonation”, Final Report on a Grant from the 
U.S. Air Force Research Laboratory Munition Directorate to the University of Illinois, 
2005. 
 
6. Chen, K.H. and Shuen, J.S., “A Coupled Multi-Block Solution Procedure for Spray 
Combustion in Complex Geometries”, AIAA Paper 93-0108, American Institute for 
Aeronautics and Astronautics, 31st Aerospace Sciences Meeting and Exhibit, January 
1993. 
 
7. Stewart, D.S., Electronic Communication, 2006. 
 
8. Hayes, D.B., “A Pnt Detonation Criterion From Thermal Explosion Theory”, Sixth 
Symposium (International) on Detonation, Pasadena, California, 1976. 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

41 

 
9. Davis, W.C., “Complete equation of state for unreacted solid explosive”, Combustion 

and Flame, Vol. 120, pp. 399-403, 2000. 
 
10. Glaister, P., “An approximate linearised Riemann solver for the Euler equations for 
real gases”, Journal of Computational Physics, Vol. 74, pp. 382-408, 1988. 
 
11. Nance, D.V., “Flux Difference Splitting Algorithms for Real Gas Mixtures”, 
Technical Memorandum, Munitions Directorate, Air Force Research Laboratory, March 
2006. 
 
12. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2, John 
Wiley & Sons, New York, 1991. 
 
13. Collela, P. and Woodward, P.R., “The piece-wise parabolic method for gas-
dynamical simulations”, Journal of Computational Physics, Vol. 54, pp. 174-201, 1984. 
 
14. Burden, R.L., Faires, J.D. and Reynolds, A.C., Numerical Analysis, 2nd Ed., Prindle, 
Weber & Schmidt, Boston, 1981. 
 
15. Roe, P.L., “Approximate Riemann solvers, parameter vectors and difference 
schemes”, Journal of Computational Physics, Vol. 43, p. 357, 1981. 
 
16. Akhatov, I.S. and Vainshtein, P.B., “Transition of porous explosive combustion into 
detonation”, Combustion, Explosion and Shock Waves, Vol. 20, No.1, pp. 63-70, 1984. 
 
17. Carlson, D.J. and Hoglund, R.F., “Particle drag and heat transfer in rocket nozzles”, 
AIAA Journal, Vol. 2, No. 11, pp. 1980-1984, 1964. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

42 

APPENDIX A  
SOURCE CODE 
 
Instructions: 
 
 The source code that follows has been developed over a period of six years, but in 
a sporadic manner, as time has permitted. FORTRAN 77 is used throughout the computer 
program, and an in-line coding structure has been used. The programming is designed for 
research and is thus rather crude. The initial conditions (shock-based initiation) are all 
rigidly coded. Different initiation options exist, but they must be enabled or disabled by 
commenting. The detonation reaction rate laws are treated in the same way. The desired 
reaction rate law must be commented in for the initial conditions and for the first and 
second time step segments of the solver. The calorically perfect gas and Jones-Wilkins-
Lee test problems are also activated or deactivated by commenting in/out code segments. 
 
 This computer program is written for standard explosives like HMX for which we 
have plenty of data. Especially for the Hayes equation of state, a great deal of data input 
is required. This data is simply entered directly into the source code. This statement is 
also true as pertains to the Jones-Wilkins-Lee detonation product data as well as the 
particle field data. This code functions in one dimension only: Cartesian, cylindrical or 
spherical. The domain boundaries are contained between x1 and x2. The number of cells 
in the detonation field is given by imax-1. The variable NSTP tells the code how many 
iterations (time steps) to execute while the variable NDMP tells the code how many 
iterations to perform between dump files. The variable IRST controls code execution. 
With IRST set at zero, the code begins with the coded initial conditions. With IRST set at 
one, the code reads the restart.data file to obtain its starting conditions. The IEOS 
variable switches between the mixture equations of state. IEOS equal zero sets calorically 
perfect gas conditions. IEOS at one sets JWL conditions while IEOS equal 2 or 3 sets the 
Hayes-I/JWL and Hayes-II/JWL formulations. The reader should be advised that the pure 
JWL option does not work well. The fault of this equation is that there is not a sufficient 
energy separation between the adiabats to result in detonation. 
 
 This detonation physics program utilizes a number of flags and control parameters 
in order to stabilize code operation. Some of these parameters set tolerances on the 
variables (like the reaction progress variable) to prevent “hunting”. Other flags control 
solution progress. For instance, internal energy updates are lagged by one iteration to 
keep temperature from turning negative. It is also important to observe that the equations 
of state used here have constant specific heat formulations. Over time, this limitation 
should be lifted, but better equation of state data is required to do so. We also zero the 
detonation reaction rate in the far field. As it happens, the flux scheme will erroneously 
allow reaction rate to creep up slowly in the unreacted explosive mass. This effect is 
damaging to the solution and had to be corrected. 
 
c * * * * * * * * * * * * * EZ1_MASTER * * * * * * * * * * * * 
c * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * *  
c Program for 1-D detonation test problem 
c Simple coding structure 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

43 

c Monotonicity check implemented on extrapolation 
c Direct adaptations for calorically perfect gas and JWL 
 
      program ez1_master 
      implicit none 
 
c Parameter statements 
      integer imax 
c     parameter (imax = 20001) 
      parameter (imax = 2001) 
 
      integer npar 
      parameter (npar = 1000) 
 
      real*8 c12 
      parameter (c12 = 0.5d0) 
 
      real*8 c13 
      parameter (c13 = 1d0/3d0) 
 
      real*8 c14 
      parameter (c14 = 0.25d0) 
 
      real*8 c18 
      parameter (c18 = 0.125d0) 
 
      real*8 c23 
      parameter (c23 = 2d0/3d0) 
 
      real*8 c43 
      parameter (c43 = 4d0/3d0) 
 
      real*8 c316 
      parameter (c316 = 3d0/16d0) 
 
      real*8 pi 
      parameter (pi = 3.141592654d0) 
 
c Variable array declarations 
c File I/O 
      character*12 filex 
      character*12 parex 
 
c Debug flags 
      integer idbg1 
      integer idbgf 
      integer idbgs 
      integer idbgp 
 
c Control flags 
      integer irst 
      integer ieos 
      integer igeo 
      integer irxn 
      integer ipar 
      integer idrg 
      integer imach 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

44 

 
      integer iext 
      integer iav 
      integer ilim 
      integer imon 
      integer iefx 
      integer item 
 
c Counters 
      integer i 
      integer n,nn,np 
      integer l,m 
      integer k 
      integer nstart 
      integer nstp 
      integer ndmp 
      integer nfil 
 
c Gas phase data 
      real*8 pamb 
      real*8 mu 
 
c Calorically perfect EOS data 
      real*8 gamm 
      real*8 gam1 
 
c JWL EOS data 
      real*8 r0 
      real*8 aj 
      real*8 bj 
      real*8 cj 
      real*8 cjh 
      real*8 r1 
      real*8 r2 
      real*8 wj 
      real*8 pcj 
 
c Hayes-I EOS data 
      real*8 cvs 
      real*8 gh 
      real*8 h1 
      real*8 nh 
      real*8 rgas 
      real*8 cvg 
      real*8 cpg 
      real*8 nhp1 
      real*8 nhm1 
      real*8 nhm2 
      real*8 t3 
      real*8 t4 
      real*8 t5 
      real*8 t7 
      real*8 alfa 
      real*8 beta 
      real*8 thta 
 
c Mixture EOS tolerances 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

45 

      real*8 ztol1 
      real*8 ztol2 
 
c Detonation data 
      real*8 qdet0 
      real*8 e0 
      real*8 eact 
      real*8 rk 
      real*8 rk1 
      real*8 rk2 
      real*8 pexp 
      real*8 zexp 
      real*8 th1 
      real*8 th2 
 
      real*8 rh1 
      real*8 rh2 
      real*8 rht 
      real*8 rhti 
      real*8 wr1 
      real*8 wr2 
      real*8 wr1r 
      real*8 wr2r 
 
c Grid/Timestep control data 
      real*8 x1 
      real*8 x2 
      real*8 chx 
      real*8 dx 
      real*8 xc 
      real*8 fct 
      real*8 fct1 
      real*8 fct2 
 
      real*8 time 
      real*8 tend 
      real*8 dt 
      real*8 dt0 
      real*8 dt1 
      real*8 dtmx 
      real*8 cfl 
      real*8 offs 
 
c Derived data 
      real*8 et 
      real*8 ra 
      real*8 ra2 
      real*8 ea 
      real*8 za 
      real*8 rz 
      real*8 omz 
      real*8 rxmin 
 
      real*8 bot 
      real*8 bot2 
      real*8 botr 
      real*8 botz 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

46 

 
      real*8 dpdr 
      real*8 dpde 
      real*8 dpdz 
      real*8 a2 
 
      real*8 psgn 
      real*8 kap 
      real*8 eps 
      real*8 epsm 
      real*8 epsp 
      real*8 off 
      real*8 tmp 
 
      real*8 rl,rr 
      real*8 ul,ur 
      real*8 pl,pr 
      real*8 zl,zr 
      real*8 el,er 
      real*8 eel,eer 
      real*8 hhl,hhr 
 
      real*8 dqer,dqwr,dqir 
      real*8 dqeu,dqwu,dqiu 
      real*8 dqep,dqwp,dqip 
      real*8 dqez,dqwz,dqiz 
 
      real*8 denm 
      real*8 dra,drb,drc,drd,dre 
      real*8 dua,dub,duc,dud,due 
      real*8 dpa,dpb,dpc,dpd,dpe 
      real*8 dza,dzb,dzc,dzd,dze 
 
      real*8 rat 
      real*8 phir 
      real*8 phiu 
      real*8 phip 
      real*8 phiz 
      real*8 phi 
      real*8 vhi 
 
      real*8 sqrl 
      real*8 sqrr 
      real*8 rsumi 
      real*8 rav 
      real*8 ri 
      real*8 uav 
      real*8 zav 
      real*8 eav 
      real*8 hav 
      real*8 aav 
      real*8 pav 
 
      real*8 delr 
      real*8 delv 
      real*8 delp 
      real*8 delz 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

47 

 
      real*8 detr 
      real*8 pest 
 
c Temperature estimation variables 
      real*8 tk0 
      real*8 dtkmx 
      real*8 denmx 
      real*8 numr 
      real*8 e0cr 
      real*8 eta 
      real*8 rs 
      real*8 rg 
      real*8 de1 
      real*8 de2 
      real*8 de3 
      real*8 de4 
      real*8 de5 
      real*8 de6 
 
c Particle phase data 
      real*8 xp1 
      real*8 xp2 
      real*8 dxp 
      real*8 rdp 
      real*8 dip 
      real*8 rop 
      real*8 pcp 
      real*8 rep 
      real*8 ppr 
      real*8 tcon 
      real*8 crppr 
      real*8 nup 
      real*8 hp 
      real*8 cdp 
      real*8 pum 
      real*8 pam 
      real*8 delu 
      real*8 adelu 
      real*8 hevol 
      real*8 pvol 
      real*8 cvol 
      real*8 p0mas 
      real*8 pmass 
      real*8 alf1 
      real*8 alf2 
      real*8 alf21 
      real*8 cd1 
      real*8 cd2 
      real*8 cd0 
      real*8 mach 
      real*8 dtp 
 
c Array declarations 
      real*8 x(imax) 
      real*8 r(0:imax) 
      real*8 p(0:imax) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

48 

      real*8 u(0:imax) 
      real*8 z(0:imax) 
      real*8 ei(0:imax) 
      real*8 a(0:imax) 
      real*8 rxr(0:imax) 
 
      real*8 c(8) 
      real*8 top(8) 
      real*8 topr(8) 
      real*8 topz(8) 
 
      real*8 rp(0:imax) 
      real*8 pp(0:imax) 
      real*8 up(0:imax) 
      real*8 zp(0:imax) 
      real*8 eip(0:imax) 
      real*8 etp(0:imax) 
      real*8 ap(0:imax) 
 
      real*8 tk(imax) 
      real*8 dtk(imax) 
 
      real*8 zzl(imax) 
      real*8 zzr(imax) 
 
      real*8 qv(imax,4) 
      real*8 qvp(imax,4) 
 
      real*8 sg(imax,4) 
      real*8 srx(imax,4) 
      real*8 sp(imax,4) 
      real*8 s(imax,4) 
 
      real*8 aeg(4) 
      real*8 evr(4,4) 
      real*8 cwm(4) 
 
      real*8 chk1(4,4) 
      real*8 chk2(4,4) 
 
      real*8 dq(4) 
      real*8 v1(4) 
      real*8 vn(4) 
 
      real*8 fl(4) 
      real*8 fr(4) 
      real*8 fn(imax,4) 
 
      real*8 dqv(4) 
 
      real*8 derv(imax,2) 
 
c Particle arrays 
      integer pcel(npar) 
      real*8 px(npar) 
      real*8 pu(npar) 
      real*8 pa(npar) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

49 

      real*8 pxp(npar) 
      real*8 pup(npar) 
      real*8 pq(npar) 
      real*8 ptk(npar) 
      real*8 ptkp(npar) 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c     Main Data Entry Section 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
c Grid data 
      x1    = 0d0 
c     x2    = 200d0 
 
      x2    = 3.6d-2 
      chx   = 3.8d-2 
 
c CPG EOS data 
      gamm = 1.4d0 
      pamb = 101325d0 
      rgas = 287d0 
 
c Extrapolation control data 
      kap  = 1d0/3d0 
c     kap = -1d0 
      eps  = 1d-12 
 
c EOS control tolerances 
      ztol1 = 1d-2 
c     ztol1 = 0d0 
      ztol2 = 0.99d0 
c     ztol2 = 1d0 
 
c HMX Hayes EOS Data (Xu) 
c     r0    = 1891d0 
c     h1    = 1.35d10 
c     cvs   = 1.5d3 
c     gh    = 2.1d3 
c     nh    = 9.8d0 
c     tk0   = 3d2 
 
c HMX JWL EOS Data (Zukas/Xu) 
c     aj   = 7.783d11 
c     bj   = 0.07071d11 
c     cj   = 0.00643d11 
c     r1   = 4.2d0 
c     r2   = 1d0 
c     wj   = 0.3d0 
c     cvg  = (2.4d0 - 0.28d0*r0*1d-3 - 1.3d0)*1d3 
 
c NM Hayes EOS Data 
c     r0   = 1.13d3 
c     h1   = 1.32d9 
c     cvs  = 1.446d3 
c     gh   = 1.356d3 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

50 

c     nh   = 7.144d0 
c     tk0  = 293d0 
 
c NM JWL EOS Data 
c     aj   = 209.2d9 
c     bj   = 5.689d9 
c     cj   = 0.77d9 
c     r1   = 4.4d0 
c     r2   = 1.2d0 
c     wj   = 0.3d0 
c     cvg  = 1.3d3 
 
c RDX Hayes EOS Data 
      r0   = 1.6d3 
      h1   = 13d9 
      cvs  = 1.163d3 
      gh   = 1.356d3 
      nh   = 6.3d0 
      tk0  = 300d0 
 
c RDX JWL EOS Data 
      aj   = 573.187d9 
      bj   = 14.639d9 
      cj   = 0.77d9 
      r1   = 4.6d0 
      r2   = 1.4d0 
      wj   = 0.32d0 
      cvg  = 1.2d3 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Detonation reaction data 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c CPG Test 
      eact  = 10d0 
      rk    = 16.418d0 
c     th1   = 0d0 
c     th2   = 0d0 
c     rxmin = rk*dexp(-eact) 
c     qdet0 = 25d0 
 
c HMX Test 
c     pcj   = 42d9 
c     rk1   = 110d6 
c     rk2   = 0d0 
c     pexp  = 3.5d0 
c     zexp  = 0.93d0 
c     th1   = 0d0 
c     th2   = 0d0 
c     rxmin = rk1*((pamb/pcj)**pexp) 
c     qdet0 = (7.91d0 - 4.33d0*(r0*1d-3 - 1.3d0)**2 
c    &         -0.934d0*(r0*1d-3 - 1.3d0))*1d6 
 
c NM Test 
c     pcj   = 12.5d9 
c     pexp  = 1d0 
c     zexp  = 0.95d0 
c     rk1   = 7.75d10 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

51 

c     rk2   = 1.5d12 
c     th1   = 14500d0 
c     th2   = 29700d0 
c     rxmin = rk1*dexp(-th1/tk0) 
c     qdet0 = 4.530d5 
 
c RDX Test 
      pcj   = 26.5d9 
      rk1   = 110d6 
      rk2   = 0d0 
      pexp  = 3.5d0 
      zexp  = 0.93d0 
      th1   = 0d0 
      th2   = 0d0 
      rxmin = rk1*((pamb/pcj)**pexp) 
      qdet0 = 5.375d6 
 
c Particle data 
      xp1   = 1.0d-2 
      xp2   = 5.9d-2 
      pmass = 4.3d0 
      rop   = 7860d0 
      rdp   = 280d-6 
      pcp   = 446d0 
      mu    = 1.7d-5 
c     mu    = 1.0d-3 
      tcon  = 2.57d-2 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Code control data and flags 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Data 
      off    = 1d-6 
      cfl    = 0.5d0 
      n      = 0 
      nfil   = 0 
      nstart = 0 
      nstp   = 10 
      ndmp   = 1 
      dtmx   = 1d-2 
      time   = 0d0 
      tend   = 50d0 
 
c Flags 
      irst  = 1 
      iav   = 1 
      iext  = 1 
      ilim  = 1 
      ieos  = 3 
      igeo  = 1 
      irxn  = 1 
      iefx  = 2 
      ipar  = 0 
      idrg  = 1 
      imach = 1 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

52 

 
c Debug control 
      idbg1 = 0 
      idbgf = 0 
      idbgs = 0 
      idbgp = 0 
          
      write(*,*) ' Code Control Data:' 
      write(*,*) ' nstp  = ',nstp 
      write(*,*) ' ndmp  = ',ndmp 
      write(*,*) ' tend  = ',tend 
      if (ipar .eq. 1) write(*,*) ' npar  = ',npar 
      write(*,*) ' ' 
      write(*,*) ' Flags:' 
      write(*,*) ' irst  = ',irst 
      write(*,*) ' iav   = ',iav 
      write(*,*) ' iext  = ',iext 
      write(*,*) ' ilim  = ',ilim 
      write(*,*) ' ' 
      write(*,*) ' ieos  = ',ieos 
      write(*,*) ' igeo  = ',igeo 
      write(*,*) ' irxn  = ',irxn 
      write(*,*) ' iefx  = ',iefx 
      write(*,*) ' ' 
      write(*,*) ' ipar  = ',ipar 
      write(*,*) ' idrg  = ',idrg 
      write(*,*) ' imach = ',imach 
      write(*,*) ' ' 
 
      pause 
 
c Derived data 
c Thermal data 
      cpg   = rgas + cvg 
      ppr   = cpg*tcon/mu 
      crppr = ppr**c13 
 
c EOS Parameters 
      rh1  = r1*r0 
      rh2  = r2*r0 
      wr1  = wj/rh1 
      wr1r = wr1/r0 
      wr2  = wj/rh2 
      wr2r = wr2/r0 
      cjh  = cj*(r0**(-(1d0 + wj))) 
 
      nhp1 = nh + 1d0 
      alfa = nh - 1d0 
      nhm1 = alfa 
      nhm2 = nh - 2d0 
      e0   = cvg*tk0 
 
c Hayes-I EOS 
      t3   = cvs*tk0*gh/r0 
      t4   = h1/r0/nh/alfa 
      t5   = pamb/gh + t4 
      t7   = pamb/gh + beta + t4 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

53 

      thta = t3 - pamb/r0 
      beta = thta + alfa*t4 
 
c Compute coefficients for Hayes pressure derivatives 
      c(1)  =  1d0 
      c(2)  =  beta 
      c(3)  = -t4 
      c(4)  =  t5 
      c(5)  =  aj 
      c(6)  =  bj 
      c(7)  =  qdet0 + e0 
      c(8)  =  h1/gh/nh 
 
c Particle phase parameters 
      dip   = 2d0*rdp 
      p0mas = c43*pi*rop*rdp*rdp*rdp  
      pvol  = pmass/rop 
      if (chx .le. x2) then 
        write(*,*) ' ' 
        write(*,*) ' chx < x2.' 
        write(*,*) ' ' 
        stop 
      else 
        dx    = chx - x2 
      endif 
      cvol  = c43*pi*x2*x2*x2 
c     cvol   = hevol + pvol 
      alf2  = pvol/cvol 
      alf1  = 1d0 - alf2 
 
      if (ipar .eq. 1 .and. alf1 .eq. 0d0) then 
        write(*,*) ' ' 
        write(*,*) ' alf1 = 0!' 
        write(*,*) ' ' 
        stop 
      endif 
 
      alf21 = alf2/alf1 
 
c Other constants 
      epsm = c14*(1d0 - kap) 
      epsp = c14*(1d0 + kap) 
      gam1 = gamm - 1d0 
 
c Set up the solver report file 
      open(90,file='rpt.txt',form='formatted') 
      write(90,*) ' ********** Detonation Solver Report File 
**********' 
      write(90,*) ' ' 
      write(90,*) ' Reaction Data:' 
      write(90,*) ' qdet  = ',qdet0 
      write(90,*) ' eact  = ',eact 
      write(90,*) ' rk    = ',rk 
      write(90,*) ' rk1   = ',rk1 
      write(90,*) ' rk2   = ',rk2 
      write(90,*) ' pexp  = ',pexp 
      write(90,*) ' zexp  = ',zexp 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

54 

      write(90,*) ' Pcj   = ',pcj 
      write(90,*) ' th1   = ',th1 
      write(90,*) ' th2   = ',th2 
      write(90,*) ' ' 
      write(90,*) ' rxmin = ',rxmin 
      write(90,*) ' ' 
      write(90,*) ' EOS Control Data:' 
      write(90,*) ' ztol1 = ',ztol1 
      write(90,*) ' ztol2 = ',ztol2 
      write(90,*) ' ' 
      write(90,*) ' CPG EOS Data:' 
      write(90,*) ' gamm = ',gamm 
      write(90,*) ' gam1 = ',gam1 
      write(90,*) ' ' 
      write(90,*) ' Hayes-I EOS Data:' 
      write(90,*) ' H1    = ',h1 
      write(90,*) ' Cvs   = ',cvs 
      write(90,*) ' g     = ',gh 
      write(90,*) ' N     = ',nh 
      write(90,*) ' T0    = ',tk0 
      write(90,*) ' ' 
      do nn = 1,8 
        write(90,*) ' c(',nn,') = ',c(nn) 
      enddo  
      write(90,*) ' ' 
      write(90,*) ' alfa = ',alfa 
      write(90,*) ' beta = ',beta 
      write(90,*) ' thta = ',thta 
      write(90,*) ' t3   = ',t3 
      write(90,*) ' t4   = ',t4 
      write(90,*) ' t5   = ',t5 
      write(90,*) ' t7   = ',t7 
      write(90,*) ' ' 
      write(90,*) ' JWL EOS Data:' 
      write(90,*) ' r0   = ',r0 
      write(90,*) ' A    = ',aj 
      write(90,*) ' B    = ',bj 
      write(90,*) ' C    = ',cj 
      write(90,*) ' R1   = ',r1 
      write(90,*) ' R2   = ',r2 
      write(90,*) ' W    = ',wj 
      write(90,*) ' Cvg  = ',cvg 
      write(90,*) ' Cpg  = ',cpg 
      write(90,*) ' e0   = ',e0 
      write(90,*) ' ' 
      write(90,*) ' Particle Data:' 
      write(90,*) ' pmass = ',pmass 
      write(90,*) ' rop   = ',rop 
      write(90,*) ' rdp   = ',rdp 
      write(90,*) ' dip   = ',dip 
      write(90,*) ' mu    = ',mu 
      write(90,*) ' tcon  = ',tcon 
      write(90,*) ' ppr   = ',ppr 
      write(90,*) ' p0mas = ',p0mas 
      write(90,*) ' hevol = ',hevol 
      write(90,*) ' pvol  = ',pvol 
      write(90,*) ' cvol  = ',cvol 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

55 

      write(90,*) ' alf1  = ',alf1 
      write(90,*) ' alf2  = ',alf2 
      write(90,*) ' ' 
      write(90,*) ' Other Data:' 
      write(90,*) ' kap  = ',kap 
      write(90,*) ' epsm = ',epsm 
      write(90,*) ' epsp = ',epsp 
      write(90,*) ' ' 
      close(90) 
 
      write(*,*) ' ' 
      write(*,*) ' Report file ready.' 
      write(*,*) ' ' 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Grid Generation Section 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
      dx    = (x2 - x1)/(imax-1) 
      offs  = 0.1d0 
      do i = 1,imax 
        x(i) = x1 + (i-1)*dx 
c       write(*,*) ' i = ',i,' x = ',x(i) 
      enddo 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Initial Conditions and Restart File Section  
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Set initial conditions (no restart) 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
      if (irst .eq. 0) then 
 
c Set time zero primitive variables 
        do i = 1,imax-1 
          xc = c12*(x(i) + x(i+1)) 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c CPG EOS ICs 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
          if (ieos .eq. 0) then 
            r(i)    = 1d0/(1d0 + 3d0*dexp(-xc*xc)) 
            p(i)    = 1d0 
            u(i)    = 0d0 
            z(i)    = 0d0 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c JWL EOS ICs 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
          else if (ieos .eq. 1) then 
            r(i)    = 1.2d0 
c           p(i)    = 25d0*pamb/(1.00001d0 - dexp(-xc*xc)) 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

56 

            p(i)    = ((x2-xc)*(40d0*pamb/(1.00001d0 - dexp(-xc*xc))) 
     &              + x2*pamb)/x2 
 
c           write(70,*) xc,' ',p(i) 
 
c           if (xc .lt. offs) then 
c             p(i) = fct*(xc-offs)*(xc-offs) + pamb 
c           else 
c             p(i) = pamb 
c           endif 
 
            u(i)    = 0d0 
            z(i)    = 0d0 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-I/JWL EOS ICs 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
          else if (ieos .eq. 2) then 
            r(i)    = r0 
 
c           p(i)    = 25d0*pamb/(1.00001d0 - dexp(-xc*xc)) 
 
c           p(i)    = ((x2-xc)*(25d0*pamb/(1.00001d0 - dexp(-xc*xc))) 
c    &              + x2*pamb)/x2 
 
c           p(i)    = pamb 
 
c HMX or NM 
            p(i)    = 2d0*pcj*dexp(-xc*xc/0.001d0/0.001d0) + pamb 
 
            u(i)    = 0d0 
            z(i)    = 0d0 
            tk(i)   = tk0 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-II/JWL EOS ICs 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
          else if (ieos .eq. 3) then 
            r(i)    = r0 
 
c HMX/RDX/NM 
c           p(i)    = 2d0*pcj*dexp(-xc*xc/0.004d0/0.004d0) + pamb 
 
            if (i .le. 100) then 
              p(i)    = 5d0*pcj + pamb 
            else 
              p(i)    = pamb 
            endif 
 
c NM 
c           p(i)    = 2d0*pcj*dexp(-xc*xc/0.0005d0/0.0005d0) + pamb 
 
            u(i)    = 0d0 
 
            z(i)    = 0d0 
 
            tk(i)   = (p(i) - pamb)/cvs/gh + tk0 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

57 

 
          else 
            write(*,*) ' ' 
            write(*,*) ' Unknown EOS' 
            write(*,*) ' ' 
            stop 
          endif           
 
        enddo 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Particle ICs 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        if (ipar .eq. 1) then  
 
c Check particle bounds 
          if (xp1 .lt. x1 .or. xp2 .gt. x2) then 
            write(*,*) ' ' 
            write(*,*) ' Particle X limits are wrong.' 
            write(*,*) ' ' 
            stop 
          endif 
 
          dxp = (xp2 - xp1)/(npar - 1) 
          do np = 1,npar 
            px(np)  = xp1 + (np-1)*dxp 
            pu(np)  = 0d0 
            ptk(np) = tk0 
            pa(np)  = 0d0 
            pq(np)  = 0d0 
c           write(*,*) px(np),' ',pu(np),' ',pa(np) 
          enddo 
c         pause 
          write(*,*) ' ' 
          write(*,*) ' Particles ready.' 
          write(*,*) ' ' 
 
        endif 
 
      else if (irst .eq. 1) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Read the restart file 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        write(*,*) ' Reading restart file.' 
        open(40,file='restart.data',form='unformatted') 
        read(40) nstart 
        read(40) nfil 
        read(40) time 
        do i = 1,imax-1 
          read(40) r(i),p(i),u(i),z(i) 
        enddo 
        close(40) 
 
      else 
        write(*,*) ' ' 
        write(*,*) ' Unknown restart option.' 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

58 

        write(*,*) ' ' 
      endif 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Compute initial derived flow variables for the cells 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
      do i = 1,imax-1 
 
        if (ieos .eq. 0) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c CPG EOS internal energy and pressure derivatives 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
          ei(i) = p(i)/r(i)/gam1 - z(i)*qdet0 
 
          dpdr = gam1*ei(i) + gam1*z(i)*qdet0 
          dpde = gam1*r(i) 
          dpdz = gam1*r(i)*qdet0 
 
        else if (ieos .eq. 1) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c JWL EOS internal energy and pressure derivatives 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
          rht  = r(i)/r0 
          rhti = 1d0/rht 
          ri   = 1d0/r(i) 
 
          tmp  = p(i) - aj*(1d0 - wr1*r(i))*dexp(-rh1*ri) 
     &                - bj*(1d0 - wr2*r(i))*dexp(-rh2*ri) 
 
          ei(i) = tmp/wj*ri - z(i)*qdet0 
 
          tmp = aj*(rh1*ri*ri - wj*ri - wj/rh1)*dexp(-rh1*ri) 
          tmp = tmp + bj*(rh2*ri*ri - wj*ri - wj/rh2)*dexp(-rh2*ri) 
            
          dpdr = tmp + wj*ei(i) + wj*z(i)*qdet0  
          dpde = wj*r(i) 
          dpdz = wj*r(i)*qdet0 
 
        else if (ieos .eq. 2) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-I/JWL EOS internal energy and pressure derivatives 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
          ra    = r(i) 
          ra2   = ra*ra 
          za    = z(i) 
          rz    = ra*za 
          omz   = 1d0 - za 
 
c Solid phase limit 
          if (za .le. ztol1) then 
 
            ei(i) = p(i)/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 
 
            dpdr = beta*r0*gh/ra2  



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

59 

     &           - alfa*gh*t4*(ra**(alfa-1d0))/(r0**alfa) 
 
            dpde = gh 
 
c Mixed phases 
          else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator functions 
            bot   = omz/gh + 1d0/wj/ra 
            if (bot .lt. 1d-10) then 
              write(*,*) ' ' 
              write(*,*) ' Zero denonimator term.' 
              write(*,*) ' ' 
              stop 
            endif 
            bot2  = bot*bot 
            botr  = -1d0/wj/ra2 
 
c Evaluate numerator functions 
            top(2)  = omz - r0/ra 
            top(3)  = (omz**nh)*((ra/r0)**alfa) 
            top(4)  = omz 
            top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
            top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 
            top(7)  = za 
 
c Compute internal energy 
            ei(i) = bot*p(i) 
            do nn = 2,7 
              ei(i) = ei(i) - c(nn)*top(nn) 
            enddo 
            top(1) = ei(i) 
 
c Compute derivatives for numerator functions 
            topr(1)  = 0d0 
            topr(2)  = r0/ra2 
            topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 
            topr(4)  = 0d0 
            topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 
            topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 
            topr(7)  = 0d0 
 
c Compute density and internal energy derivatives of pressure 
            dpdr = 0d0 
            do nn = 1,7 
              dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 
            enddo 
            dpdr = dpdr/bot2 
            dpde = 1d0/bot 
 
c Gas phase limit 
          else 
 
            ei(i) = p(i)/wj/ra  
     &            - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 
     &            - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  
     &            - qdet0 - e0 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

60 

 
            dpdr  = wj*ei(i)  
     &            + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 
     &            + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 
     &            + wj*(qdet0 + e0) 
 
            dpdz  = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 
     &            + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 
     &            + ra*wj*(qdet0 + e0) 
 
            dpde  = wj*ra 
 
          endif 
 
        else if (ieos .eq. 3) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-II/JWL EOS internal energy and pressure derivatives 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
          ra    = r(i) 
          ra2   = ra*ra 
          za    = z(i) 
          rz    = ra*za 
          omz   = 1d0 - za 
 
c Solid phase limit 
          if (za .le. ztol1) then 
 
            ei(i) = p(i)/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 
     &            - h1/gh/nh*(((ra/r0)**nh) - 1d0) 
 
            dpdr  = beta*r0*gh/ra2  
     &            - alfa*gh*t4*(ra**(alfa-1d0))/(r0**alfa) 
     &            + h1/r0*((ra/r0)**nhm1) 
 
            dpde  = gh 
 
c Mixed phases 
          else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator functions 
            bot   = omz/gh + 1d0/wj/ra 
            if (bot .lt. 1d-10) then 
              write(*,*) ' ' 
              write(*,*) ' Zero denonimator term.' 
              write(*,*) ' ' 
              stop 
            endif 
            bot2  = bot*bot 
            botr  = -1d0/wj/ra2 
 
c Evaluate numerator functions 
            top(2)  = omz - r0/ra 
            top(3)  = (omz**nh)*((ra/r0)**alfa) 
            top(4)  = omz 
            top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
            top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

61 

            top(7)  = za 
            top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 
 
c Compute internal energy 
            ei(i) = bot*p(i) 
            do nn = 2,8 
              ei(i) = ei(i) - c(nn)*top(nn) 
            enddo 
            top(1) = ei(i) 
 
c Compute derivatives for numerator functions 
            topr(1)  = 0d0 
            topr(2)  = r0/ra2 
            topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 
            topr(4)  = 0d0 
            topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 
            topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 
            topr(7)  = 0d0 
            topr(8)  = nh/r0*(omz**nhp1)*((ra/r0)**nhm1) 
 
c Compute density and internal energy derivatives of pressure 
            dpdr = 0d0 
            do nn = 1,8 
              dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 
            enddo 
            dpdr = dpdr/bot2 
            dpde = 1d0/bot 
 
c Gas phase limit 
          else 
 
            ei(i) = p(i)/wj/ra  
     &            - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 
     &            - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  
     &            - qdet0 - e0 
 
            dpdr  = wj*ei(i)  
     &            + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 
     &            + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 
     &            + wj*(qdet0 + e0) 
 
            dpdz  = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 
     &            + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 
     &            + ra*wj*(qdet0 + e0) 
 
            dpde  = wj*ra 
 
          endif 
 
        else 
          write(*,*) ' ' 
          write(*,*) ' Unknown EOS' 
          write(*,*) ' ' 
          stop 
        endif 
 
c Compute the speed of sound 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

62 

        if (dpdr .lt. 0d0) dpdr = dabs(dpdr) 
        a2     = dpdr + p(i)*dpde/r(i)/r(i) 
 
        if (a2 .lt. 0d0) then 
          write(*,*) ' ' 
          write(*,*) ' Negative initial squared sound speed!' 
          write(*,*) ' i = ',i 
          write(*,*) ' ' 
          stop 
        endif 
        a(i)   = dsqrt(a2) 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Initial reaction rate 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Floor on 1 - z near 0 
        if (z(i) .gt. ztol2) then 
          omz = 0d0 
        else 
          omz = 1d0 - z(i) 
        endif 
 
c Test Rate 1 
c       rxr(i) = rk1*dsqrt(omz) 
c       if (p(i,j) - 1d9 .lt. 0d0) rxr(i) = 0d0 
c       if (p(i,j) - 1d9 .eq. 0d0) rxr(i) = 0.5d0*rxr(i) 
 
c CPG Test Rate 
c       rxr(i) = rk*omz*dexp(-eact*r(i)/p(i)) - rxmin 
 
c HMX Test Rate 
c       rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin 
c       if (rxr(i) .lt. 0d0) rxr(i) = 0d0 
 
c NM Test Rate 
c       rxr(i) = (rk1*dexp(-th1/tk(i))*omz 
c    &         +  rk2*dexp(-th2/tk(i))*z(i))*(omz**zexp) - rxmin 
c       if (rxr(i) .lt. 0d0) rxr(i) = 0d0 
 
c RDX Test Rate 
        rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin 
        if (rxr(i) .lt. 0d0) rxr(i) = 0d0 
 
      enddo 
 
c Write the initial conditions files 
      if (irst .eq. 0) then 
        open(21,file='heic.dat',form='formatted') 
 70     format(1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6, 
     &         1x,d12.6,1x,d12.6) 
 
 72     format(1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6, 
     &         1x,d12.6,1x,d12.6,1x,d12.6) 
 
        do i = 1,imax-1 
          xc = c12*(x(i) + x(i+1)) 
          write(21,72) xc,r(i),u(i),p(i),z(i),ei(i),a(i),rxr(i),tk(i) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

63 

        enddo 
        close(21) 
        write(*,*) ' ICs ready.' 
        write(*,*) ' ' 
 
        if (ipar .eq. 1) then 
          open(21,file='paic.dat',form='formatted') 
          do np = 1,npar 
            write(21,*) px(np),' ',0d0,' ',pu(np) 
          enddo 
          close(21) 
        endif 
      endif 
 
      pause 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Set the internal energy correction and scale variables 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
      e0cr = 0d0 
      eta  = 0.999d0 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Main Solver Loop 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
      do while (n .lt. nstp .and. time .lt. tend) 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Allocate particles to cells 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        if (ipar .eq. 1) then 
          do np = 1,npar 
            pcel(np) = int((px(np) - x1)/dx) + 1 
c           write(*,*) ' px(',np,') = ',px(np) 
c           write(*,*) ' pcel(',np,') = ',pcel(np) 
c           write(*,*) ' ' 
          enddo 
 
          pum = 0d0 
          pam = 0d0 
          do np = 1,npar 
            if (dabs(pu(np)) .gt. pum) pum = dabs(pu(np)) 
            if (dabs(pa(np)) .gt. pam) pam = dabs(pa(np)) 
          enddo 
        endif 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Compute time step 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        dt = 1d2 
        do i = 1,imax-1 
          dx  = x(i+1) - x(i) 
          dt0 = dx/(dabs(u(i)) + a(i))         



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

64 

          if (ipar .eq. 1) then 
            dt1 = dx/(dabs(u(i)) + pum)         
            dt0 = min(dt0,dt1) 
c           dt1 = 2d1*dx/pam 
c           dt0 = min(dt0,dt1) 
          endif 
          if (dt0 .lt. dt) dt = dt0 
        enddo 
        dt = cfl*dt 
        dt = min(dt,dtmx) 
 
        if (idbg1 .eq. 1) then 
          write(*,*) ' dt = ',dt 
          write(*,*) ' ' 
        endif 
 
c Set boundary conditions 
c Symmetric at x = 0 
        r(0)  =  r(1) 
        u(0)  = -u(1) 
        p(0)  =  p(1) 
        z(0)  =  z(1) 
        ei(0) =  ei(1) 
 
c Fixed at x = xmax 
c       r(imax) = 1d0 
c       u(imax) = 0d0 
c       p(imax) = 1d0 
c       z(imax) = 0d0 
c       ei(imax) = p(imax)/r(imax)/gam1 
 
c Extrapolated at x = xmax 
        r(imax)  = r(imax-1) 
        u(imax)  = u(imax-1) 
        p(imax)  = p(imax-1) 
        z(imax)  = z(imax-1) 
        ei(imax) = ei(imax-1) 
 
        if (idbg1 .eq. 1) then 
        write(*,*) ' BCs:' 
        write(*,*) ' r(0)  = ',r(0) 
        write(*,*) ' u(0)  = ',u(0) 
        write(*,*) ' p(0)  = ',p(0) 
        write(*,*) ' z(0)  = ',z(0) 
        write(*,*) ' ei(0) = ',ei(0) 
        write(*,*) ' ' 
        write(*,*) ' r(imax)  = ',r(imax) 
        write(*,*) ' u(imax)  = ',u(imax) 
        write(*,*) ' p(imax)  = ',p(imax) 
        write(*,*) ' z(imax)  = ',z(imax) 
        write(*,*) ' ei(imax) = ',ei(imax) 
        write(*,*) ' ' 
        endif 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Minimum reaction rate taken at cell imax-1 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

65 

c Floor on 1 - z near 0 
        if (z(imax-1) .gt. ztol2) then 
          omz = 0d0 
        else 
          omz = 1d0 - z(imax-1) 
        endif 
 
c HMX or RDX Test 
        rxmin = rk1*(omz**zexp)*((p(imax-1)/pcj)**pexp) 
c NM Test 
c       rxmin = (rk1*dexp(-th1/tk(imax-1))*omz 
c    &        +  rk2*dexp(-th2/tk(imax-1))*z(imax-1))*(omz**zexp) 
 
c       write(*,*) ' rxmin = ',rxmin 
c       write(*,*) ' rxr   = ',rxr(imax-1) 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Compute conservative variables; assemble source terms  
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        do i = 1,imax-1 
          qv(i,1) = r(i) 
          qv(i,2) = r(i)*u(i) 
 
          et      = ei(i) + 0.5d0*u(i)*u(i) 
 
          qv(i,3) = r(i)*et 
          qv(i,4) = r(i)*z(i) 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Compute the source vectors 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Geometric 
          xc = c12*(x(i) + x(i+1)) 
 
          sg(i,1)   = -r(i)*u(i)/xc 
          sg(i,2)   = -r(i)*u(i)*u(i)/xc 
          sg(i,3)   = -u(i)*(r(i)*et + p(i))/xc 
          sg(i,4)   = -r(i)*u(i)*z(i)/xc 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Reaction rate 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Floor on 1 - z near 0 
          if (z(i) .gt. ztol2) then 
            omz = 0d0 
          else 
            omz = 1d0 - z(i) 
          endif 
 
c CPG Test Rate 
c         rxr(i) = rk*omz*dexp(-eact*r(i)/p(i)) - rxmin 
 
c HMX Test Rate 
c         rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin 
c         if (rxr(i) .lt. 0d0) rxr(i) = 0d0 
 
c NM Test Rate 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

66 

c         rxr(i) = (rk1*dexp(-th1/tk(i))*omz 
c    &           +  rk2*dexp(-th2/tk(i))*z(i))*(omz**zexp) - rxmin 
c         if (rxr(i) .lt. 0d0) rxr(i) = 0d0 
 
c RDX Test Rate 
          rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin 
          if (rxr(i) .lt. 0d0) rxr(i) = 0d0 
 
c Reaction rate terms 
          srx(i,1)  = 0d0 
          srx(i,2)  = 0d0 
          srx(i,3)  = 0d0 
          srx(i,4)  = r(i)*rxr(i) 
 
c Particle phase 
          sp(i,1)   = 0d0 
          sp(i,2)   = 0d0 
          sp(i,3)   = 0d0 
          sp(i,4)   = 0d0 
 
        enddo 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Compute particle phase coupling terms 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        if (ipar .eq. 1) then 
          do np = 1,npar 
 
c Momentum 
            sp(pcel(np),2) = sp(pcel(np),2) - p0mas*pa(np) 
 
c Energy 
            sp(pcel(np),3) = sp(pcel(np),3) - pq(np) 
 
          enddo 
        endif 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Compute the total source vector 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        do i = 1,imax-1 
 
c         if (sp(i,2) .ne. 0d0) then 
c           write(*,*) ' i = ',i,' sp = ',sp(i,2) 
c         endif 
 
          do m = 1,4 
            s(i,m) = igeo*sg(i,m) + irxn*srx(i,m) + ipar*sp(i,m) 
          enddo 
 
          if (idbgs .eq. 1) then 
            write(*,*) ' i  = ',i 
            write(*,*) ' q1 = ',qv(i,1) 
            write(*,*) ' q2 = ',qv(i,2) 
            write(*,*) ' q3 = ',qv(i,3) 
            write(*,*) ' q4 = ',qv(i,4) 
            write(*,*) ' ' 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

67 

            write(*,*) ' s1 = ',s(i,1) 
            write(*,*) ' s2 = ',s(i,2) 
            write(*,*) ' s3 = ',s(i,3) 
            write(*,*) ' s4 = ',s(i,4) 
            write(*,*) ' ' 
            pause 
          endif 
        enddo 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Compute the numerical flux at each grid point 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 71   format(2x,d12.6,2x,d12.6,2x,d12.6,2x,d12.6) 
 
        do i = 1,imax 
 
c Left interface variables 
          if (i .eq. 1) then 
c First order at the boundary 
            rl = r(i-1) 
            ul = u(i-1) 
            pl = p(i-1) 
            zl = z(i-1) 
 
            rr = r(i) 
            ur = u(i) 
            pr = p(i) 
            zr = z(i) 
 
          else if (2 .le. i .and. i .le. imax-1) then 
c Higher-order 
 
            if (ilim .eq. 0) then 
 
c Hossaini limiting strategy 
              dqwr = r(i-1) - r(i-2) 
              dqer = r(i)   - r(i-1) 
              dqir = r(i+1) - r(i) 
              phir = c14*(2d0*dqwr*dqer + eps) 
     &             /(dqwr*dqwr + dqer*dqer + eps) 
 
              dqwu = u(i-1) - u(i-2) 
              dqeu = u(i)   - u(i-1) 
              dqiu = u(i+1) - u(i) 
              phiu = c14*(2d0*dqwu*dqeu + eps) 
     &             /(dqwu*dqwu + dqeu*dqeu + eps) 
 
              dqwp = p(i-1) - p(i-2) 
              dqep = p(i)   - p(i-1) 
              dqip = p(i+1) - p(i) 
              phip = c14*(2d0*dqwp*dqep + eps) 
     &             /(dqwp*dqwp + dqep*dqep + eps) 
 
              dqwz = z(i-1) - z(i-2) 
              dqez = z(i)   - z(i-1) 
              dqiz = z(i+1) - z(i) 
              phiz = c14*(2d0*dqwz*dqez + eps) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

68 

     &             /(dqwz*dqwz + dqez*dqez + eps) 
 
c Density 
              rl   = r(i-1) + iext*phir*(epsm*dqwr + epsp*dqer) 
              rr   = r(i)   - iext*phir*(epsm*dqir + epsp*dqer) 
 
c Velocity 
              ul   = u(i-1) + iext*phiu*(epsm*dqwu + epsp*dqeu) 
              ur   = u(i)   - iext*phiu*(epsm*dqiu + epsp*dqeu) 
 
c Pressure 
              pl   = p(i-1) + iext*phip*(epsm*dqwp + epsp*dqep) 
              pr   = p(i)   - iext*phip*(epsm*dqip + epsp*dqep) 
 
c Rx Progress 
              zl   = z(i-1) + iext*phiz*(epsm*dqwz + epsp*dqez) 
              zr   = z(i)   - iext*phiz*(epsm*dqiz + epsp*dqez) 
 
            else if (ilim .eq. 1) then 
 
c Hirsch limiting strategy 
              dra  = r(i+1) - r(i) 
              drb  = r(i)   - r(i-1) 
              drc  = r(i-1) - r(i-2) 
              drd  = drb    - drc 
              dre  = dra    - drb 
 
              dua  = u(i+1) - u(i) 
              dub  = u(i)   - u(i-1) 
              duc  = u(i-1) - u(i-2) 
              dud  = dub    - duc 
              due  = dua    - dub 
 
              dpa  = p(i+1) - p(i) 
              dpb  = p(i)   - p(i-1) 
              dpc  = p(i-1) - p(i-2) 
              dpd  = dpb    - dpc 
              dpe  = dpa    - dpb 
 
              dza  = z(i+1) - z(i) 
              dzb  = z(i)   - z(i-1) 
              dzc  = z(i-1) - z(i-2) 
              dzd  = dzb    - dzc 
              dze  = dza    - dzb 
 
c Check monotonicity 
              imon = 1 
              if (dra*drb .lt. 0d0) imon = 0 
              if (drb*drc .lt. 0d0) imon = 0 
              if (dua*dub .lt. 0d0) imon = 0 
              if (dub*duc .lt. 0d0) imon = 0 
              if (dpa*dpb .lt. 0d0) imon = 0 
              if (dpb*dpc .lt. 0d0) imon = 0 
              if (dza*dzb .lt. 0d0) imon = 0 
              if (dzb*dzc .lt. 0d0) imon = 0 
 
              if (imon .eq. 0) then 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

69 

 
c First-order interface is non-monotonic 
                rl = r(i-1) 
                ul = u(i-1) 
                pl = p(i-1) 
                zl = z(i-1) 
 
                rr = r(i) 
                ur = u(i) 
                pr = p(i) 
                zr = z(i) 
 
              else 
 
c First-order interface is monotonic 
                denm = drb*drb + drc*drc + eps 
                phi  = (drb*drd + eps)/denm 
                vhi  = (drc*drd + eps)/denm 
                rl   = r(i-1) + iext*(epsm*phi*drc 
     &                              + epsp*vhi*drb) 
 
                denm = dra*dra + drb*drb + eps 
                phi  = (drb*dre + eps)/denm 
                vhi  = (dra*dre + eps)/denm 
                rr   = r(i)   - iext*(epsm*phi*dra 
     &                              + epsp*vhi*drb) 
 
                denm = dub*dub + duc*duc + eps 
                phi  = (dub*dud + eps)/denm 
                vhi  = (duc*dud + eps)/denm 
                ul   = u(i-1) + iext*(epsm*phi*duc 
     &                              + epsp*vhi*dub) 
 
                denm = dua*dua + dub*dub + eps 
                phi  = (dub*due + eps)/denm 
                vhi  = (dua*due + eps)/denm 
                ur   = u(i)   - iext*(epsm*phi*dua 
     &                              + epsp*vhi*dub) 
 
                denm = dpb*dpb + dpc*dpc + eps 
                phi  = (dpb*dpd + eps)/denm 
                vhi  = (dpc*dpd + eps)/denm 
                pl   = p(i-1) + iext*(epsm*phi*dpc 
     &                              + epsp*vhi*dpb) 
 
                denm = dpa*dpa + dpb*dpb + eps 
                phi  = (dpb*dpe + eps)/denm 
                vhi  = (dpa*dpe + eps)/denm 
                pr   = p(i)   - iext*(epsm*phi*dpa 
     &                              + epsp*vhi*dpb) 
 
                denm = dzb*dzb + dzc*dzc + eps 
                phi  = (dzb*dzd + eps)/denm 
                vhi  = (dzc*dzd + eps)/denm 
                zl   = z(i-1) + iext*(epsm*phi*dzc 
     &                              + epsp*vhi*dzb) 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

70 

                denm = dza*dza + dzb*dzb + eps 
                phi  = (dzb*dze + eps)/denm 
                vhi  = (dza*dze + eps)/denm 
                zr   = z(i)   - iext*(epsm*phi*dza 
     &                              + epsp*vhi*dzb) 
 
              endif 
 
 
            else 
              write(*,*) ' ' 
              write(*,*) ' Unknown limiting strategy' 
              write(*,*) ' ' 
            endif 
 
c Set ceiling on zl, zr 
            zl   = min(zl,1d0) 
            zr   = min(zr,1d0) 
 
          else 
 
c First order at imax 
            rl = r(i-1) 
            ul = u(i-1) 
            pl = p(i-1) 
            zl = z(i-1) 
 
            rr = r(i) 
            ur = u(i) 
            pr = p(i) 
            zr = z(i) 
               
          endif 
 
c         zzl(i) = zl 
c         zzr(i) = zr 
 
c Final monotonicity check 
          imon = 0 
          rat  = (r(i) - r(i-1))*(rr - rl) 
          if (rat .lt. 0d0) imon = 1 
          rat  = (u(i) - u(i-1))*(ur - ul) 
          if (rat .lt. 0d0) imon = 2 
          rat  = (p(i) - p(i-1))*(pr - pl) 
          if (rat .lt. 0d0) imon = 3 
          rat  = (z(i) - z(i-1))*(zr - zl) 
          if (rat .lt. 0d0) imon = 4 
 
c Set first order interface 
          if (imon .ne. 0) then 
            rl = r(i-1) 
            rr = r(i) 
            ul = u(i-1) 
            ur = u(i) 
            pl = p(i-1) 
            pr = p(i) 
            zl = z(i-1) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

71 

            zr = z(i) 
          endif 
             
c Calculate internal energy 
          if (ieos .eq. 0) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c CPG EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            el  = pl/gam1/rl - zl*qdet0 
            er  = pr/gam1/rr - zr*qdet0 
 
          else if (ieos .eq. 1) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c JWL EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            rht  = rl/r0 
            rhti = 1d0/rht 
            ri   = 1d0/rl 
            tmp  = pl - aj*(1d0 - wr1*rl)*dexp(-rh1*ri) 
     &                - bj*(1d0 - wr2*rl)*dexp(-rh2*ri) 
 
            el   = tmp*ri/wj - zl*qdet0 
 
            rht  = rr/r0 
            rhti = 1d0/rht 
            ri   = 1d0/rr 
            tmp  = pr - aj*(1d0 - wr1*rr)*dexp(-rh1*ri) 
     &                - bj*(1d0 - wr2*rr)*dexp(-rh2*ri) 
 
            er   = tmp*ri/wj - zr*qdet0 
 
          else if (ieos .eq. 2) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-I/JWL EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Left of interface; set arguments 
            ra  = rl 
            za  = zl 
            rz  = ra*za 
            omz = 1d0 - za 
 
c Solid phase limit 
            if (za .le. ztol1) then 
 
              el = pl/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 
 
c Mixed phases 
            else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator function 
              bot   = omz/gh + 1d0/wj/ra 
              if (bot .lt. 1d-10) then 
                write(*,*) ' ' 
                write(*,*) ' Zero denonimator term.' 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

72 

                write(*,*) ' ' 
                stop 
              endif 
 
c Evaluate numerator functions 
              top(2)  = omz - r0/ra 
              top(3)  = (omz**nh)*((ra/r0)**alfa) 
              top(4)  = omz 
              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 
              top(7)  = za 
 
              el = bot*pl 
              do nn = 2,7 
                el = el - c(nn)*top(nn) 
              enddo 
 
c Gas phase limit 
            else 
 
              el = pl/wj/ra  
     &           - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 
     &           - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  
     &           - qdet0 - e0 
 
            endif 
 
c Right of interface; set arguments 
            ra  = rr 
            za  = zr 
            rz  = ra*za 
            omz = 1d0 - za 
 
c Solid phase limit 
            if (za .le. ztol1) then 
 
              er = pr/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 
 
c Mixed phases 
            else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator function 
              bot   = omz/gh + 1d0/wj/ra 
              if (bot .lt. 1d-10) then 
                write(*,*) ' ' 
                write(*,*) ' Zero denonimator term.' 
                write(*,*) ' ' 
                stop 
              endif 
 
c Evaluate numerator functions 
              top(2)  = omz - r0/ra 
              top(3)  = (omz**nh)*((ra/r0)**alfa) 
              top(4)  = omz 
              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 
              top(7)  = za 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

73 

 
c Compute internal energy 
              er = bot*pr 
              do nn = 2,7 
                er = er - c(nn)*top(nn) 
              enddo 
 
c Gas phase limit 
            else 
 
              er = pr/wj/ra  
     &           - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 
     &           - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  
     &           - qdet0 - e0 
 
            endif 
 
          else if (ieos .eq. 3) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-II/JWL EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Left of interface; set arguments 
            ra  = rl 
            za  = zl 
            rz  = ra*za 
            omz = 1d0 - za 
 
c Solid phase limit 
            if (za .le. ztol1) then 
 
              el = pl/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 
     &           - h1/gh/nh*(((ra/r0)**nh) - 1d0) 
 
c Mixed phases 
            else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator function 
              bot   = omz/gh + 1d0/wj/ra 
              if (bot .lt. 1d-10) then 
                write(*,*) ' ' 
                write(*,*) ' Zero denonimator term.' 
                write(*,*) ' ' 
                stop 
              endif 
 
c Evaluate numerator functions 
              top(2)  = omz - r0/ra 
              top(3)  = (omz**nh)*((ra/r0)**alfa) 
              top(4)  = omz 
              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 
              top(7)  = za 
              top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 
 
              el = bot*pl 
              do nn = 2,8 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

74 

                el = el - c(nn)*top(nn) 
              enddo 
 
c Gas phase limit 
            else 
 
              el = pl/wj/ra  
     &           - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 
     &           - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  
     &           - qdet0 - e0 
 
            endif 
 
c Right of interface; set arguments 
            ra  = rr 
            za  = zr 
            rz  = ra*za 
            omz = 1d0 - za 
 
c Solid phase limit 
            if (za .le. ztol1) then 
 
              er = pr/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 
     &           - h1/gh/nh*(((ra/r0)**nh) - 1d0) 
  
c Mixed phases 
            else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator function 
              bot   = omz/gh + 1d0/wj/ra 
              if (bot .lt. 1d-10) then 
                write(*,*) ' ' 
                write(*,*) ' Zero denonimator term.' 
                write(*,*) ' ' 
                stop 
              endif 
 
c Evaluate numerator functions 
              top(2)  = omz - r0/ra 
              top(3)  = (omz**nh)*((ra/r0)**alfa) 
              top(4)  = omz 
              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 
              top(7)  = za 
              top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 
 
c Compute internal energy 
              er = bot*pr 
              do nn = 2,8 
                er = er - c(nn)*top(nn) 
              enddo 
 
c Gas phase limit 
            else 
 
              er = pr/wj/ra  
     &           - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

75 

     &           - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  
     &           - qdet0 - e0 
 
            endif 
 
          else 
            write(*,*) ' ' 
            write(*,*) ' Unknown EOS' 
            write(*,*) ' ' 
            stop 
          endif 
 
c Total energy/mass 
          eel = el + 0.5d0*ul*ul 
          hhl = eel + pl/rl 
 
          eer = er + 0.5d0*ur*ur 
          hhr = eer + pr/rr 
 
c         if (imon .ne. 0) then 
c           write(*,*) ' ' 
c           write(*,*) ' Monotonicity violation - ',imon 
c           write(*,*) ' i = ',i 
c           write(*,*) ' ' 
c           write(*,*) ' r(i-1) = ',r(i-1) 
c           write(*,*) ' rl     = ',rl 
c           write(*,*) ' rr     = ',rr 
c           write(*,*) ' r(i)   = ',r(i) 
c           write(*,*) ' ' 
c           write(*,*) ' u(i-1) = ',u(i-1) 
c           write(*,*) ' ul     = ',ul 
c           write(*,*) ' ur     = ',ur 
c           write(*,*) ' u(i)   = ',u(i) 
c           write(*,*) ' ' 
c           write(*,*) ' p(i-1) = ',p(i-1) 
c           write(*,*) ' pl     = ',pl 
c           write(*,*) ' pr     = ',pr 
c           write(*,*) ' p(i)   = ',p(i) 
c           write(*,*) ' ' 
c           pause 
c         endif 
 
c80   format(2x,d12.6,2x,d12.6,2x,d12.6) 
c         if (n .eq. 177) then 
c           write(25,80) r(i-1),rr,r(i) 
c         endif 
 
c Roe averages 
          if (iav .eq. 1) then 
            sqrl  = dsqrt(rl) 
            sqrr  = dsqrt(rr) 
            rsumi = 1d0/(sqrl + sqrr) 
 
            rav   = sqrl*sqrr 
            uav   = (sqrl*ul + sqrr*ur)*rsumi 
            zav   = (sqrl*zl + sqrr*zr)*rsumi 
            zav   = min(zav,1d0) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

76 

            eav   = (sqrl*el + sqrr*er)*rsumi 
            hav   = (sqrl*hhl + sqrr*hhr)*rsumi 
          else 
       
c Test arithmetic averages 
            rav   = 0.5d0*(rl + rr) 
            uav   = 0.5d0*(ul + ur) 
            zav   = 0.5d0*(zl + zr) 
            eav   = 0.5d0*(el + er) 
            hav   = 0.5d0*(hhl + hhr) 
          endif 
 
          pav   = rav*(hav - eav - 0.5d0*uav*uav) 
         
c Calculate averaged pressure derivatives 
          if (ieos .eq. 0) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c CPG EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            dpdr  = gam1*eav + gam1*zav*qdet0 
            dpde  = gam1*rav 
            dpdz  = gam1*rav*qdet0 
 
          else if (ieos .eq. 1) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c JWL EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            ri  = 1d0/rav 
            tmp = aj*(rh1*ri*ri - wj*ri - wj/rh1)*dexp(-rh1*ri) 
            tmp = tmp + bj*(rh2*ri*ri - wj*ri - wj/rh2)*dexp(-rh2*ri) 
             
            dpdr = tmp + wj*eav + wj*zav*qdet0  
            dpde = wj*rav 
            dpdz = wj*rav*qdet0 
 
          else if (ieos .eq. 2) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-I/JWL EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            ra    = rav 
            ra2   = ra*ra 
            ea    = eav 
            za    = zav 
            rz    = ra*za 
            omz   = 1d0 - za 
 
c Solid phase limit 
            if (za .le. ztol1) then 
 
              dpdr = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0)) 
     &             / r0**alfa 
 
              dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4 
     &             * ((ra/r0)**alfa) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

77 

 
              dpde = gh 
 
c Mixed phases 
            else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator functions 
              bot   = omz/gh + 1d0/wj/ra 
              if (bot .lt. 1d-10) then 
                write(*,*) ' ' 
                write(*,*) ' Zero denonimator term.' 
                write(*,*) ' ' 
                stop 
              endif 
              bot2  = bot*bot 
              botr  = -1d0/wj/ra2 
              botz  = -1d0/gh 
 
c Evaluate numerator functions 
              top(1)  = ea 
              top(2)  = omz - r0/ra 
              top(3)  = (omz**nh)*((ra/r0)**alfa) 
              top(4)  = omz 
              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 
              top(7)  = za 
 
c Compute derivatives for numerator functions 
              topr(1)  = 0d0 
              topr(2)  = r0/ra2 
              topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 
              topr(4)  = 0d0 
              topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 
              topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 
              topr(7)  = 0d0 
 
              topz(1)  =  0d0 
              topz(2)  = -1d0 
              topz(3)  = -nh*((omz*ra/r0)**alfa) 
              topz(4)  = -1d0 
              topz(5)  = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-
rh1/rz) 
              topz(6)  = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-
rh2/rz) 
              topz(7)  =  1d0 
 
c Compute density and internal energy derivatives of pressure 
              dpdr = 0d0 
              dpdz = 0d0 
              do nn = 1,7 
                dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 
                dpdz = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn)) 
              enddo 
              dpdr = dpdr/bot2 
              dpdz = dpdz/bot2 
              dpde = 1d0/bot 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

78 

c Gas phase limit 
            else 
 
              dpdr = wj*ei(i)  
     &             + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 
     &             + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 
     &             + wj*(qdet0 + e0) 
 
              dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 
     &             + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 
     &             + ra*wj*(qdet0 + e0) 
 
              dpde = wj*ra 
 
            endif 
 
          else if (ieos .eq. 3) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-II/JWL EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            ra    = rav 
            ra2   = ra*ra 
            ea    = eav 
            za    = zav 
            rz    = ra*za 
            omz   = 1d0 - za 
 
c Solid phase limit 
            if (za .le. ztol1) then 
 
              dpdr = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0)) 
     &             / r0**alfa 
     &             + h1/r0*((ra/r0)**nhm1) 
 
              dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4 
     &             * ((ra/r0)**alfa) 
     &             + h1/nh*(1d0 - nhp1*((ra/r0)**nh)) 
 
              dpde = gh 
 
c Mixed phases 
            else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator functions 
              bot   = omz/gh + 1d0/wj/ra 
              if (bot .lt. 1d-10) then 
                write(*,*) ' ' 
                write(*,*) ' Zero denonimator term.' 
                write(*,*) ' ' 
                stop 
              endif 
              bot2  = bot*bot 
              botr  = -1d0/wj/ra2 
              botz  = -1d0/gh 
 
c Evaluate numerator functions 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

79 

              top(1)  = ea 
              top(2)  = omz - r0/ra 
              top(3)  = (omz**nh)*((ra/r0)**alfa) 
              top(4)  = omz 
              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 
              top(7)  = za 
              top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 
 
c Compute derivatives for numerator functions 
              topr(1)  = 0d0 
              topr(2)  = r0/ra2 
              topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 
              topr(4)  = 0d0 
              topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 
              topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 
              topr(7)  = 0d0 
              topr(8)  = nh/r0*(omz**nhp1)*((ra/r0)*nhm1) 
 
              topz(1)  =  0d0 
              topz(2)  = -1d0 
              topz(3)  = -nh*((omz*ra/r0)**alfa) 
              topz(4)  = -1d0 
              topz(5)  = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-
rh1/rz) 
              topz(6)  = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-
rh2/rz) 
              topz(7)  =  1d0 
              topz(8)  = 1d0 - nhp1*((ra/r0*omz)**nh) 
 
c Compute density and internal energy derivatives of pressure 
              dpdr = 0d0 
              dpdz = 0d0 
              do nn = 1,8 
                dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 
                dpdz = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn)) 
              enddo 
              dpdr = dpdr/bot2 
              dpdz = dpdz/bot2 
              dpde = 1d0/bot 
 
c Gas phase limit 
            else 
 
              dpdr = wj*ei(i)  
     &             + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 
     &             + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 
     &             + wj*(qdet0 + e0) 
 
              dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 
     &             + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 
     &             + ra*wj*(qdet0 + e0) 
 
              dpde = wj*ra 
 
            endif 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

80 

          else 
            write(*,*) ' ' 
            write(*,*) ' Unknown EOS' 
            write(*,*) ' ' 
            stop 
          endif 
 
c Calculate averaged speed of sound 
          if (dpdr .lt. 0d0) dpdr = dabs(dpdr) 
          a2  = dpdr + pav*dpde/rav/rav 
 
          if (a2 .lt. 0d0) then 
            write(*,*) ' a2 < 0 !' 
            write(*,*) ' i = ',i 
            write(*,*) ' eav  = ',eav 
            write(*,*) ' el   = ',el 
            write(*,*) ' er   = ',er 
            write(*,*) ' rav  = ',rav 
            write(*,*) ' pav  = ',pav 
            write(*,*) ' pl   = ',pl 
            write(*,*) ' pr   = ',pr 
            write(*,*) ' zav  = ',zav 
            write(*,*) ' dpdr = ',dpdr 
            write(*,*) ' dpde = ',dpde 
            write(*,*) ' ' 
            write(*,*) ' r+1 = ',rp(i) 
            write(*,*) ' u+1 = ',up(i) 
            write(*,*) ' p+1 = ',pp(i) 
            write(*,*) ' z+1 = ',zp(i) 
            write(*,*) ' ' 
            write(*,*) ' r-1 = ',rp(i-1) 
            write(*,*) ' u-1 = ',up(i-1) 
            write(*,*) ' p-1 = ',pp(i-1) 
            write(*,*) ' z-1 = ',zp(i-1) 
            write(*,*) ' ' 
            stop 
          endif 
 
          aav = dsqrt(a2) 
 
          if (idbgf .eq. 1) then 
          write(*,*) ' rav = ',rav 
          write(*,*) ' uav = ',uav 
          write(*,*) ' zav = ',zav 
          write(*,*) ' eav = ',eav 
          write(*,*) ' hav = ',hav 
          write(*,*) ' pav = ',pav 
          write(*,*) ' aav = ',aav 
          write(*,*) ' ' 
          endif 
 
c Eigenvalues 
          aeg(1) = dabs(uav - aav) 
          aeg(2) = dabs(uav) 
          aeg(3) = dabs(uav) 
          aeg(4) = dabs(uav + aav) 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

81 

          if (idbgf .eq. 1) then 
          write(*,*) ' aeg1 = ',aeg(1) 
          write(*,*) ' aeg2 = ',aeg(2) 
          write(*,*) ' aeg3 = ',aeg(3) 
          write(*,*) ' aeg4 = ',aeg(4) 
          write(*,*) ' ' 
          pause 
          endif 
 
c Right eigenvectors 
          evr(1,1) = 1d0 
          evr(1,2) = 1d0 
          evr(1,3) = 1d0 
          evr(1,4) = 1d0 
 
          evr(2,1) = uav - aav 
          evr(2,2) = uav 
          evr(2,3) = uav 
          evr(2,4) = uav + aav 
 
          evr(3,1) = hav - uav*aav 
          evr(3,2) = hav - rav*a2/dpde + zav*dpdz/dpde 
          evr(3,3) = hav - rav*a2/dpde + (zav - 1d0)*dpdz/dpde 
          evr(3,4) = hav + uav*aav 
 
          evr(4,1) = zav 
          evr(4,2) = 0d0 
          evr(4,3) = 1d0 
          evr(4,4) = zav 
 
          if (idbgf .eq. 1) then 
          write(*,*) 'EVR:' 
          write(*,71) evr(1,1),evr(1,2),evr(1,3),evr(1,4) 
          write(*,71) evr(2,1),evr(2,2),evr(2,3),evr(2,4) 
          write(*,71) evr(3,1),evr(3,2),evr(3,3),evr(3,4) 
          write(*,71) evr(4,1),evr(4,2),evr(4,3),evr(4,4) 
          write(*,*) ' ' 
          endif 
 
c |R| 
          detr = -2d0*rav*a2*aav/dpde 
 
c Compute primitive variables differences 
          delr = rr - rl 
          delv = ur - ul 
          delp = pr - pl 
          delz = zr - zl 
 
c Compute characteristic wave magnitudes 
          omz    = 1d0 - zav 
          cwm(1) = c12*(delp/aav/aav - rav*delv/aav) 
          cwm(2) = omz*(delr - delp/aav/aav) - rav*delz 
          cwm(3) = zav*(delr - delp/aav/aav) + rav*delz 
          cwm(4) = c12*(delp/aav/aav + rav*delv/aav) 
 
c Compute R |eg| L dq 
          do l = 1,4 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

82 

            vn(l) = 0d0 
            do m = 1,4 
              vn(l) = vn(l) + aeg(m)*cwm(m)*evr(l,m) 
            enddo 
          enddo 
 
          if (idbgf .eq. 1) then 
          write(*,*) ' vn1 = ',vn(1) 
          write(*,*) ' vn2 = ',vn(2) 
          write(*,*) ' vn3 = ',vn(3) 
          write(*,*) ' vn4 = ',vn(4) 
          write(*,*) ' ' 
          endif 
 
c Compute the Euler flux 
          fl(1) = rl*ul 
          fl(2) = rl*ul*ul + pl 
          fl(3) = rl*ul*hhl 
          fl(4) = rl*ul*zl 
 
          fr(1) = rr*ur 
          fr(2) = rr*ur*ur + pr 
          fr(3) = rr*ur*hhr 
          fr(4) = rr*ur*zr 
 
c Compute numerical flux 
          do l = 1,4 
            fn(i,l) = 0.5d0*(fl(l) + fr(l) - vn(l)) 
          enddo 
 
          if (idbgf .eq. 1) then 
          write(*,*) ' FL:' 
          write(*,*) ' fl1 = ',fl(1) 
          write(*,*) ' fl2 = ',fl(2) 
          write(*,*) ' fl3 = ',fl(3) 
          write(*,*) ' fl4 = ',fl(4) 
          write(*,*) ' ' 
          write(*,*) ' FR:' 
          write(*,*) ' fr1 = ',fr(1) 
          write(*,*) ' fr2 = ',fr(2) 
          write(*,*) ' fr3 = ',fr(3) 
          write(*,*) ' fr4 = ',fr(4) 
          write(*,*) ' ' 
          write(*,*) ' FN:' 
          write(*,*) ' fn1 = ',fn(i,1) 
          write(*,*) ' fn2 = ',fn(i,2) 
          write(*,*) ' fn3 = ',fn(i,3) 
          write(*,*) ' fn4 = ',fn(i,4) 
          write(*,*) ' ' 
          pause 
          endif 
        enddo 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c End of flux calculation loop 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

83 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Advance the solution in time 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
        do i = 1,imax-1 
          do l = 1,4 
            dqv(l) = dt/dx*(fn(i+1,l) - fn(i,l)) 
          enddo 
 
          do l = 1,4 
            qvp(i,l) = qv(i,l) - dqv(l) + dt*s(i,l) 
          enddo 
        enddo 
 
c Extract primitive variables 
        do i = 1,imax-1 
          rp(i)  = qvp(i,1) 
          up(i)  = qvp(i,2)/qvp(i,1) 
          etp(i) = qvp(i,3)/qvp(i,1) 
          zp(i)  = qvp(i,4)/qvp(i,1) 
          zp(i)  = min(zp(i),1d0) 
          zp(i)  = max(zp(i),0d0) 
 
          if (zp(i) .lt. 1d-99)  zp(i) = 0d0 
          if (zp(i) .ge. 0.99d0) zp(i) = 1d0 
 
          eip(i) = etp(i) - 0.5d0*up(i)*up(i) 
 
          tk(i)  = tk0 
 
          if (rp(i) .le. 0d0) then 
            write(*,*) ' ' 
            write(*,*) ' Negative/Zero density' 
            write(*,*) ' i = ',i 
            write(*,*) ' r = ',rp(i) 
            write(*,*) ' u = ',up(i) 
            write(*,*) ' e = ',etp(i) 
            write(*,*) ' z = ',zp(i) 
            write(*,*) ' ' 
            write(*,*) ' Program STOP' 
            write(*,*) ' ' 
            stop 
          endif 
 
c If internal energy is negative, apply a fix 
          if (eip(i) .le. 0d0) then 
 
c           write(*,*) ' ' 
c           write(*,*) ' Negative/Zero internal energy' 
c           write(*,*) ' i    = ',i 
c           write(*,*) ' r    = ',rp(i) 
c           write(*,*) ' u    = ',up(i) 
c           write(*,*) ' E    = ',etp(i) 
c           write(*,*) ' e    = ',eip(i) 
c           write(*,*) ' z    = ',zp(i) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

84 

c           write(*,*) ' ' 
c           write(*,*) ' iefx = ',iefx 
 
            if (iefx .eq. 0) then 
c Absolute value |e| fix 
              eip(i) = dabs(eip(i)) 
 
            else if (iefx .eq. 1) then 
c Pressure estimation fix 
c Estimate pressure using JWL EOS 
              pest   = aj*dexp(-rh1/rp(i)) + bj*dexp(-rh2/rp(i)) 
     &               + cjh*(rp(i)**(1d0 + wj)) 
 
c Compute detonation e based on JWL pressure 
              eip(i) = 1d0/wj/rp(i)* 
     &               ( cjh*(rp(i)**(1d0 + wj)) 
     &               + aj*wj*rp(i)/rh1*dexp(-rh1/rp(i)) 
     &               + bj*wj*rp(i)/rh2*dexp(-rh2/rp(i)) ) 
 
c             write(*,*) ' ' 
c             write(*,*) ' pest = ',pest 
c             write(*,*) ' eest = ',eip(i) 
c             pause 
 
            else if (iefx .eq. 2) then 
c Time-lagged velocity fix 
              eip(i) = etp(i) - 0.5d0*u(i)*u(i) 
 
            else if (iefx .eq. 3) then 
c Zero kinetic energy fix 
              eip(i) = etp(i) 
 
            else 
              write(*,*) ' ' 
              write(*,*) ' Unknown iefx value.' 
              write(*,*) ' ' 
              stop 
            endif 
 
c           pause 
          endif 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Calculate pressure and its derivatives 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
          if (ieos .eq. 0) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c CPG EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            pp(i)  = gam1*rp(i)*eip(i) + gam1*rp(i)*zp(i)*qdet0  
 
            dpdr   = gam1*eip(i) + gam1*zp(i)*qdet0 
            dpde   = gam1*rp(i) 
            dpdz   = gam1*rp(i)*qdet0 
 
          else if (ieos .eq. 1) then 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

85 

 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c JWL EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            rht  = rp(i)/r0 
            rhti = 1d0/rht 
            ri   = 1d0/rp(i) 
            tmp  = aj*(1d0 - wr1*rp(i))*dexp(-rh1*ri) 
            tmp  = tmp + bj*(1d0 - wr2*rp(i))*dexp(-rh2*ri) 
             
            pp(i) = tmp + wj*rp(i)*eip(i) + wj*rp(i)*zp(i)*qdet0 
 
            tmp  = aj*(rh1*ri*ri - wj*ri - wj/rh1)*dexp(-rh1*ri) 
            tmp  = tmp + bj*(rh2*ri*ri - wj*ri - wj/rh2)*dexp(-rh2*ri) 
             
            dpdr = tmp + wj*eip(i) + wj*zp(i)*qdet0 
            dpde = wj*rp(i) 
            dpdz = wj*rp(i)*qdet0 
 
          else if (ieos .eq. 2) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-I/JWL EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            ra    = rp(i) 
            ra2   = ra*ra 
            ea    = eip(i) 
            za    = zp(i) 
            rz    = ra*za 
            omz   = 1d0 - za 
 
c Solid phase limit 
            if (za .le. ztol1) then 
 
c Compute pressure and its derivatives 
              pp(i) = gh*(ea - beta*r0/ra - t4*((ra/r0)**alfa) 
     &              + t7) 
 
              dpdr = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0)) 
     &             /(r0**alfa) 
 
              dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4 
     &             * ((ra/r0)**alfa) 
 
              dpde = gh 
 
c Mixed phases 
            else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator functions 
              bot   = omz/gh + 1d0/wj/ra 
              if (bot .lt. 1d-10) then 
                write(*,*) ' ' 
                write(*,*) ' Zero denonimator term.' 
                write(*,*) ' ' 
                stop 
              endif 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

86 

              bot2  = bot*bot 
              botr  = -1d0/wj/ra2 
              botz  = -1d0/gh 
 
c Evaluate numerator functions 
              top(1)  = ea 
              top(2)  = omz - r0/ra 
              top(3)  = (omz**nh)*((ra/r0)**alfa) 
              top(4)  = omz 
              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 
              top(7)  = za 
 
c Compute derivatives for numerator functions 
              topr(1)  = 0d0 
              topr(2)  = r0/ra2 
              topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 
              topr(4)  = 0d0 
              topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 
              topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 
              topr(7)  = 0d0 
 
              topz(1)  =  0d0 
              topz(2)  = -1d0 
              topz(3)  = -nh*((omz*ra/r0)**alfa) 
              topz(4)  = -1d0 
              topz(5)  = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-
rh1/rz) 
              topz(6)  = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-
rh2/rz) 
              topz(7)  =  1d0 
 
c Compute pressure and its derivatives 
              pp(i) = 0d0 
              dpdr  = 0d0 
              dpdz  = 0d0 
              do nn = 1,7 
                pp(i) = pp(i) + c(nn)*top(nn) 
                dpdr  = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 
                dpdz  = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn)) 
              enddo 
              pp(i) = pp(i)/bot 
              dpdr  = dpdr/bot2 
              dpdz  = dpdz/bot2 
              dpde  = 1d0/bot 
 
c Gas phase limit 
            else 
 
c Compute pressure and its derivatives 
              pp(i) = wj*ra*ea  
     &              + aj*(1d0 - wj*ra/rh1)*dexp(-rh1/ra) 
     &              + bj*(1d0 - wj*ra/rh2)*dexp(-rh2/ra) 
     &              + wj*ra*(qdet0 + e0) 
 
              dpdr = wj*ea  
     &             + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

87 

     &             + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 
     &             + wj*(qdet0 + e0) 
 
              dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 
     &             + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 
     &             + ra*wj*(qdet0 + e0) 
 
              dpde = wj*ra 
 
            endif 
 
          else if (ieos .eq. 3) then 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hayes-II/JWL EOS 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
            ra    = rp(i) 
            ra2   = ra*ra 
            ea    = eip(i) 
            za    = zp(i) 
            rz    = ra*za 
            omz   = 1d0 - za 
 
c Solid phase limit 
            if (za .le. ztol1) then 
 
c Compute pressure and its derivatives 
              pp(i) = gh*(ea - beta*r0/ra - t4*((ra/r0)**alfa) 
     &              + t7) 
     &              + h1/nh*(((ra/r0)**nh) - 1d0) 
 
              dpdr  = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0)) 
     &              /(r0**alfa) 
     &              + h1/r0*((ra/r0)**nhm1) 
 
              dpdz  = gh*ea - beta*r0*gh/ra + alfa*gh*t4 
     &              * ((ra/r0)**alfa) 
     &              + h1/nh*(1d0 - nhp1*((ra/r0)**nh))  
 
              dpde  = gh 
 
c Mixed phases 
            else if (ztol1 .lt. za .and. za .lt. ztol2) then 
 
c Evaluate denominator functions 
              bot   = omz/gh + 1d0/wj/ra 
              if (bot .lt. 1d-10) then 
                write(*,*) ' ' 
                write(*,*) ' Zero denonimator term.' 
                write(*,*) ' ' 
                stop 
              endif 
              bot2  = bot*bot 
              botr  = -1d0/wj/ra2 
              botz  = -1d0/gh 
 
c Evaluate numerator functions 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

88 

              top(1)  = ea 
              top(2)  = omz - r0/ra 
              top(3)  = (omz**nh)*((ra/r0)**alfa) 
              top(4)  = omz 
              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 
              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 
              top(7)  = za 
              top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 
 
c Compute derivatives for numerator functions 
              topr(1)  = 0d0 
              topr(2)  = r0/ra2 
              topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 
              topr(4)  = 0d0 
              topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 
              topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 
              topr(7)  = 0d0 
              topr(8)  = nh/r0*(omz**nhp1)*((ra/r0)**nhm1) 
 
              topz(1)  =  0d0 
              topz(2)  = -1d0 
              topz(3)  = -nh*((omz*ra/r0)**alfa) 
              topz(4)  = -1d0 
              topz(5)  = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-
rh1/rz) 
              topz(6)  = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-
rh2/rz) 
              topz(7)  =  1d0 
              topz(8)  =  1d0 - nhp1*((ra/r0*omz)**nh) 
 
c Compute pressure and its derivatives 
              pp(i) = 0d0 
              dpdr  = 0d0 
              dpdz  = 0d0 
              do nn = 1,8 
                pp(i) = pp(i) + c(nn)*top(nn) 
                dpdr  = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 
                dpdz  = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn)) 
              enddo 
              pp(i) = pp(i)/bot 
              dpdr  = dpdr/bot2 
              dpdz  = dpdz/bot2 
              dpde  = 1d0/bot 
 
c Gas phase limit 
            else 
 
c Compute pressure and its derivatives 
              pp(i) = wj*ra*ea  
     &              + aj*(1d0 - wj*ra/rh1)*dexp(-rh1/ra) 
     &              + bj*(1d0 - wj*ra/rh2)*dexp(-rh2/ra) 
     &              + wj*ra*(qdet0 + e0) 
 
              dpdr = wj*ea  
     &             + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 
     &             + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 
     &             + wj*(qdet0 + e0) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

89 

 
              dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 
     &             + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 
     &             + ra*wj*(qdet0 + e0) 
 
              dpde = wj*ra 
 
            endif 
 
          else 
            write(*,*) ' ' 
            write(*,*) ' Unknown EOS' 
            write(*,*) ' ' 
            stop 
          endif 
 
c Check for negative pressure 
          if (pp(i) .lt. 0d0) then 
            write(*,*) ' ' 
            write(*,*) ' Negative pressure detected.' 
            write(*,*) ' i = ',i 
            write(*,*) ' r = ',rp(i) 
            write(*,*) ' u = ',up(i) 
            write(*,*) ' p = ',pp(i) 
            write(*,*) ' z = ',zp(i) 
            write(*,*) ' ea= ',ea 
            write(*,*) ' ' 
            write(*,*) ' r-1 = ',rp(i-1) 
            write(*,*) ' u-1 = ',up(i-1) 
            write(*,*) ' p-1 = ',pp(i-1) 
            write(*,*) ' z-1 = ',zp(i-1) 
            write(*,*) ' ' 
            write(*,*) ' Program STOP' 
            write(*,*) ' ' 
            stop 
          endif 
 
c Calculate the speed of sound 
          derv(i,1) = dpdr 
          derv(i,2) = dpde 
 
          if (dpdr .lt. 0d0) dpdr = dabs(dpdr) 
          a2  = dpdr + pp(i)*dpde/rp(i)/rp(i) 
 
          if (a2 .le. 0d0) then 
            write(*,*) ' ' 
            write(*,*) ' Negative squared sound speed!' 
            write(*,*) ' i    = ',i 
            write(*,*) ' dpdr = ',dpdr 
            write(*,*) ' dpde = ',dpde 
            write(*,*) ' pp   = ',pp(i) 
            write(*,*) ' rp   = ',rp(i) 
            write(*,*) ' a2   = ',a2 
            write(*,*) ' ' 
            stop 
          endif 
          ap(i)   = dsqrt(a2) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

90 

 
        enddo 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Estimate mixture temperature Hayes-II/JWL EOS only 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        item = 0 
        if (ieos .eq. 3) then 
          item = 1 
          dtkmx = 0d0 
          denmx = 0d0 
 
c First temperature estimate 
          do i = 1,imax-1 
            if (zp(i) .gt. ztol2) then 
              omz = 0d0 
            else 
              omz  = 1d0 - zp(i) 
            endif 
 
            denm = cvs*omz + cvg*zp(i) 
            if (denm .gt. denmx) denmx = denm 
 
            de1  = 0d0 
            de2  = 0d0 
            de3  = 0d0 
            de4  = 0d0 
            de5  = 0d0 
            de6  = 0d0 
 
c           if (zp(i) .lt. 0.999d0) then 
            if (zp(i) .lt. ztol2) then 
              rs  = omz*rp(i) 
              de1 = t4*(((rs/r0)**alfa) - 1d0) 
              de2 = beta*(1d0 - r0/rs) 
            endif 
c           if (zp(i) .gt. 0.001d0) then 
            if (zp(i) .gt. ztol1) then 
              rg  = zp(i)*rp(i) 
              de3 = aj/rh1*dexp(-rh1/rg) 
              de4 = bj/rh2*dexp(-rh2/rg) 
              de5 = aj/rh1*dexp(-rh1/r0) 
              de6 = bj/rh2*dexp(-rh2/r0) 
            endif 
 
            numr  = eip(i) - omz*(de1 - de2) 
     &            - zp(i)*(de3 + de4 - de5 - de6 - qdet0 
     &            + e0cr) 
  
            dtk(i) = numr/denm 
 
c           write(*,*) ' zp  = ',zp(i) 
c           write(*,*) ' de1 = ',de1 
c           write(*,*) ' de2 = ',de2 
c           write(*,*) ' de3 = ',de3 
c           write(*,*) ' de4 = ',de4 
c           write(*,*) ' de5 = ',de5 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

91 

c           write(*,*) ' de6 = ',de6 
c           write(*,*) ' numr = ',numr,' dtk = ',dtk(i) 
c           pause 
 
            if (dtk(i) .lt. dtkmx) dtkmx = dtk(i) 
          enddo 
 
c Check the temperature difference (is T < T0?) 
          if (dtkmx .lt. 0d0) then 
            item = -1 
 
c Calculate the internal energy correction (fwded to next time level) 
            e0cr = dtkmx*denmx/eta 
 
c Apply the temperature correction 
            do i = 1,imax-1 
              omz    = 1d0 - zp(i) 
              denm   = cvs*omz + cvg*zp(i) 
              dtk(i) = dtk(i) - e0cr/denm 
            enddo 
          endif 
 
c Calculate the corrected temperature field 
          do i = 1,imax-1 
            tk(i) = tk0 + dtk(i) - dtk(imax-1) 
c           tk(i) = dtk(i) 
          enddo 
 
        endif 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Update particle properties and positions 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        if (ipar .eq. 1) then 
 
          do np = 1,npar 
 
c Compute Reynolds number 
            ra    = rp(pcel(np))*zp(pcel(np)) 
            delu  = up(pcel(np)) - pu(np) 
            adelu = dabs(delu) 
            if (adelu .lt. 1d-10) adelu = 1d-10 
            rep = dip*ra*adelu/mu 
 
c           write(*,*) ' rep = ',rep 
 
 
c           if (rep .le. 0d0) then 
c             write(*,*) ' ' 
c             write(*,*) ' Rep <= 0!' 
c             write(*,*) ' cell = ',pcel(np) 
c             write(*,*) ' rp = ',rp(pcel(np)) 
c             write(*,*) ' zp = ',zp(pcel(np)) 
c             write(*,*) ' ra = ',ra 
c             write(*,*) ' delu = ',delu 
c             write(*,*) ' adelu = ',adelu 
c             write(*,*) ' rep = ',rep 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

92 

c             write(*,*) ' ' 
c             stop 
c           endif 
 
c Compute particle accelerations 
            if (idrg .eq. 0) then 
 
c Spray drag law 
              if (rep .lt. 1d-10) then 
                cdp = 0d0 
              else if (rep .le. 1d3) then 
                cdp = 24d0/rep*(1d0 + (rep**c23)/6d0) 
              else 
                cdp = 0.44d0 
              endif 
 
              pa(np) = c316*mu*cdp*rep/rop/rdp/rdp*delu 
 
            else if (idrg .eq. 1) then 
 
c Rocket drag law 
              if (rep .lt. 1d-10) then 
                cd1 = 0d0 
                cd2 = 0d0 
              else 
                cd1 = 24d0/rep + 4.4d0/dsqrt(rep) + 0.42d0 
                cd2 = c43*(1.75d0 + 150d0*alf21/rep)/alf1 
              endif 
              if (alf2 .le. 0.08d0) then 
                cd0 = cd1 
              else if (0.08d0 .lt. alf2 .and. alf2 .lt. 0.45d0) then 
                cd0 = (0.45d0-alf2)*cd1 + (alf2-0.08d0)*cd2 
                cd0 = cd0/0.37d0 
              else if (alf2 .gt. 0.45d0) then 
                cd0 = cd2 
              endif 
 
c Mach correction 
              if (imach .eq. 1) then 
                mach = (adelu/ap(i))**4.63d0 
                cdp = cd0*(1d0 + dexp(-0.427d0/mach)) 
              else 
                cdp = cd0 
              endif 
 
              pa(np) = c18*pi*dip*dip*cdp*ra*adelu*delu/p0mas 
 
            else 
              write(*,*) ' ' 
              write(*,*) ' Unknown drag law.' 
              write(*,*) ' ' 
              stop 
 
            endif 
c           write(*,*) ' rep = ',rep 
c           write(*,*) ' cdp = ',cdp 
c           write(*,*) ' pa  = ',pa(np) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

93 

c           write(*,*) ' ' 
 
c Compute particle velocity 
            pup(np)  = pu(np) + dt*pa(np) 
 
c Compute particle position 
            pxp(np)  = px(np) + dt*pup(np) 
 
c Set default particle temperature 
            ptkp(np) = tk0 
 
c Update particle heat transfer and temperature 
            if (ieos .eq. 3) then 
 
c Compute the Nusselt number based on particle Reynolds number 
              if (rep .le. 2d2) then 
                nup = 2d0 + 0.106d0*rep*crppr 
              else 
                nup = 2.274d0 + 0.6d0*(rep**0.76d0)*crppr 
              endif 
 
c Compute the heat transfer coefficient 
              hp = tcon*nup/dip 
 
c Compute the heat transfer coupling term 
              pq(np) = hp*pi*dip*dip*(tk(pcel(np)) - ptk(np)) 
 
c Compute the particle temperature change 
              dtp      = dt*pq(np) 
              ptkp(np) = ptk(np) + dtp 
 
            endif 
 
c Check particle bounds 
c           if (pxp(np) .lt. x1) then 
c             pxp(np) = x1 
c             write(*,*) ' Particle ',np,' out of bounds.' 
c             stop 
c           endif 
c           if (pxp(np) .gt. x2) then 
c             pxp(np) = x2 
c             write(*,*) ' Particle ',np,' out of bounds.' 
c             stop 
c           endif 
 
          enddo 
        endif 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Update time and iteration number 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        n    = n + 1 
        time = time + dt 
 
        write(*,*) nstart+n,' ',dt,' ',time,' ',item 
        write(*,*) 'pum = ',pum 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

94 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Solution and restart file output 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
        if (mod(n,ndmp) .eq. 0) then 
          nfil = nfil + 1 
 
c Solution file 
 90       format('sol_',i3.3,'.data') 
          write(filex,90) nfil 
          open(22,file=filex,form='formatted') 
          write(22,*) '# ',time 
          do i = 1,imax-1 
            xc = c12*(x(i) + x(i+1)) 
            write(22,72) xc,rp(i),up(i),pp(i),zp(i),eip(i),ap(i), 
     &                   rxr(i),tk(i) 
          enddo 
          close(22) 
 
c Particle file 
 91       format('par_',i3.3,'.data') 
          if (ipar .eq. 1) then 
            write(parex,91) nfil 
            open(22,file=parex,form='formatted') 
            do np = 1,npar 
              write(22,*) pxp(np),' ',pup(np),' ',ptkp(np) 
            enddo 
            close(22) 
          endif  
 
c Derivatives file 
          open(22,file='deriv.data',form='formatted') 
          do i = 1,imax-1 
            write(22,*) i,' ',derv(i,1),' ',derv(i,2) 
          enddo 
          close(22) 
 
c L/R Z files 
c         open(22,file='zlzr.data',form='formatted') 
c         do i = 1,imax 
c           write(22,*) i,' ',zzl(i),' ',zzr(i) 
c         enddo 
c         close(22) 
 
 
c Restart file 
          open(40,file='restart.data',form='unformatted') 
          write(40) nstart+n 
          write(40) nfil 
          write(40) time 
          do i = 1,imax-1 
            write(40) rp(i),pp(i),up(i),zp(i) 
          enddo 
          close(40) 
 
        endif 
 
c Reset arrays 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 

 

95 

        do i = 1,imax-1 
          r(i)  = rp(i) 
          u(i)  = up(i) 
          z(i)  = zp(i) 
          ei(i) = eip(i) 
          p(i)  = pp(i) 
          a(i)  = ap(i) 
        enddo 
 
 92   format(2x,d15.9,2x,d15.9,2x,d15.9,2x,d15.9,2x,i5) 
 
        if (ipar .eq. 1) then 
          do np = 1,npar 
            px(np) = pxp(np) 
            pu(np) = pup(np) 
            ptk(np) = ptkp(np) 
 
            if (idbgp .eq. 1) write(110+np,92) time,pxp(np), 
     &                        pup(np),pa(np),pcel(np) 
 
          enddo 
        endif 
 
c       pause 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c End of solver loop 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
      enddo 
 
c Termination codes 
      if ( time .gt. tend) then 
        write(*,*) ' ' 
        write(*,*) ' TIME > TEND.' 
      else if (n .ge. nstp) then 
        write(*,*) ' ' 
        write(*,*) ' N > NSTP.' 
      else 
        write(*,*) ' UNKNOWN TERMINATION CRITERIA.' 
      endif 
 
c End of main program 
      stop 
      end 
 

 



 
DISTRIBUTION LIST 

AFRL-RW-EG-TR-2011-159 
 
 
 
Defense Technical Information Center            1 Electronic Copy (1 file, 1 format) 
Attn:  Acquisition (OCA)                                 
8725 John J. Kingman Road, Ste 0944 
Ft Belvoir, VA  22060-6218 
 
EGLIN AFB OFFICES: 
 
AFRL/RWOC (STINFO Tech Library Copy) 1 Copy 
AFRL/RW CA-N                                                         Notice of publication only              
     
 
AFRL/RWG    - 1 Copy 
AFRL/RWM    - 1 Copy 
AFRL/RWA    - 1 Copy 
 


