RI.MR.1

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE						
REPORT D	N PAGE Form Approved OMB No. 0704-018			Approved No. 0704-0188		
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED	16. RESTRICTIVE MARKINGS					
29. SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution is unlimited.					
2b. DECLASSIFICATION / DOWNGRADING SCHEDU						
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S) .	5. MONITORING	ORGANIZATION R	EPORT	NUMBER(S)	
BRL-MR-3790		. 1				۰. ۱
6. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORGAI	NIZATIC)N	
U.S. Army Ballistic Research Laboratory	SI CBD-I F		· .			
6. ADDRESS (City. State, and ZIP "ade)	SLODK-DI	7b. ADDRESS (Crit	ty. State, and ZIP ((ode)		
Aberdeen Proving Ground, MD 2	1005-5066				·	
8. NAME OF FUNDING / SPONSORING	85 OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT ID	ENTIFIC	ATION NUM	MBER
ORGANIZATION U.S. Army	· (If applicable)					
Ballistic Research Laboratory	SLCBR-DD-T			<		
BC AUDRESS (City, State, and Zir Code)		PROGRAM	PROJECT	TASK		WORK UNIT
Aberdeen Proving Ground, MD 2	1005 -5 066	ELEMENT NO.	NO. 1L1	NO.		ACCESSION NO.
		62618A	62618AH80	<u> </u>		
11. TITLE (Include Security Classification)						
Pressure Measurements in a Liq	uid-Filled Cyli	nder at High	Coning Free	luenc	ies (U)
12 PERSONAL AUTHOR(S) Bradford S. Davis, Thomas M. K	endall, and Dav	id J. Hepner				
13a. TYPE OF REPORT 13b. TIME CO Memorandum Report FROM	DVERED TO	14. DATE OF REPO	RT (Year, Month,	Day)	15. PAGE (23	COUNT
16. SUPPLEMENTARY NOTATION						
	IR SUBJECT TERMS (a if perestany and	identii	fy by block	number)
FIELD GROUP SUB-GROUP	Internal Pre	ssure Measur	ements Ar			
01 01	Gyroscope 🚛	all a second second				
19 06	Liquid-Fille	d'Projectile	8			
19. ABSTRACT (Continue on reverse if necessary	and identify by block n	umber)				
Endwall pressure measuremen	its were complet	ed in a liqu	id-filled cy	ylind	er for	a Reynolds
cal systems were modified to a	ccommodate coni	no rates as	high as 20	Hz.	Two fi	xed coning
angles of 0.436 and 0.987 degree were used to examine nonlinear effects. Resulting press						
sure coefficient data (C_n) were verified to be linear with coning angle. The low Reynolds						
number experimental data were	compared with a	Spatial Eig	envalue Meth	nod ti	hat is	applicable
for this range of coning and spin frequencies. The theory predicted approximately 75 per-						
cent of the pressure magnitude	that was actual.	ly measured.				_
· · ·						
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT		21. ABSTRACT SE	CURITY CLASSIFIC	ATION		
UNCLASSIFIED/UNLIMITED I SAME AS R	PT. DTIC USERS	UNCLASSI	FIED		,	
228. NAME OF RESPONSIBLE INDIVIDUAL		225. TELEPHONE	(Include Area Code) 22c.	OFFICE SY	MBOL

 Bradford S. Davis
 (301)-278-4103
 SLCBR-LF-A

 DD Form 1473, JUN 86
 Previous editions are obsolete.
 SECURITY CLASSIFICATION OF THIS PAGE

 UNCLASSIFIED
 UNCLASSIFIED

· · ·

INTENTIONALLY LEFT BLANK.

ii

•

Table of Contents

	List of Figures
	List of Tables
I.	Introduction
П.	Experiment Description
Ш.	Experimental Results
IV.	Summary
	References
	List of Symbols
	Distribution List

Page

iii

.

Intentionally left blank.

iv

iv

List of Figures

Page

7·

...

1.	Forced precession gyroscope apparatus
2.	Predetermined coning angle plate
3.	Transfer function of amplifier/filter circuit at $r/a = 0.434$
4.	Cylinder dimensions and transducer locations
5.	Instrumentation schematic
6.	Sample spectrum of oscillatory pressure,
	$\alpha = 0.987 \text{ deg.}, r/a = 0.434$
7.	Pressure coefficient data for $Re = 193$,
	$\alpha = 0.463$ deg., r/a = 0.434 and r/a= 0.667
8.	Comparison of pressure coefficient data
	for linearity with coning angle for $Re = 193$,
	$r/a = 0.667$, $\alpha = 0.463$ and 0.987 deg
9.	Comparison of Experimental Data to Spatial Eigenvalue Method
	and the Exact Solution Case when $\tau = 1$ at
	Re = 193 at α = 0.987 deg, r/a = 0.667

Figure

INTENTIONALLY LEFT BLANK.

vi

List of Tables

Table	Page
1. Gyroscope System Errors	15
2. Oscillatory pressure data for Re=193.2, $\alpha = 0.463$ deg., r/a = 0.667 and r/a = 0.434	16
3. Oscillatory pressure data for Re=193.2, $\alpha = 0.987$ deg.,	17

vii

· · · · · · · · · ·

INTENTIONALLY LEFT BLANK.

viii

· ·

I. Introduction

Laboratory experiments have been conducted on forced coning gyroscopes to simulate the motion of spin-stabilized, liquid-filled projectiles 1,2,3,4. However, these tests have always been for cases where the coning rate was slower than the spin rate. These experiments support theoretical analysis used to design payload configurations. During flight, pressures inside coning/rotating liquid-filled cavities can lead to destabilizing moments. The behavior of the liquid pressure is a strong function of the cylinder aspect ratio, the Reynolds number (Re), and the non-dimensional coning frequency (τ) denoted by:

Re = $p a^2/v$

 $\tau = f_1/p$

where,

 f_1

P

۷

2

is the inertial coning rate is the inertial spin rate is the fluid kinematic viscosity is the internal cylinder radius.

The present experiments have investigated a new region of interest that is applicable to a vehicle whose spin moment of inertia is larger than the transverse moment of inertia and whose flight can achieve a value of τ greater than 1. Further small-scale experiments in this unusual range of coning and spin frequencies are possible and support ongoing theoretical analysis of liquid payloads. Full-scale experiments of this type are possible on the Ballistic Flight Simulator.

Previous tests at high Reynolds numbers and low coning frequencies performed by Whiting verified linear theories and showed pressure coefficient response (C_p) plots corresponding to a resonance-type behavior (Ref 1). Nusca, D'Amico, and Beims (Ref 2) and later Hepner et al. (Ref 3) provided data for low Reynolds numbers and low coning rates. Under this condition, the behavior of C_p was relatively linear with the non-dimensional coning frequency (τ). Hepner also used a flight simulator to conduct experiments where phase differences between the liquid internal pressure and the coning motion were measured (Ref 4).

This report presents experimental data taken on a gyroscope where the coning rate exceeds the spinning rate $(\tau > 1)$. This was accomplished by rebuilding the coning drive system and associated pressure circuits. Hence, lower spin rates (nominally 20 Hz) and faster coning frequencies produced the high ratio of coning to spin frequencies ($\tau > 1$). Data were taken for two endwall transducers at a single cylinder aspect ratio and Reynolds number. These experiments are intended to establish the experimental technique and to provide initial comparisons with available theories.

The Ballistic Research Laboratory has invested considerable effort in developing theoretical applications in the area of spinning/coning liquid payloads. Stewartson considered the stability of a liquid-filled top under very idealized conditions (Ref 5). D'Amico extended the original Stewartson tables of eigenvalues and residuals to coning frequencies greater than unity (Ref 6). Murphy examined the original Stewartson model and produced an improved linear theory (Ref 7) and further examined the case of unusual coning frequencies (Ref 8). Reference 8 showed that the liquid oscillations could not produce unstable flights where the non-dimensional coning frequency was greater than unity. Recent work by Hall, Sedney, and Gerber has produced a method that can treat low Reynolds numbers and unusual coning frequencies (Ref 9). Applicable theories are verified through laboratory simulation as more unusual or new payload concepts or flight vehicles evolve.

II. Experiment Description

The forced gyrcscope apparatus used in References 1-3 has undergone several improvements. The belt and pulley system has been discarded for a uirect drive motor with flywheel attachment (Figure 1). This direct drive system allows for higher coning frequencies approaching 20 Hz. Higher coning rates are possible by proper balancing of the coning apparatus. The adjustable angle cam was replaced with interchangeable fixed-angle coning plates. The plates allow the spindle to rest in a bearing encasement at a constant inclination angle ranging from 0 to 5 degrees (Figure 2).

The two-channel amplifier/filter circuit was modified to increase its gain at low frequencies for the present series of tests. The amplifier gain was roughly 843 for the inner

gage and 622 for the outer gage. A typical transfer function for the inner transducer of this circuit was taken and curve-fitted for easier data processing (Figure 3).

Silicon oil was used to completely fill the cylinder. At 25 °C the oil has a kinematic viscosity of 525 centistoke (cs) and a density of 0.968 gm/cc. For comparison, water has a kinematic viscosity of approximately 1 cs = 1 cm^2 /s at standard temperature and pressure. The cylinder has an aspect ratio (half height to diameter) of 3.148 (Figure 4). The cylinder was filled and fitted with bearing spindles. The complete assembly was then dynamically balanced.

Internal pressures were measured for two coning angles: 0.463 and 0.987 deg. Large coning imbalance responses were present when a high coning angle plate was utilized. A motion sensor was positioned next to the apparatus to monitor vibration. Some reduction in the coning imbalance was accomplished through the addition of weights to the flywheel. The rotor spin was provided by another DC motor within the cage support. For these experiments a constant spin rate of 16 Hz produced a Reynolds number of 193. For a fixed coning angle and spin rate, the coning rate was varied to achieve a desired τ value. After an appropriate settling time, pressure magnitudes were noted and the coning rate was then changed. This process was continued to produce a sufficient survey range for τ and ensure the repeatability of the pressure data.

An instrumentation schematic is included as Figure 5 showing how the voltage outputs from the transducers (located at r/a=0.434, r/a=0.667) were amplified, filtered, and then transferred through the twelve channel slip ring. A 10 volt bipolar DC power supply was transferred to the rotating frame via the slip ring. A dynamic signal analyzer was used to find the peak amplitude of the pressure signal. Since the pressure transducers are located in the body-fixed frame, the pressure oscillations will appear at frequencies relative to the spin rate. In the previous experiments the desired pressure signal was located at a frequency equal to the spin rate minus the coning rate. The dynamic analyzer folds this negative frequency about 0 Hz so the response is observed at the value of coning rate minus the spin rate $(f_1 - p)$ as shown by the Fourier spectrum of Figure 6. All testing was conducted for prograde motion where the spinning and coning motions are in the same direction. References 3 and 4 contain retrograde pressure data for Reynolds numbers of 3.1 to 8 and Re=18,200 respectively.

III. Experimental Results

It was anticipated that the temperature of the liquid would increase due to viscous heating. This was observed and discussed in Reference 3. Since the Reynolds number depends upon the reciprocal of the liquid viscosity, changes in temperature will produce an error in Reynolds number. Temperature changes of only a few degrees were observed, changing the Reynolds number less than 4%. As the liquid expanded in the cylinder, the absolute pressure steadily increased and the experimental run times were limited by the linear response pressure limit of the gages (Ref 3).

Table 1 shows the gyroscope system errors for the instrumentation and equipment used. The relevant formula to determine pressure coefficients is shown below:

 $C_{p} = P / (a_{p} \alpha^{2} p^{2})$

where,

C_p is the non-dimensional pressure coefficient

oscillating pressure magnitude

α is the coning angle

P

ρ is the fluid density

p is the inertial spin rate

a is the internal cylinder radius.

All data experiments started with a slow coning rate and increased to higher rates. The experiment was completed by performing the survey in reverse order. Tabulations of C_p versus τ were made for each gage position and for each angle (Tables 2,3). The experimental conditions and results are supplied for each set of transducer locations with error calculations included. The overall experimental error was due mostly to low pressure signals and a low spin rate. The inner gage had smaller error bars due to a higher gain that helped increase the signal levels. System errors also decreased for a coning angle of 0.987 degrees as the signal level

was increased. Error bars are omitted for clarity in Figures 7 and 8, but included in Figure 9 where it is seen that the data scatter is well within the error bounds.

Data from the same gage position for two coning angles can be coplotted to examine the linearity of the C_p data, as shown in Figure 8. Within the scatter of the data, r single trend was established for gage position r/a=0.667, thus verifying linear C_p behavior.

Experimental results of pressure coefficient data were compared to the theory in Figure 9. The Spatial Eigenvalue Method (Ref. 9) is applicable in this range of Reynolds number from 1 to 2000. This theory predicted approximately 75 percent of the pressure magnitude that was actually measured. An exact solution for the case when $\tau = 1$ is also included in Figure 9, and can be computed by the following formula

$C_p = (r/a) * (c/a).$ IV. Summary

A forced coning gyroscope device was modified to measure endwall pressures on a cylinder whose coning rate was faster than the spin rate. For the two different coning angles tested, pressure coefficient data were shown to be linear with respect to coning angle. The data were compared to the Spatial Eigenvalue Method. Measured and computed pressures differed by 25 %. This is unusually high, and explanations are not available.

Figure 6. Sample spectrum of oscillatory pressure. α = 0.987 deg., r/a = 0.434.

. 9

¥

Table 1: Gyroscope System Errors

Parameter	Range	Error
Mechanical Data:		• • • •
Coning Rate	17.39-19.64 Hz	± 0.05 Hz
Spin Rate	16 Hz	± 0.25 Hz
Cylinder Radius	3.1761 cm	±0.0012 cm
Cylinder 1/2 Ht	9.9986 cm	± 0.0014 cm
Fluid Viscosity	540 cs	± 4.0 %
Fluid Density	0.968 g/cc	± 1%
Coning Angle	0.463° and 0.987°	± 0.002°
Transducer Data:	••••	
Pressure Signal	14.7-51.6 mV rms	± 1.0 mV rms
Pressure Calibration	(r/a = 0.434/r/a = 0.667)	
Slope	0.7798/0.7722	± 0.2%
Intercept	1.652/-1.184 psia	± 2.0 %
Signal Gain	843/622	± 2.0%

-	Coning Rate		Amplitude	Signal	Pressure	Minimum		Maximum
Run	(Hz)	Tau	(V rms)	Gain	(dyne/cm^2)	Ср	Ср	Ср
1	17.63	1.102	0.0188	623	2.27E+03	2.52	2.85	3.23
2	17.85	1.116	0.0201	622	2.43E+03	2.71	3.05	3.45
3	18.10	1.131	0.0204	622	2.47E+03	2.76	3.10	3.50
4	18.54	1.159	0.0212	622	2.57E+03	2.87	3.22	3.63
5	18.69	1.168	0.0214	622	2.59E+03	2.90	3.25	3.66
6	18.97	1.186	0.0221	622	2.67E+03	3.00	3.35	3.78
7	19.23	1.202	0.0231	621	2.80E+03	3.14	3.51	3.95
8	19.44	1.215	0.0240	621	2.91E+03	3.27	3.65	4.10
9	19.23	1.202	0.0228	621	2.76E+03	3.10	3.47	3.90
10	19.05	1.191	0.0221	622	2.67E+03	3.00	3.35	3.78
111	18 86	1 179	0.0217	622	2.63E+03	2 94	3 29	3 71
12	18.50	1 156	0.0207	622	2.51E+03	2 80	3 14	3.55
112	18.23	1 1 2 0	0.0207	622	2 465+03	2.00	2 09	2 48
1 4	18 00	1 125	0.0203	633	2.702703	5 62	2 06	3.40
1 1 6	10.00	4 4 4 4	0.0195	622	2.300+03	2.00	2.30	3.33
ISDIA (Frag(Hz) 16 (o. 0 1 33	1/2 1/2	Eill Batio/%/	<u>2.00</u>	2.33 Do No	3.32 m· 102.2
Badin	1 104(112). 10.0 10/001-2 176	, veh	Position(c/d)	1.3.140 1.0 667	Position (cm)-2	00		111. 133.2 dan): 0 462
Gago	ID Num: 22	Sion		1.0.007		1 1020		099). 0.403 j
Boom	Tomo(°C): 2	yuic Nico	ocity(cc): 52	V.//ZZ A 9		-1.1030		
Motio	n Brograda		o Excitation/		Density(g/cc).0	.300	Cy i. 1	the rucite
MODO	Frograde	Gag	e Excitation	V UCJ. 1	0.0			
					,			
the second se								1
	Coning Rate		Amplitude	Signal	Pressure	Minimum		Maximum
Run	Coning Rate (Hz)	Tau	Amplitude (V rms)	Signal Gain	Pressure (dyne/cm^2)	Minimum Cp	Ср	Maximum Cp
Run 1	Coning Rate (Hz) 17.63	<u>Tau</u> 1.102	Amplitude (V rms) 0.0165	Signal Gain 844	Pressure (dyne/cm^2) 1.49E+03	Minimum Cp 1.64	Cp 1.86	Maximum Cp 2.13
Run 1 2	Coning Rate (Hz) 17.63 17.85	<u>Tau</u> 1.102 1.116	Amplitude (V rms) 0.0165 0.0171	Signal Gain 844 844	Pressure (dyne/cm^2) 1.49E+03 1.54E+03	Minimum Cp 1.64 1.70	Cp 1.86 1.93	Maximum Cp 2.13 2.20
Run 1 2 3	Coning Rate (Hz) 17.63 17.85 18.10	Tau 1.102 1.116 1.131	Amplitude (V rms) 0.0165 0.0171 0.0173	Signal Gain 844 844 844	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03	Minimum Cp 1.64 1.70 1.72	<u>Cp</u> 1.86 1.93 1.95	Maximum Cp 2.13 2.20 2.23
Run 1 2 3 4	Coning Rate (Hz) 17.63 17.85 18.10 18.54	Tau 1.102 1.116 1.131 1.159	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183	Signal Gain 844 844 844 843	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03	Minimum Cp 1.64 1.70 1.72 1.83	Cp 1.86 1.93 1.95 2.07	Maximum Cp 2.13 2.20 2.23 2.35
Run 1 2 3 4 5	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69	Tau 1.102 1.116 1.131 1.159 1.168	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0193	Signal Gain 844 844 844 843 843	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94	Cp 1.86 1.93 1.95 2.07 2.18	Maximum Cp 2.13 2.20 2.23 2.35 2.47
Run 1 2 3 4 5 6	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97	<u>Tau</u> 1.102 1.116 1.131 1.159 1.168 1.186	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0193 0.0202	Signal Gain 844 844 844 843 843 843	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03	Cp 1.86 1.93 1.95 2.07 2.18 2.28	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58
Run 1 2 3 4 5 6 7	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23	Tau 1.102 1.116 1.131 1.159 1.168 1.186 1.202	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0193 0.0202 0.0207	Signal Gain 844 844 843 843 843 843 843	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65
Run 1 2 3 4 5 6 7 8	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44	Tau 1.102 1.118 1.131 1.159 1.168 1.186 1.202 1.215	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0193 0.0202 0.0207 0.0215	Signal Gain 844 844 843 843 843 843 843 842 842	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.94E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.34 2.43	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75
Run 1 2 3 4 5 6 7 8 9	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44 19.23	Tau 1.102 1.118 1.131 1.159 1.168 1.186 1.202 1.215 1.202	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0193 0.0202 0.0207 0.0215 0.0204	Signal Gain 844 844 843 843 843 843 843 842 842 842	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.94E+03 1.84E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.34 2.31	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61
Run 1 2 3 4 5 6 7 8 9 10	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44 19.23 19.05	Tau 1.102 1.118 1.131 1.159 1.168 1.186 1.202 1.215 1.202 1.215 1.202 1.191	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0193 0.0202 0.0207 0.0215 0.0204 0.0200	Signal Gain 844 844 843 843 843 843 843 842 842 842 842 842 843	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.94E+03 1.84E+03 1.90E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.31 2.26	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56
Run 1 2 3 4 5 6 7 8 9 10 11	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44 19.23 19.05 18.86	Tau 1.102 1.118 1.131 1.159 1.168 1.186 1.202 1.215 1.202 1.215 1.202 1.191 1.179	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0193 0.0202 0.0207 0.0215 0.0204 0.0200 0.0188	Signal Gain 844 844 843 843 843 843 843 842 842 842 842 842 843 843	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.94E+03 1.94E+03 1.84E+03 1.90E+03 1.70E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01 1.88	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.31 2.26 2.13	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56 2.41
Run 1 2 3 4 5 6 7 8 9 10 11 12	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44 19.23 19.44 19.23 19.05 18.86 18.50	Tau 1.102 1.118 1.131 1.159 1.168 1.186 1.202 1.215 1.202 1.191 1.179 1.156	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0202 0.0207 0.0215 0.0204 0.0200 0.0188 0.0182	Signal Gain 844 844 843 843 843 843 843 842 842 842 842 843 843 843	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.94E+03 1.94E+03 1.94E+03 1.50E+03 1.70E+03 1.64E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01 1.88 1.82	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.31 2.26 2.13 2.06	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56 2.41 2.34
Run 1 2 3 4 5 6 7 8 9 10 11 12 13	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44 19.23 19.05 18.86 18.50 18.23	Tau 1.102 1.116 1.131 1.159 1.168 1.186 1.202 1.215 1.202 1.191 1.179 1.156 1.139	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0202 0.0207 0.0215 0.0204 0.0200 0.0188 0.0182 0.0173	Signal Gain 844 844 843 843 843 843 843 842 842 842 842 843 843 843 843	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.84E+03 1.94E+03 1.94E+03 1.50E+03 1.64E+03 1.56E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01 1.88 1.82 1.72	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.43 2.31 2.26 2.13 2.06 1.95	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56 2.41 2.56 2.41 2.34 2.23
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.23 19.44 19.23 19.05 18.86 18.50 18.23 18.00	Tau 1.102 1.116 1.131 1.159 1.168 1.186 1.202 1.215 1.202 1.191 1.179 1.156 1.139 1.125	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0202 0.0207 0.0215 0.0204 0.0200 0.0188 0.0182 0.0173 0.0170	Signal Gain 844 844 843 843 843 843 843 842 842 842 842 843 843 843 844 844	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.65E+03 1.82E+03 1.82E+03 1.87E+03 1.94E+03 1.84E+03 1.50E+03 1.64E+03 1.56E+03 1.53E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01 1.88 1.82 1.72 1.69	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.43 2.31 2.26 2.13 2.06 1.95 1.92	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56 2.41 2.56 2.41 2.34 2.23 2.19
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.23 19.44 19.23 19.05 18.86 18.50 18.23 18.00 17.77	Tau 1.102 1.116 1.131 1.159 1.168 1.168 1.202 1.215 1.202 1.191 1.179 1.156 1.139 1.125 1.111	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0202 0.0207 0.0215 0.0204 0.0200 0.0188 0.0182 0.0173 0.0170 0.0169	Signal Gain 844 844 843 843 843 843 843 842 842 842 842 843 843 843 844 844 844	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.84E+03 1.84E+03 1.84E+03 1.50E+03 1.64E+03 1.56E+03 1.53E+03 1.52E+03	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01 1.88 1.82 1.72 1.69 1.68	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.31 2.26 2.13 2.06 1.95 1.92 1.91	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56 2.41 2.56 2.41 2.34 2.23 2.19 2.18
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Spin F	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44 19.23 19.44 19.23 19.05 18.86 18.50 18.23 18.00 17.77 Freq(Hz): 16.0	Tau 1.102 1.116 1.131 1.159 1.168 1.186 1.202 1.215 1.202 1.191 1.179 1.156 1.139 1.125 1.111 Aspe	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0202 0.0207 0.0207 0.0215 0.0204 0.0200 0.0188 0.0182 0.0173 0.0170 0.0169 ct Ratio(c/a)	Signal Gain 844 844 843 843 843 843 843 843 842 842 842 842 843 843 843 843 844 844 844 844	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.84E+03 1.84E+03 1.84E+03 1.50E+03 1.64E+03 1.56E+03 1.55E+03 1.53E+03 1.52E+03 Fill Ratio(%): 10	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01 1.88 1.82 1.72 1.69 1.69 1.68	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.31 2.26 2.13 2.06 1.95 1.92 1.91 Re Nut	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56 2.41 2.34 2.23 2.19 2.18 T1: 193.2
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Spin F Radius	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44 19.23 19.44 19.23 19.05 18.86 18.50 18.23 18.00 17.77 Freq(Hz): 16.0 s(cm): 3.176	Tau 1.102 1.116 1.131 1.159 1.168 1.186 1.202 1.215 1.202 1.215 1.202 1.191 1.179 1.156 1.139 1.125 1.111 Aspe Rad	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0202 0.0207 0.0207 0.0207 0.0215 0.0204 0.0200 0.0188 0.0182 0.0173 0.0170 0.0169 ct Ratio(c/a) Position(r/a)	Signal Gain 844 844 844 843 843 843 843 843 842 842 842 842 843 843 843 843 844 844 844 844 844 844	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.84E+03 1.84E+03 1.84E+03 1.70E+03 1.64E+03 1.56E+03 1.55E+03 1.53E+03 5ill Ratio(%): 10 Position (cm):	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01 1.88 1.82 1.72 1.69 1.69 1.68	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.31 2.26 2.13 2.06 1.95 1.92 1.91 Re Nur Alpha(Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56 2.41 2.34 2.23 2.19 2.18 n: 193.2 deg): 0.463
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Spin F Radius Gage	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44 19.23 19.44 19.23 19.05 18.86 18.50 18.23 18.00 17.77 Freq(Hz): 16.0 s(cm): 3.176 ID Num: 32	Tau 1.102 1.116 1.131 1.159 1.168 1.186 1.202 1.215 1.202 1.191 1.179 1.156 1.139 1.125 1.111 Aspe Rad Slope	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0202 0.0202 0.0207 0.0205 0.0204 0.0200 0.0188 0.0182 0.0173 0.0173 0.0170 0.0169 ct Ratio(c/a) Position(r/a)	Signal Gain 844 844 843 843 843 843 843 843 842 842 842 842 843 843 843 843 844 844 844 844 23148 2434	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.65E+03 1.74E+03 1.82E+03 1.87E+03 1.84E+03 1.84E+03 1.94E+03 1.50E+03 1.64E+03 1.56E+03 1.53E+03 1.53E+03 1.52E+03 Fill Ratio(%): 10 Position (cm):	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01 1.88 1.82 1.72 1.69 1.69 1.68	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.34 2.31 2.26 2.13 2.06 1.95 1.92 1.91 Re Nur Alpha(Channe	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56 2.41 2.34 2.23 2.19 2.18 m: 193.2 deg): 0.463 I D Num: 1
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Spin F Radius Gage Room	Coning Rate (Hz) 17.63 17.85 18.10 18.54 18.69 18.97 19.23 19.44 19.23 19.44 19.23 19.05 18.86 18.50 18.23 18.00 17.77 Freq(Hz): 16.0 s(cm): 3.176 ID Num: 32 Temp(°C): 23	Tau 1.102 1.116 1.131 1.159 1.168 1.186 1.202 1.215 1.202 1.215 1.202 1.191 1.179 1.156 1.139 1.125 1.111 Aspe Rad Slope 3.0 Visco	Amplitude (V rms) 0.0165 0.0171 0.0173 0.0183 0.0202 0.0207 0.0207 0.0207 0.0207 0.0207 0.0207 0.0204 0.0200 0.0188 0.0182 0.0173 0.0173 0.0170 0.0169 ct Ratio(c/a) Position(r/a) 9 (psi/mV): 0 05ity(cs): 524	Signal Gain 844 844 843 843 843 843 843 842 842 842 842 842 843 843 843 844 844 844 844 844 844 844	Pressure (dyne/cm^2) 1.49E+03 1.54E+03 1.56E+03 1.65E+03 1.65E+03 1.82E+03 1.87E+03 1.87E+03 1.94E+03 1.94E+03 1.94E+03 1.50E+03 1.50E+03 1.56E+03 1.55E+03 1.53E+03 1.52E+03 Fill Ratio(%): 10 Position (cm): 10 Intercept(psi): 10 Density(0/cc): 0	Minimum Cp 1.64 1.70 1.72 1.83 1.94 2.03 2.09 2.17 2.06 2.01 1.88 1.82 1.72 1.69 1.69 1.68 00 1.380 1.6518 0.968	Cp 1.86 1.93 1.95 2.07 2.18 2.28 2.34 2.31 2.26 2.13 2.06 1.95 1.92 1.91 Re Nur Alpha(Channe Cyl. Ty	Maximum Cp 2.13 2.20 2.23 2.35 2.47 2.58 2.65 2.75 2.61 2.56 2.41 2.34 2.34 2.23 2.19 2.18 m: 193.2 deg): 0.463 I ID Num: 1 pe: Lucite

Table 2: Oscillatory pressure data for Re = 193.2, alpha = 0.463 deg., r/a = 0.667 and r/a = 0.434.

16

	Coning Rate-		Amplitude	Signal	Pressure	Minimum		Maximum
Run	(Hz)	Tau	(V rms)	Gain	(dyne/cm^2)	Ср	Ср	Ср
1	17.56	1.098	0.0410	623	4.95E+03	2.66	2.91	3.19
2	17.90	1.119	0.0419	622	5.07E+03	2.61	2.98	3.26
.3	18.64	1.165	0.0435	622	5.27E+03	2.83	3.10	3.39
4	19.08	1.193	0.0464	622	5.62E+03	3.02	3.30	3.61
5	19:47	1.217	0.0502	621	6.09E+03	3.28	3.58	3.90
6	19.64	1.228	0.0516	621	6.26E+03	3.37	3.68	4.01
7	19.00	1.188	0.0462	622	5.59E+03	3.01	3.29	3.59
8	18.77	1.173	0.0456	622	5.52E+03	2.97	3.25	3.55
9	18.38	1.149	0.0446	622	5.40E+03	2.90	3.18	3.47
10	17.65	1.103	0.0415	623	5.02E+03	2.69	2.95	3.23
11	18.13	1.133	0.0437	622	5.29E+03	2.84	3.11	3.40
12	18.59	1.162	0.0447	622	5.41E+03	2.91	3.18	3.48
13	18.90	1.181	0.0458	622	5.54E+03	2.98	3.26	3.56
14	19.53	1.221	0.0502	621	6.09E+03	3.28	3.58	· 3.90
Spin I	Freq(Hz): 16.0	0 Aspe	ect Ratio(c/a):3.148	Fill Ratio(%): 1	00	Re Nu	m: 193.2
Radiu	s(cm):3.176	Rad	Position(r/a)	:0.667	Position (cm):2	2.120	Alpha((deg): 0. <u>9</u> 87
Gage	ID Num: 33	Slop	e (psi/mV):	0.7722	Intercept(psi):	-1.1838	Chann	el ID Num:2
Room	Temp(°C): 2	3.0 Visc	osity(cs): 52	4.8	Density(g/cc):0.	968	Cyl. Ty	ype: Lucite
Motio	n: Prograde	Gag	e Excitation(V DC): 1	0.0			
								•
1								
1								
	ı			1	,			
	Coning Rate		Amplitude	Signai	Pressure	Minimum		Maximum
Run	Coning Rate (Hz)	Tau	Amplitude (V rms)	Signai Gain	Pressure (dyne/cm^2)	Minimum Cp	Ср	Maximum Cp
Run 1	Coning Rate (Hz) 17.56	Tau 1.098	Amplitude (V rms) 0.0320	Signai Gain 844	Pressure (dyne/cm^2) 2.88E+03	Minimum Cp 1.53	<u>Cp</u> 1.70	Maximum Cp 1.87
Run 1 2	Coning Rate (Hz) 17.56 17.90	Tau 1.098 1.119	Amplitude (V rms) 0.0320 0.0356	Signai Gain 844 844	Pressure (dyne/cm^2) 2.88E+03 3.21E+03	Minimum Cp 1.53 1.71	<u>Cp</u> 1.70 1.89	Maximum Cp 1.87 2.07
Run 1 2 3	Coning Rate (Hz) 17.56 17.90 18.64	Tau 1.098 1.119 1.165	Amplitude (V rms) 0.0320 0.0356 0.0384	Signai Gain 844 844 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03	Minimum Cp 1.53 1.71 1.85	Cp 1.70 1.89 2.04	Maximum Cp 1.87 2.07 2.23
Run 1 2 3 4	Coning Rate (Hz) 17.56 17.90 18.64 19.08	Tau 1.098 1.119 1.165 1.193	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425	Signal Gain 844 844 843 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03	Minimum Cp 1.53 1.71 1.85 2.06	Cp 1.70 1.89 2.04 2.25	Maximum Cp 1.87 2.07 2.23 2.47
Run 1 2 3 4 5	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47	Tau 1.098 1.119 1.165 1.193 1.217	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444	Signal Gain 844 844 843 843 843 842	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15	Cp 1.70 1.89 2.04 2.25 2.36	Maximum Cp 1.87 2.07 2.23 2.47 2.58
Run 1 2 3 4 5 6	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64	Tau 1.098 1.119 1.165 1.193 1.217 1.228	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460	Signal Gain 844 844 843 843 842 842 842	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23	Cp 1.70 1.89 2.04 2.25 2.36 2.44	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67
Run 1 2 3 4 5 6 7	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402	Signal Gain 844 843 843 843 842 842 842 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34
Run 1 2 3 4 5 6 7 8	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382	Signal Gain 844 843 843 843 842 842 842 843 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.01E+03 3.63E+03 3.63E+03 3.45E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22
Run 1 2 3 4 5 6 7 8 9	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358	Signal Gain 844 843 843 843 842 842 843 843 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.45E+03 3.23E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09
Run 1 2 3 4 5 6 7 8 9 10	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38 17.65	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149 1.103	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358 0.0318	Signal Gain 844 843 843 843 842 842 842 843 843 843 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.45E+03 3.23E+03 2.86E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72 1.52	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90 1.68	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09 1.86
Run 1 2 3 4 5 6 7 8 9 10 11	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38 17.65 18.13	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149 1.103 1.133	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358 0.0318 0.0337	Signal Gain 844 843 843 843 842 842 842 843 843 843 844 844	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.45E+03 3.23E+03 2.86E+03 3.04E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72 1.52 1.62	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90 1.68 1.79	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09 1.86 1.96
Run 1 2 3 4 5 6 7 8 9 10 11 12	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38 17.65 18.13 18.59	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149 1.103 1.133 1.162	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358 0.0318 0.0337 0.0358	Signal Gain 844 843 843 843 843 842 843 843 843 844 844 844	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.45E+03 3.23E+03 2.86E+03 3.04E+03 3.23E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72 1.52 1.62 1.72	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90 1.68 1.79 1.90	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09 1.86 1.96 2.09
Run 1 2 3 4 5 6 7 8 9 10 11 12 13	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38 17.65 18.13 18.59 18.90	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149 1.103 1.133 1.162 1.181	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358 0.0318 0.0337 0.0358 0.0' \$9	Signai Gain 844 843 843 843 843 842 843 843 843 844 844 843 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.45E+03 3.23E+03 2.86E+03 3.04E+03 3.23E+03 3.33E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72 1.52 1.62 1.72 1.78	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90 1.68 1.79 1.90 1.96	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09 1.86 1.96 2.09 2.15
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38 17.65 18.13 18.59 18.90 19.53	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149 1.103 1.133 1.162 1.181 1.221	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358 0.0318 0.0337 0.0358 0.0° \$9 0.0428	Signai Gain 844 843 843 843 843 842 843 843 843 844 844 843 843 843 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.45E+03 3.23E+03 2.86E+03 3.23E+03 3.23E+03 3.33E+03 3.86E+03	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72 1.52 1.62 1.72 1.78 2.07	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90 1.68 1.79 1.90 1.90 1.96 2.27	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09 1.86 1.96 2.09 2.15 2.49
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Spin I	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38 17.65 18.13 18.59 18.90 19.53 Freq(Hz): 16.0	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149 1.103 1.133 1.162 1.181 1.221 0 Aspect	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358 0.0358 0.0318 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358	Signai Gain 844 843 843 843 843 843 843 843 843 844 844	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.63E+03 3.23E+03 2.86E+03 3.23E+03 3.23E+03 3.33E+03 3.33E+03 3.86E+03 Fill Ratio(%): 10	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72 1.52 1.62 1.72 1.78 2.07	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90 1.68 1.79 1.90 1.90 1.96 2.27 Re Nut	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09 1.86 1.96 2.09 2.15 2.49 m: 193.2
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Spin I Radiu	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38 17.65 18.13 18.59 18.90 19.53 Freq(Hz): 16.0 s(cm): 3.176	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149 1.103 1.162 1.181 1.221 0 Aspending to the second	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358 0.0358 0.0358 0.0318 0.0356 0.0356 0.0356 0.0384 0.0425 0.0356 0.0384 0.0425 0.0356 0.0384 0.0425 0.0356 0.0384 0.0425 0.0356 0.0384 0.0425 0.0356 0.0384 0.0425 0.0356 0.0384 0.0425 0.0356 0.0384 0.0425 0.0356 0.0382 0.0358 0.0377 0.0358 0.0378 0.0358 0.0378 0.0358 0.0378 0.0378 0.0358 0.0428 0.0358 0.0378 0.0358 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0428	Signai Gain 844 843 843 843 843 843 843 843 843 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.63E+03 3.23E+03 3.23E+03 3.24E+03 3.23E+03 3.34E+03 3.33E+03 3.36E+03 Fill Ratio(%): 10 Position (cm):	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72 1.52 1.62 1.72 1.78 2.07 00 1.380	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90 1.68 1.79 1.90 1.96 2.27 Re Nut Alpha(Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09 1.86 1.96 2.09 2.15 2.49 m: 193.2 deg): 0.987
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Spin f Radiu Gage	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38 17.65 18.13 18.59 18.90 19.53 Freq(Hz): 16.0 s(cm): 3.176 ID Num: 32	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149 1.103 1.162 1.181 1.221 Aspe Rad Slop	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358 0.0358 0.0318 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0428	Signai Gain 844 843 843 843 843 843 843 843 843 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.63E+03 3.23E+03 3.23E+03 3.24E+03 3.23E+03 3.23E+03 3.33E+03 3.36E+03 Fill Ratio(%): 10 Position (cm): Intercept(psi): 1	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72 1.52 1.62 1.72 1.78 2.07 00 1.380 .6518	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90 1.68 1.79 1.90 1.96 2.27 Re Nur Alpha(Channe	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09 1.86 1.96 2.09 2.15 2.49 m: 193.2 deg): 0.987 el ID Num:1
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Spin F Radiu Gage Room	Coning Rate (Hz) 17.56 17.90 18.64 19.08 19.47 19.64 19.00 18.77 18.38 17.65 18.13 18.59 18.90 <u>19.53</u> Freq(Hz): 16.0 s(cm): 3.176 ID Num: 32 Temp(°C): 23	Tau 1.098 1.119 1.165 1.193 1.217 1.228 1.188 1.173 1.149 1.103 1.162 1.181 1.221 0 Aspe Rad Slop 3.0 Visc	Amplitude (V rms) 0.0320 0.0356 0.0384 0.0425 0.0444 0.0460 0.0402 0.0382 0.0358 0.0358 0.0318 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0428 Position(r/a) e (psi/mV): 0 osity(cs): 52	Signai Gain 844 843 843 843 843 843 843 843 843 843	Pressure (dyne/cm^2) 2.88E+03 3.21E+03 3.46E+03 3.83E+03 4.01E+03 4.15E+03 3.63E+03 3.63E+03 3.23E+03 3.23E+03 3.23E+03 3.23E+03 3.23E+03 3.33E+03 3.86E+03 3.83E+03 3.86E+030	Minimum Cp 1.53 1.71 1.85 2.06 2.15 2.23 1.94 1.84 1.72 1.52 1.62 1.72 1.78 2.07 00 1.380 .6518 0.968	Cp 1.70 1.89 2.04 2.25 2.36 2.44 2.13 2.03 1.90 1.68 1.79 1.90 1.96 2.27 Re Nur Alpha(Channe Cyl. Ty	Maximum Cp 1.87 2.07 2.23 2.47 2.58 2.67 2.34 2.22 2.09 1.86 1.96 2.09 2.15 2.49 m: 193.2 deg): 0.987 el ID Num:1 rpe: Lucite

Table 3: Oscillatory pressure data for Re = 193.2, alpha = 0.987 deg., r/a = 0.667 and r/a = 0.434.

.

18

Intentionally left blank.

References

- 1. Whiting, R.D., "An Experimental Study of Forced Asymmetric Oscillations in a Rotating Liquid-Filled Cylinder," ARBRL-TR-2376, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, October 1983 (AD A107948)
- 2. Nusca, M.J., D'Amico, W.P., and Beims, W.G., "Pressure Measurements in a Rapidly Rotating and Coning, Highly Viscous Fluid," ARBRL-MR-3325, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, November 1983. (AD A136824)
- 3. Hepner, D.J., Soencksen, K.P., Davis, B.S., and Maiorana, N.G., "Internal Pressure Measurements For a Liquid Payload at Low Reynolds Numbers," BRL-MR-3674, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, June 1988. (AD A197438)
- 4. Hepner, D.J., Kendall, T.M., Davis, B.S., and Tenly, W.T., "Pressure Measurements in a Liquid Filled Cylinder Using A Three Degree Of Freedom Flight Simulator," ARBRL-MR-3560, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, December 1986. (AD A177872)
- 5. Stewartson, K., "On the Stability of a Spinning Top Containing Liquid," Journal of Fluid Mechanics, Vol. 5, Part4, September 1959, pp. 577-592.
- 6. D'Amico, W.P., "Stability of Satellites and Unusual Aerodynamic- Shaped-Vehicles Carrying Liquid Payloads," ARBRL-MR-2392, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, June 1974. (AD 921454L)
- 7. Murphy, C.H., "Angular Motion of a Spinning Projectile with a Viscous Liquid Paylead, "ARBRL-MR-3194, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, August 1982. (AD A118676)
- 8. Murphy, C.H., "Stability of Liquid-Filled Projectiles With Unusual Coning Frequencies," BRL-MR-3530, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, July 1986. (AD A171460)
- 9. Hall, P., Sedney, R., Gerber, N., "Fluid Motion in Spinning, Coning Cylinder Via Spatial Eigenfunction Expansions," BRL-TR-2813, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, August 1987.
- Kayser, L.D., D'Amico, W.P., Brannan, W.I., "Free Gyroscope Experiments of Two Immiscible Liquids in a Partially Filled Cylinder," BRL-MR-3484, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, December 1985. (AD A1 64937)

INTENTIONALLY LEFT BLANK.

List of Symbols

a ·	internal cylinder radius
C	half height of cylinder
C _p	nondimensional pressure coefficient
f	fill ratio of cylinder
1	internal length of cylinder (l=2c)
р.	inertial spin rate of cylinder
Р	oscillating pressure magnitude
Re	Reynolds number = pa^2/n
r	radial position
Ω.	cylinder coning angle
ρ	fluid density
Φ1	cylinder inertial coning rate
٢	ratio of coning rate to spin rate
v	fluid kinematic viscosity

INTE

*

Intentionally left blank.

. .

			· · ·	
	No of		No of	• • •
	<u>Copies</u>	Organization	Copies	Organization
Unclass., unlimit	ied)12	Administrator	1	Commander
Unclass, limited) 2	Defense Technical Info Center		US Army Missile Command
(Classified)	2	ATTN: DTIC-DDA		ATTN: AMSMI-RD-CS-R (DOC)
		Cameron Station	i.	Redstone Arsenal, AL 35898-5010
		Alexandria, VA 22304-6145		
			1	Commander
	1	HQDA (SARD-TR)		US Army Tank Automotive Command
•		WASH DC 20310-0001		ATTN: AMSTA-TSL (Technical Library)
		· ·		Warren, MI 48397-5000
	1	Commander	•	
· .		US Army Materiel Command	1	Director
		ATTN: AMCDRA-ST		US Army IRADUC Analysis Command
		Alexandria VA 22222 0001	· · · ·	Millin: Alaa-SL White Sanda Missile Danas ND4 99000 6600
		Alexandria, VA 22555-0001	1	white Sands Misslie Range, NM 88002-5502
,	1	Commander	(Class. only)]	Commandant
	•	US Army Laboratory Command		US Army Infantry School
		ATTN: AMSLC-DL		ATTN: ATSH-CD (Security Mor.)
		Adelphi, MD 20783-1145		Fort Benning, GA 31905-5660
			1	
	2	Commander	(Unclass. only)]	Commandant
	•	Armament RD&E Center		US Army Infantry School
		US Army AMCCOM		ATTN: ATSH-CD-CSO-OR
•		ATTN: SMCAR-MSI		Fort Benning, GA 31905-5660
		Picatinny Arsenal, NJ 07806-5000	(6)	
	· •	Commenter	(CIME OBIY)]	The Rand Corporation
	2	Commander		P.U. BOX 2138
		US Amy AMCCOM		Santa Monica, CA 90401-2138
		ATTN: SMCAR-TDC	1	Air Force Armament Laboratory
		Picatinny Arsenal, NJ 07806-5000		
				Eglin AFB, FL 32542-5000
	1	Director		
		Benet Weapons Laboratory		Aberdeen Proving Ground
•		Armament RD&E Center	1	Dir, USAMSAA
		US Army AMCCOM	1	ATTN: AMXSY-D
		ATTN: SMCAR-LCB-TL		AMXSY-MP, H. Cohen
·		watervliet, NY 12189-4050	1	Cdr, USATECOM
	1	Commondor		ATTN: AMSTE-TO-F
	I	Lommander US Army Armoment Musician	•	Car, URDEC, AMCCOM
		and Chemical Command		ATIN: SMCUK-RSP-A
	۰.			SMCCP MCI
		Rock Island, IL 61299-5000	,	Dir VIAMO
		· · · · · · · · · · · · · · · · · · ·		ATTN: AMSLC-VI-D
	1	Commander		
•		US Army Aviation Systems Command		
		ATTN: AMSAV-DACL		
		4300 Goodfellow Blvd.		
,		St. Louis, MO 63120-1798		
•	_			
	1	Director		
		US Army Aviation Research		

and Technology Activity Ames Research Center Moffett Field, CA 94035-1099

USER EVALUATION SHEET/CHANGE OF ADDRESS

This laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers below will aid us in our efforts.

- Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)
- How, specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.)
- Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.
- General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

BRL Report	Number	Division Symbol
Check here	if desire to be removed from	n distribution list.
Check here	for address change.	
Current	address: Organization Address	·

Director U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-5066 OFFICIAL BUSINESS BUSINESS REPLY LABEL FIRST CLASS PERMIT NO. 12062 WASHINGTON D C POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

> Director U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-9989