AD-A240 076
T

LABUORATORY FOR
COMPUTER SCIENCE

7 }M

S

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

MIT/LCS/TM-390

TYPE ABSTRACTION RULES
FOR REFERENCES:
A COMPARISON OF
FOUR WHICH HAVE
ACHIEVED NOTORIETY

James William O'Toole Jr.

DTIC

ELECTE $®
SEP.0 4 1991}
UTION BIX 2]
N

Whmbﬂa
Distribution Unlinited

August 1991

£48 TECHNNILOGY SOUARE, CAMBRIDGE, MASSACHUSETTS 02139

91-09 |
MO IIIIINM !IIHII! LY 4

REPORT DOCUMENTATION PAGE

ta REPORT SECURITY CLASSIFICATION ‘b RESTRICTIVE MARKINGS
Unclassilied
2a. SECLRITY CLASSIFICATION AUTHORTY 3. OISTRIBUTICN. AVAILABILITY OF REPORT T
- Approved Zor public release; distributicrn
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE ;- T i rad
1s unlimiced,
3 SERFORMING CRGANIZATION REPORT NUMBER(S) S, MONITORING GRGANIZATION REPORT NUMBEA(S))
, N 4-83-K-0125 : '
M1ESLCS/ TN 390 NOOO14-83-K 2 ‘
:
Ra MAME OF 2I3FORMING CRGANIZATION 6o OFFiCE SYMBOL 7a. NAME OF MCNITORING ORGANIZATION - !
B o o (If applicable} . . L, B
MI7T Labd Zor Computer Scilenca Office of Naval Research/Dept. of Navw
ac. ADCRESS (Cty, State, and ZIP Coge) 7b. ADORESS (Gty, State, and 2/P Code)
343 Technolngyv Squarea Informaticn Svstcems Program
Cambridge, A 02139 Arlingron, Va 22217
oy I
33. NAME OF TLUNDING ./ SPONSQORING 8b. OFFICE SYMBOL 3. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPN ZOD
ic. ADDRESS City, State, ana ZiP Code) 10. SOURCE OF fUNDING NUMBERS N
s PROGRAM PROJECT TASK WORK UNIT
+7C. ELEMENT NO NO. NO ACCESSICH wn
R R TE Bl

LE (nciude Security Classification)

"vae Abstraction Rules for References:

A Comparison

of Four Winich Have Achieved Notoriety

o

i
QT R —

2 SISONAL ALTHOR(S) James William O'Tcolte, Jr.
13b TIME COVERED 14 DATE GF REPORT 'Yefr, Month, Day) |15 PAGE COUNT 0
220M TO August 199 :
"5 UPPLIMENTARY NOTATION
7 COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if pecessary and /degtlfgibgnblock number)
SELD | GROLP | SUB-GROUP type systems, polymorphic references, mutd >
i T effect systems, iype inference, type reconstructlor;, 5
- ? | imperative types, weak polymorphism, Standard ML, FX-

>

H a

type safety in the presence

the type abstraction ru

I present four type abstraction

i by various authors
introduced by of mutable data. Each of

les is discussed in the

the Janguage 10 which is was intro
abstraction rules are compared.

8577407 (Connnue on reverse if necessary and identify by block number)

rules which have bee‘n
to permit polymorphic

context of
duced, and the various

JO DISTRIBUTION/AVAILABILITY OF ABSTRACT

(3 unciassiFieounumiTso [SAME As RPT CJ oTic UsSERS

DY aiaTRACT SE_CURITY CLASSIFICATION
U:ciassified

.23 NAME OF RESPONSIBLE INDIVIDUAL
Carul Nicolora

22b. TELEPHONE (Inc/lude Area Code) | 22¢c. OFFICE SYMBOL

(617) 253-33934

wewwr

00 FUKRM 1473, 3a var

83 APR edition may be used until exhaysted

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

tl.l:& le Printng Otfies: 10BB—807-047
Unclassified

Type Abstraction Rules for References:
A Comparison of Four Which Have Achieved Notoriety

James William O'Toole Jr.*

Abstract

I present four type abstraction rules which have been
introduced by various authors to permit polymorphic
type safety in the presence of mutable data. Each of
the type abstraction rules is discussed in the context of
the language in which is was introduced, and the various
abstraction rules are compared.

Categories and Subject Descriptions: D.3.1 [Program-
ming Languages] - Formal Cefinitions and Theory;
D.3.3 [Programming Langua zes] - Language Con-
structs: Implicit Typing; D.1.m [’rogramming Tech-
niques) -~ Miscellaneous: Polymorphic References;

General Terms: Languages, Type Theory, Polymor-
phism, Reference Values.

Additional Key Words and Phrases: type systems, poly-
morphic references, mutation, effect systems, type infer-
ence, type reconstruction, imperative types, weak poly-
morphism, Standard ML, FX-89.

*National Science Foundation Graduate Fellow.
This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by the Office of Naval Research under contract number N0O0OO14-
83 K-0125.
Authors’ address: MIT Laboratory for Computer Science, 545
Technology Square, Cambridge, Massachusetts 02139.
E-mail: james@zermatt.lcs.mit.edu

1 Type Abstraction Rules
The type abstraction rules I consider here are:

1. FX-89-pure: expression abstracted must be pure
2. Tofte-applicative: one-level store types
3. Damas-III: two-level store types

4. MacQueen-weak: type variables have strength

2 FX-89-pure

Attaches specific side-effect information to all function
arrows and enforces the correctness of these effect spec-
ifications. The expression which is abstracted with re-
spect to a type variable must have no (immediate) side-
effects.

This ought to make it a very restrictive rule, as com
pared to the others. (Aside from the fact that I expect
the checking of the side-effect specifications to disallow
more programs.) However, inserting an explicit type ab-
straction at the appropriate point within the expression
might alleviate the problem.

2.1 FX-89 Language Syntax

¢t + I ::= [Identifiers

x : P ::= Primitive types

v:U ::= P primitive type
I type identifier
U—U function

e : E ::= I variable
(lambda (I) E) lambda
(E E) application

(let (I E) E) generic-let

The type domain U contains the types which are sup-
r'ted by the programmer in explicit type declarations.
‘T'he type of a function encodes the type of its argument

and its result. If the type of the argument is 1uonomor-
phic, then it may be omitted. The type Vt.v represents
the type of polymorphic values abstracted over the type
parameter ¢.

In the expression domain, lambda abstracts E over
the ordinary variable I.

2.2 Deductive System

I present the typing system of IFX as as formal deduc-
tion system consisting of a set of type reconstruction
rules. The type system contains generic (i.e. general)
tyne =rnbles, and distinguishes between these generic
type variables and the type identifiers which appear in
user-supplied types. The type system also distinguishes

between monomorphic and polymorphic types:
a : G ::= General type variables

p: M = P primitive type

I type identifier
G general type variable
M — M function

T :T ::= P primitive type
I type identifier
G general type variable
T—T function

¥1;..I,.T polymorphic type

The IFX typing rules make use of an important dis-
tinction between the M and T type domains. The rules
are designed so that M types may be omitted from
formal argument type declarations, but T types may
not. Thus, the different levels in the type syntax spec-
ify the restrictions on the input programs. The use of
syntactically-specified restrictions is intended to com-
municate clearly to the programmer the limitations of
the type reconstruction system.

Type Schemes

The IFX type system supports the generic polymor-
phism found in ML, as well as the explicit polymerphism
found in Reynolds’ second-order polymorphic lambda
calculus. In order to provide generic polymorphism,
type schemes are defined which represent the generic
(i.e. general) type of a variable which is permitted mul-
tiple instantiations:

Definition (Type Scheme). A type scheme 7 is a
term of the form

Vai..an.T,

where a;...a,, are the generic variablesof r € ‘I

_ The symbols ¥ and V are distinguished deliberately:
V binds the generic type variables of a type scheinic, and
V binds type variables within a type.

Definition (Alpha-renaming). Types 7 and 7" are
alpha-renamable (written v ~ ') iff some renaming of
type variables bound in r produces r'.

Definition (Instantiation). The type r’ is an in-
stance of the scheme 1 = Ya,...an.7 (written n > /) iff
there are moncmorphic gy ..., such that vy /o] ~ 7'
(The > relation extends to type schemes by 5 » 3 1ff
Ve »r=2>n>71)

Note that only M types may be substituted to produce
instantiations, and that it is assumed that substitution
takes place with renaming of any bound type variables
to avoid capture. The result of substituting j for ¢ in
7 will be written 7[u/t]. The type scheme 5 = V.7,
having no generic type variables, will occasionally be

abbreviated as 7.

The inference rules for explicitly typed terms are pre-
sented first. A type assignment A maps each variable in
its domain to a type scheme. The notation A, refers to
the type assignment A with the assignment for variable
z removed.

The notation FGV(7) refers to the free general type
variables of 7, and FTV(r) to refer to the free type iden-
tifiers of 7. Similarly, FGV(A) refers to the free general
type variables of the type schemes in the assignment A.
Also, Gen(A, 1) is defined as follows:

Definition (Generalization). The generalization
of 7 with respect to A (written Gen(A4, 1)), is the type
scheme n = Ya,.r, where {a;} = FGV(r) — FGV(A).

Typing Rules
The type reconstruction rules of IFX are as follows:

ILAMBDA

Acr+(z:p)Fe:r
AF (Qambda () D) :p— 7

APPL
AlFe:1, — 1

Are,: 1,
Al (e ez): 7

The above rules describe the typing requirements of
value abstraction and value application.

The following rules describe the typing requirements
of variables and the ML-style generic 1et construct.

VARINST .
(z:Va;.7)EA
Al z:rlpi/ai]

ILET
Albey:n
At ey : 1y = Gen(A,ny) > Gen(A, 1))
Az + (z:Gen(A,n)Fe:T
Al (let (zey) e): 7

Generic lat

The ILET and VARINST rules provide the ML-style
generic let. ILET associates a generic type scheme
with the let-bound variable, and VARINST permits
each occurence of the variable to be independently as-
signed any instance of its generic type scheme. The
convenience of automatic generalization and instantia-
tion are provided by these two rules. In IFX, the typing
rules permit this convenience with the caveat that the
automatically deduced type parameters be M types.

The typing power of the ILET rule is equivalent to
that provided by rewriting the let expression in the
usual way, while making use of open and close:

((lambda (z:7) e[(open z)/z]) (close ¢;)).

However, this transformation is not pure syntactic
sugar, because it requires 7, the explicitly polymorphic
type of the bound variable.

3 Tofte-applicative

Contaminates all type variables appearing in any type
expression at which the ref constructor is instantiated.
The contaminated type variables are imperative, the
others are applicative. This distinction is maintained
by iype abstraction, and is enforced at function call
houndatries, etc. The abstraction rule does not permit
abstractions of expansive expressions with respect to
imperative type variables; expansive expressions are lei
and application expressions.

2.1 Definitions

The typing system distinguishes between imperstive and
applicative type variables:

t € AppTyVar
u € ImpTyVar
a € TyVar = AppTyVarVU ImpTyVar

T : M ::= P primitive type
G type variable
M — M function
rref reference type

Definition (Type Closure). The type closure of T
with respect to A (written Closa7), is the type scheme
n = Vai.r, where {a;} = tyvata v — tyvars A.

Definition (Applicative Type Closure). The ap-
plicative type closure of T with respect to A (written
AppClos, 7}, is the type scheme n = Va;.7, where
{ai} = apptyvars 7 — apptyvars A.

When a type scheme is instantiated, only imperative
types may be substituted for imperative type variables.
An expression is considered to be ezpansive if its evalua-
tion might expand the domain of the store (i.e., allocate
mutable data). The classification adopted in [Tofte87]
is that let expressions and applications are expansive,
but lambda abstractions and variable accesses are not.

3.2 Typing rules

The reference creation operator retf is assigned the im-
perative type Vu.u — uref. The rules which provide
type abstraction of expansive and non-expansive ex-
pressions in the imperative/applicative system are as
follows:

VARINST
(z:Vay.r)EA
ArFz: T[p.'/a.']

LET-Expansive

Aley:n
€y is expansive.
Az +(z: AppClos,) Fe: 1
At (let (ze)) e):71

LET-Non-expansive

Ak €y N
€p 18 LOu-LApansive.
Az +(z:Closgam)bFe:r
AF (let (zep)) : 1

3.3 Applicative Types and FX-89

In FX-89, type abstraction is permitted only when the
side-effect specifications ensure that the polymorphic
expression is referentially transparent. [Tofte87) takes a
different approach, based on the concept of applicative
types. Tofte classifies certain expressions as ezpansive,
and permits type abstraction of these expressions only
with respect to applicative type variables. This type ab-
straction rule permits different type abstractions than
does ithe FX 89 pure-type-abstraction rule, as [will
show later. Perhaps the imperative typing discipline
can be combined with the type reconstruction system
of FX-85.

4 Damas-II11

Maintains a two level version of imperative types, distin-
guishing those type variables which have been contam-
inated already from those which will become contami-
rated by further application. The deductions carry a
set of type variables, and so also do any type schemes
which are arrows. Types, however, do not carry sets of
type variables, nor is there more than a singie top-level
such set in a type scheme.

4.1 Definitions

The typing system defines schemes to include a set of
type variables:

a €TyVar
r:T ::= P primitive type
G type variable
T—T function
rref reference type
n:85 :::= T type
T—-T=*xA impure function
Va.n polymorphic type

Definition (Type Closure). The type closure of 5
with respect to type assignment A and type variables

A (written DClos 4 An), is the type scheie 1 = Yo,
where {a;} = tyvars 5 — (tyvars Atyvars A.

When a type scheme is instantiated, the substitution
18 used to expand the set of type variables, and the sct
of type variables may be spuriously expanded as well.

4.2 Typing rules

The reference creation operator ret is assigned the im-
perative type Vt.t — tref * {t}. The rules which pro-
vide type abstraction and instantiation are as follows.

DVARINST
(z :Va;.7)eE A
Al z: TUI{/O,'] ¢

DLET
Al ep:m*xA

Az +(z: DClosam) Fe:n* A
Al (let 7~ ey) €) :npx A

The rules which describe the typing requirements of
value abstraction and value application are as follows:
DLAMBDA

A-+(z:1)Fe:TxA
AF (lambda (z) €): (1, > 7+ A)x ¢

DAPPL
Abe:(ra—7)*A
Al e, 1, xA
AlF (e eg) 1 x A

5 MacQueen-weak

Attaches numbers to type variables which measure their
“weakness” (strength). The numbers indicate how
many applications must take place before a reference to
the type variable might have been created. Abstractioun
is permitted only with respect to type variables whose
weakness remains positive. Weakness is downward con-
taminating, and the reference constructor is the source
of contamination. A further restriction is not yet well
understood: An instantiation of a let-bound variable is
strength-limited somehow, related to the outermost ab-
straction level at which the expression of which it is part
appears as an operand. Better figure this out.

5.1 Definitions

The typing system distinguishes between imperative and
applicative type variables:

w € Strength={...,-1,0,1, ..., 00}
a € Tyvar
o¥ € WeakTyVar = TyVar x Strength

T : K 1= P primitive type
G type variable
M — ¥ function
Tref reference type

Definition (Strength Limit). The type 7 is w-
strength limited, written [r]¥, iff all type variables in
t with non-infinite strength have strength less than or
equal to w.

Definition (Strengthening). The sirengtheningof r,
written [r]**, is the type in which all type variables
with non-infinite strength have incrementally larger
strength. So [rs = n)tt = [r]*t = |n]tt, and
[@®]tt = a®, but [a¥]tt = avtl.

Definition (Weak Type Closure). The weak type
closure cf T with respect to A (written WeakClos7), is
the type scheme n = Ve’ .7, where {a;} = tyvars 7 —
tyvars A, and w; = min{w|a¥ € tyvars 7}.

When a type scheme is instantiated, the type substi-
tuted for a type variable must not be stronger than the
type vanable.

Weak Typing Rules

The type reconstruction rules of MacQueen-weak are as
follows:
WLAMBDA

Ar+(z:p)be:r
At (lambda (z) e):[u — 1]+t

Are:[r, = 1]t
Abe, i1,
[ra]°
Al (e e) : 7e

The above rules describe the typing requirements of
value abstraction and value application.

The following rules describe the typing requirements
of variables and the ML-style generic let construct.

WINST
(z:Va¥'r)EA
(]

Atz 7[r /0]

WLET

Aley:n
A; + (z : WeakClosam) Fe: 7
Al (let (zep) €):1

The reference value constructor ret is assigned the
type Va'l.a! — alref.

6 Comparison of
Abstraction Rules

6.1 Damas-III > Tofte-applicative

1) let £ =let x = (fnx=>1x)1
in (fn y => !{(ref y))
end

in (£ 1; £ true)
end

[Tofte87] provides this example on page 73.

Damas-III can type this system because the let ex-
pression defining £ is abstractable with respect to the
type of y. This is the case because the two-level analysis
of the allocated types of the let expression reveals that
none are already allocated, although the type of y wiii
be allocated by further application.

Tofte-applicative cannot type this system because the
one-level analysis reveals merely that the type of y is-or
will-be allocated, and the let expression is considered
expansive, so the type abstraction i8 not permitted.

6.2 Tofte-applicative > Damas-III

(2) No known example.

[Tofte87] states or page 73 that an embedding exists.

6.3 MacQueen-weak >
Tofte-applicative, Damas-III

3
let fold = fn £ => fn i => fn 1 =>
let data = ref 1
result = ref i
in (while (!data <>) do

example. because the two-level analysis also reveals that
the lambda expression defining £ has not yet allocated
at any types.)

MacQueen-weak cannot type this example, becavse
rid must be given a type with strength one, and yet rid,
after instantiation, is applied twice. This lowers the
strength so that the strength of the type of y becomes
zero. Therefore, the type abstraction is not permitted.

(result := f(hd(!data)){(!result);
data := tl(!'data));
tresult)

end
in let fast_reverse = fold cons []
in (fast_reverse [3,5,7];
fast reverse [true,true,false])
end
end

[Tofte87), Example 4.5, mentioned on page 74.

MacQueen-weak can type this example, because the
counting methods used by the typing algorithm deduce
that fold must be applied three times before any al-
location occurs, and since fast_reverse is defined by
applying fold only twice, fast_reverse still has a type
of strength one, and so may be generalized with respect
to the type of the elements of the list.

Tofte-applicative cannot type this example because
the one-level store typing analysis considers the expres-
sion (fold cons []) to be expansive, and therefore
does not permit the type abstraction.

Damas-1II cannot type this example because the two-
level method also considers all type variables to have
been allocated by the evaluation of (fold cons (),
and therefore does not permit the necessary type ab-
straction.

8.4 Damas-ITI, Tofte-applicative >

MacQueen-weak
(4) let rid = fn x => !(ref x)
in let £ = fny => rid (fn a => a) y
in (£ 0;
£ true)
end

end

Tofte-applicative can type this example, because the
defining expression for is a lambda abstraction, which
is considered non-expansive, and so the type abstraction
with respezt to the type of y is permitted even though
it is an imperative type. (Damas-III can also type this

6.5 FX-89-pure > Damas-III,
Tofte-applicative, MacQueen-weak

(5) let nop = fn f => fn x =>
let g =fny=>1x
in x
end
in let h = ncp {fn a => !(ref a))
(fn b => b)
in (h 0;
h true)
end
end

FX-89-pure can type this example because the side-
effect analysis system correctly determines that nop has
no latent side-effects, because the evaluation of nop ap-
plied to any arguments £ and x will merely return x. If
1 were applied by nop, then the latent effect of the type
of nop would include the latent effect of its argument
type, the type of £. Therefore, the defining expression
for h is pure, and may be abstracted with respect to the
type of b.

Damas-III and Tofte-applicative cannot type this ex-
ample because the store-typing analysis methods as-
sume that allocation has occured at the type of a during
the evaluation of the defining expression for h (the ap-
plication of nop). The binding of g in the definition of
nop constrains the type of a to be the same as the type
of b. Therefore, type abstraction with respect to the
type of b is not permitted.

MacQueen-weak cannot type this example because
the maximum weakness permitted for the type of a is
zero, because it is an operand of nop. Therefore, the
type of b is forced to strength zero and the type ab-
straction is not permitted. My intuition for this is that
nop is presumed to apply its arguments completely.

6.6 Damas-III, Tofte-applicative,
MacQueen-weak > FX-89-pure

(8) let X = fn a =>

let r = ref a
in fn b => Ir
end

in let £ =k []
in (£ 0;

f true;

false)
end
end

Damas-III, Tofte-applicative, and MacQueen-weak
can type this example because the defining expression
for t can be abstracted with respect to the type of b.
All three systems will not permit abstraction with re-
spect to the type of a, because an allocation at that
type will have occured. However, this does not prevent
the other abstraction, because the types of a and b are
not related.

FX-89-pure cannot type this example because the ab-
straction rule requires that no allocations have taken
place, and does not distinguish between the type vari-
ables at which allocations have taken place and the type
variables at which no allocation have (or will) occur.

6.7 Further Speculation

However, the above example will be typed by FX-890-
pure if an explicit abstraction is inserted within the def-
inition of X It L alsu witcicilng to Sbscive that even
with an explicit type abstraction in the definition of k,
it will not be possible to give £ a generic type, because
of the pure-abstraction rule. Yet £ will be automati-
rally projected as required in this example, and £ can
Lo opeucd explicitly as well. Special casing the abstrac-
tion rule in let to permit generalization by opening
would circumvent this peculiarity, although it will not
eliminate the need for explicit abstractions.

Also, I do not expect explicit abstractions to solve
this problem in general. Including types in alloca-
tion (and perhaps other) effects, and relaxing the pure-
abstraction rule to examine the side effects and selec-
tively permit type abstractions should provide a much
more general treatment of this problem. I call this the
“Alloc@T” typing system. This system is essentially
the system which is mentioned in [Damas85] on pages
90--91, where he observes that attaching sets of types to
type arrows will complicate the unification algorithm
for types. Damas-III therefore attaches a set of types
to type scheme arrows and also a set of types to typing
assertions. Tofte-applicative may be viewed as attach-
ing a single set of types to type schemes.

7 Summary

Damas-III is strictly superior to Tofte-applicative, but
MacQueen-weak and FX-8C pure are incomparable to
either of the above. Tofte has suggested in [Tofte89] that.
MacQueen-weak is strictly superior to Tofte-applicative,
but this is not the case (see example (4)).

Appendix (sml)

Examples provided in sml syntax.

(1) let val £ = let val x = (fn x => x) 1
in (fn y => ‘(ret y))
end

in (f 1; £ true)

end;
(2) No known example.

(3
let fun fold £ i 1 =
let val data = ref 1
and result = ref i
in while (!data <> []) dc

(result := f(hd ('data))('result;,
data := tl(!'data)
);
ixesuic
wnd

and cons a b = a::b

val fast._reverse = fold cons []
in fast_reverse [3,5,7];

fagt reverse [true,true,false]
end;

(4) let fun id x = x
and rid x = !(ref x)
fun £ y = rid id y
in (2 0O;
f true)
end;

(56) let fun id b = b
and rid a = !'(ref a)
and nop f x =
let fun g y = f x
in x
end
val h = nop rid id
in (h 0;

h true)
end;

(8) let fun ka =
let val r = ret a
in fn b => Ir
end
val £ s kx [J
in (£ 0;
1 true,
false)
end;

Appendix (fx)
Examples provided in FX-89 syntax.

(1)
(1et ((£ (Let ((x ((lambda (x) x) 1)))
(lambda (y) (get (mew y))))))
(begin
(t 1)
(£ #t)))

(2) No known exampl‘e.

3)
(let ((fold (lambda (£ i) (lambda (1)
(let ((data (new 1))
(result (new 1)))
(vegia
(vhile (not (null? {get data)))
(begin
(set result (f (car (get data))
(gst result)))
(set data (cdr (get data)))))
(get result))))))))
{1et ((fast_reverse (fold cons nil)))
(begin ‘
(fast_reverse (list 3 6 7))
(fast_reverse (list #t #t #1)))))

(4) (l1et ((id (lambda (x) x))
(rid (lambda (x) (get (new x)))))
(1et ((f (lambda (y) ((rid id) y))))
{begin
(1 0)
(1 #t))))

(8)
(let ((id (lambda (b) b))

(rid (lambda (a) (get (new a))))
(nop (lambda (1)
(lambda (x)
(let ((g (lambda (y) (f x))))
x)))))
(let ((h ((nop rid) id)))
(begin
(h 0)
(h #t))))

(8) (let ((k (lambda (a)
(let ((r (new a)}))
(lambda (b) (get 1).)););
(et ((f (k nil)))
{begin
(1 0)
(f #t)
#1)))

References

[Damas82] Damas, L., Milner, R., “Principal type-
schemes for functional programs”™, Proccrdings «of
the 9th Annual Symposium on Principles of I'ro-
gramming Languages, January 1982, pages Q07

212.

[Damas85] Damas, L., “Type Assignment in Pro
grainming Lanuages”, Ph D. Thesis (ST 33 =5,
University of Edinburgh, April 1985.

[Gifford87] Gifford, D. K., Jouvelot, P., Lucassen, J
M., Sheldon, M. A., The FX-87 Rcference Manual.
MIT/LCS/TR-407, October 1987.

[Hindley69] Hindley, R., “The principal type-scheme
or an ovject in combinatory logi”, T.unsactions
of the American Mathematical Society, vol. 116,
1969, pages 29-60.

[Lucassen87)] Lucassen, J. M., Types and Efjects: To-
wards the Integration of Functional and Imnperative
Programming, Ph.D. Thesis MIT/LCS/TR-i0%,
Massachusetts Institute of Technology, S« ptember
1987.

[MacQueen84] MacQueen, D., “Modules fr Stan:
dard ML”, Proceedings of the 1984 ACM Confer-
ence on LISP and Funclional Programmang, 1084,
pages 198-207.

[Milner78] Milner, R., “A Theory of Type Polyn or
phism in Programming”, Journal of Computcr and
System Sciences, vol. 17, 1978, pages 349 37n.

[Morris68] Morris, J 7, Lambda-Calculus Models of
Programming Languages, Massachusetts Institute

of Technolegy, MAC-TR-57, 1968.

{0"Tool=89] O Toole, James William, Jr., Type Re-
- nslruction with First Class Polymorphic Values,
MIT/LCS/TM-380, 1989.

[Tofte87] Tofte, Mads, Operational Semantics and
Polymorphic Type Inference, Ph.D. Thesis, Univer-
sity of Edinburgh, 1987.

Acocession For

NTIS GRA&L
DTIC TARB
Unannounced

Justificatio

alal-}

By
| Distridution/

f Azgg;apg}}tgqudgs
| iAvail and/ar
Diat Speaial

