
AD-A240 076

LAB[ORATORY FOR AMASSACHUSETTSLABOATOR FORINSTITUTE OF

COMPUTER SCIENCE TECHNOOGY

MIT/LCS/TM-390

TYPE ABSTRACTION RULES
FOR REFERENCES:
A COMPARISON OF
FOUR WHICH HAVE

ACHIEVED NOTORIETY

James William O'Toole Jr. OTIC

ELECTE
__________ SEP.04 19911I V3TUTON BTftIXIT A Itl

Appv~d kv pubMo rawq
Dbt~~ Uaflatbd

August 1991

c4c Trv-r"ONln.nV SOIJARE, CAMBRIDGE, MASSACHUSETTS 02139

91-09537IHIl!~ l$1llI91l 4 o .,

REPORT DOCUMENTATION PAGE

!a REPORT SECjRITY CLASSIFC4,ON lb ESTR!C7;VE- MARKINGS

2a. SE0UR~iY CQASSiFi Ai:ON AUTHOR Tv 3 OISTRI6UT!CN 'AVAILABILITY OF REPORT

__
Aoroved; :or :publiz releaase; dsrbtc

2b. OECUASiF-CA71ONi DOWNGRADING SCHEDULE i n~:tc

DEFORMINC CRGANiZATiON REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMVBER(S)

>1(1.. CS/ 390N00014-83-K-0I 25

4,%MiE !2 ;DRFORMING ORGANIZATiON 6b OF;:CzE SYMBOL 7a, NAME OF M~CNITORING ORGANIZATION

LabD fir Comouter ScienzZ j I piialjOfieo aval Researcni Deor. of Na-.-:

's. ,DCPESS (Cry, State, and ZIP Coxle) 7b. ADDRESS (Cry. State, and ZIP Code)

-~ so~vSquara IFormation Sy scems Program

Ca7no r:g e 0A 021329 Arlington., VA~ 21

3a. NAME 0: :7 NDING, SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT NSTRJMENT IDENTIFICATION NUMBER

ORGANIZA71C.N (if applicable)

-DD.ORES Ciry, State, ano ZIP Coce) ',0. SOURCE OF C;-NDING NUMBERS

PROGRAM PROJEC77 TASK WORK UNITr

DzJu.ELEMENT NO4 No. NO0 ACCESSTCN

-- I- !ncluae Security C!assificarion) o

-~~~~~~~~~ \t rtinR15 fr efrne: Acomparison of Four Mihich Have Achieved Notr

--7SONAL A'uTHOR(S) James William O'Tcuole, Jr.

711MEi COVERED 14. DATE OF REPORT ' Yea Month, 0ay SAGE COUNT

- jRoM TO August , 9

.5 PPLEEMENTa.RY NOTAT;ON

COSATI CODES 18- SUBIECT TERMS (Continue on reverse if necesary an denrj;.bv block number)

;E;D I GROUP SUB-GROLJP type systems, polYmorphic referencesd muta~ ion,

effct ystmsjye inference, type reconstruction,

imperative types, weak polymorphism, Standard ML, FX-89

'ACT r, Continue on reverse f necessary and identify by block number)

Ipresent four type abstraction rules which have been

intoduedby various authors to prmiut polymorphic

te safety in the presence of mutable dataEcho

ttyp abtation rules is discussed in the context of

abstraction rules are Compared.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT -TATSCjIYCASFCTO

C3 UNCLASSIFIED/UNLIMITWz- EJ SAME AS RPT DTVRAC SECURIT CLASSIFICATIONe

- 2aNAME OF RESPONSIBLE iNDIVIDUAL 22bI UER TLEPON c (SImude Area Code) 22c. OFFICE SYMBOL

Ca,& FU$M 1473, (6 17) 25 3- 58 4

00Fm 43 4MP83 APR edition may be used until exrvausteo; SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

Unc lassi fied

Type Abstraction Rules for References:

A Comparison of Four Which Have Achieved Notoriety

James William O'Toole Jr.*

Abstract 1 Type Abstraction Rules

I present four type abstraction rules which have been
introduced by various authors to permit polymorphic

type safety in the presence of mutable data. Each of

the type abstraction rules is discussed in the context of 1. FX-89-pure: expression abstracted must be pure

the language in which is was introduced, and the various 2. Tofte-applicative: one-level store types
abstraction rules are compared.

3. Damas-III: two-level store types
Categories and Subject Descriptions: D.3.1 [Program-
ming Languages] - Formal Lefinitions and Theory; 4. MacQueen-weak: type variables have strength

D.3.3 [Programming Languag4es] - Language Con-

structs: Implicit Typing; D.l.m [Programming Tech-

niques] - Miscellaneous: Polymorphic References; 2 FX-89-pure

General Terms: Languages, Type Theory, Polymor- Attaches specific side-effect information to all function

phism, Reference Values. arrows and enforces the correctness of these effect spec-
Additional Key Words and Phrases: type systems, poly- ifications. The expression which is abstracted with re-
morphic references, mutation, effect systems, type infer- spect to a type variable must have no (immediate) side
ence, type reconstruction, imperative types, weak poly- effects.

morphism, Standard ML, FX-89.
This ought to make it a very restrictive rule, as corn

pared to the others. (Aside from the fact that I expect
the checking of the side-effect specifications to disallow

more programs.) However, inserting an explicit type ah-
straction at the appropriate point within the expression

might alleviate the problem.

2.1 FX-89 Language Syntax

t I ::= Identifiers

r P Primitive types

*National Science Foundation Graduate Fellow. V U P primitive type
This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored type identifier

by the Office of Naval Research under contract number N00014- U --* U function
83-K-0125.
Authors' addres: MIT Laboratory for Computer Science, 545 e : = I variable
Technology Square, Cambridge, Massachusetts 02139. (lambda (I) E) lambda
F-mail: Jat.s@zsruatt.lcs.uit.du (E E) application

(let (I E) E) generic-let

The type domain U contains the types which are sup-

I'ied by the programmer in explicit type declarations.

The type of a function encodes the type of its argument

and its result. If the type of the argument is nzonomor- where ai...a, are the generic variable.s of r E T.

phic, then it may be omitted. The type Vt.v represents
the type of polymorphic values abstracted over the type

paraetert. -The symbols V and V are distinguished delibera,:
parameter V binds the generic type variables of a type scheme, and

In the expression domain, lambda abstracts E over V binds type variables within a type.

the ordinary variable I.
Definition (Alpha-renaming). Types r and r' arc
alpha-renamable (written i-_ r') iff some renaming of

2.2 Deductive System type variables bound in r produces r'.

I present the typing system of IFX as as formal deduc-
tion system consisting of a set of type reconstruction Definition (Instantiation). The type r' is an in-
rules. The type system contains generic (i.e. general) stance of the scheme q = Va...a,.r (written u >'- r') iff

ty?- "-_!es, and distinguishes between these generic there are monomorphic P...pn such that r[/Ii/aj - r'.

type variables and the type identifiers which appear in (The >- relation extends to type schemes by tj '- 1)' iff

user-supplied types. The type system also distinguishes Vr : r7 r =* j >- r.)

between monomorphic and polymorphic types:

a G General type variables Note that only M types may be substituted to produce
instantiations, and that it is assumed that substitution

N = P primitive type takes place with renaming of any bound type variabks
I type identifier to avoid capture. The result of substituting it for t in
G general type variable r will be written 71p/t]. The type scheme qj = Vr,
N-- N function having no generic type variables, will occasionally be

r : T P primitive type abbreviated as r.

I type identifier The inference rules for explicitly typed terms are pre-
G general type variable sented first. A type assignment A maps each variable in
T -- T function its domain to a type scheme. The notation A, refers to

VI1 ...I,.T polymorphic type the type assignment A with the assignment for variable

The IFX typing rules make use of an important dis- z removed.

tinction between the M and T type domains. The rules
are designed so that M types may be omitted from The notation FGV(r) refers to the free general type
formal argument type declarations, but T types may variables of r, and FTV(r) to refer to the free type iden-
not. Thus, the different levels in the type syntax spec- tifers of t y FV)efes t the fregentrAl
ify the restrictions on the input programs. The use of type variables of the type schemes in the assignment A.
syntactically-specified restrictions is intended to com- Also, Gen(A, r) is defined as follows:

municate clearly to the programmer the limitations of
the type reconstruction system. Definition (Generalization). The generalization

of r with respect to A (written Gen(A, r)), is the type

Type Schemes scheme q7 = Vai.r, where {ai) = FGV(r) - FGV(A).

The IFX type system supports the generic polymor-
phism found in ML, as well as the explicit polyrmt-rphism
found in Reynolds' second-order polymorphic lambda Typing Rules
calculus. In order to provide generic polymorphism,
type schemes are defined which represent the generic

(i.e. general) type of a variable which is permitted mul- The type reconstruction rules of IFX are as follows:
tiple insiantiations:

ILAMBDA
Definition (Type Scheme). A type scheme r is a
term of the form A, + (z : p) F- e :r

Vtal... an.r, A - (lambda (x) --

APPL 1.1 Definitions
A F e : r --

A I e The typing system distinguishes between imperative and

A F (e e.) r, applicative type variables:

The above rules describe the typing requirements of t E AppTyVar
value abstraction and value application. u E ImpTyVar

The following rules describe the typing requirements a E TyVar = AppTyVar U ImpTyVar

of variables and the ML-style generic let construct.
T : (: P primitive type

G type variable
VARINST N --+ X function

(z : Vai.r) E A r ref reference type

A F z : r[pi/ai]

ILET Definition (Type Closure). The type closure of r

A F eb : m with respect to A (written ClOsAr), iS the type scheme

A - eb : b = Gen(A, rb) >- Gen(A,Tr) r? = Va,.r, where {a) = tyvars r - tyvars A.

A, + (z : Gen(A, rb)) I- e: r

A F (let (U eb) e) : r Definition (Applicative Type Closure). The ap-

plicative type closure of r with respect to A (written

Generic let AppCIOSAr), is the type scheme Yj = V/a1 .r, where

{ai} = apptyvars r - apptyvars A.

The ILET and VARINST rules provide the ML-style

generic let. ILET associates a generic type scheme When a type scheme is instantiated, only imperative
with the let-bound variable, and VARINST permits types may be substituted for imperative type variables.

each occurence of the variable to be independently as- An expression is considered to be expansive if its evalua-

signed any instance of its generic type scheme. The tion might expand the domain of the store (i.e., allocate
convenience of automatic generalization and instantia- mutable data). The classification adopted in [Tofte87]
tion are provided by these two rules. In IFX, the typing is that let expressions and applications are expansive,
rules permit this convenience with the caveat that the but lambda abstractions and variable accesses are not.

automatically deduced type parameters be M types.

The typing power of the ILET rule is equivalent to
that provided by rewriting the let expression in the

usual way, while making use of open and close: 3.2 Typing rules

((lambda. (: r) e[(open x)/z]) (close eb)). The reference creation operator ref is assigned the irm-

However, this transformation is not pure syntactic perative type Vu.u - u ref. The rules which provide

sugar, because it requires r, the explicitly polymorphic type abstraction of expansive and non-expansive ex-

type of the bound variable. pressions in the imperative/applicative system are as

follows:

3 Tofte-applicative VARINST

(z : Va,.r) E A

Contaminates all type variables appearing in any type A A

expression at which the ref constructor is instantiated. A F- x : r[pi/ai]

The contaminated type variables are imperative, the
others are applicative. This distinction is maintained LET-Expansive

by Lype abstraction, and is enforced at function call

boundaries, etc. The abstraction rule does not permit A Fe6 :

abstractions of expansive expressions with respect to eb is expansive.

imperative type variables; expansive expressions are le, A, + (z : AppCiosAn) F e : r

and application expressions. A - (let (z eb) e) : r

3

LET-Non-expansive A (written DCIoSAA77), is the type scheme il' = ',.Y1,
where {ai} = tyvars q - (tyvars Atyvars A.

A - eb : r

eb is ,o-i--pzi-s;,ve.

A + (x : ClOSA T) F e : T When a type scheme is instantiated, the subtit ujti,

A - (let (z eb) e) :7- is used to expand the set of type variables, and the set

of type variables may be spuriously expanded as well.

3.3 Applicative Types and FX-89
4.2 Typing rules

In FX-89, type abstraction is permitted only when the

side-effect specifications ensure that the polymorphic The reference creation operator ref is assigned tie im-

expression is referentially transparent. [Tofte87] takes a perative type Vt.t - t ref * {t}. The rules which pro-

different approach, based on the concept of applicalive vide type abstraction and instantiatin are as flws.

types. Tofte classifies certain expressions as expansive,

and permits type abstraction of these expressions only DVARINST

with respect to applicative type variables. This type ab-

straction rule permits different type abstractions than (z : Vai.r) E A

does the FX 89 pure-type-abstraction rule, as I will A F- x : r i * €

show later. Perhaps the imperative typing discipline

can be combined with the type reconstruction system DLET

of FX-89. A Feb :rb * A
A, + (x : DClOSAr/b) - e * A

AF- (let '-eb) e) :r*A

4 Damas-III The rules which describe the typing requirements f

value abstraction and value application are as follows:

Maintains a two level version of imperative types, distin-

guishing those type variables which have been contam-

inated already from those which will become contami- DLAMBDA

hated by further application. The deductions carry a A- + (x r) F e :r

set of type variables, and so also do any type schemes

which are arrows. Types, however, do not carry sets of A F (lambda (z) e) (. r

type variables, nor is there more than a singie top-level

such set in a type scheme. DAPPL

A - e (r, -. r) , A

A F e, : *r * A

4.1 Definitions A - (e e,) r, * A

The typing system defines schemes to include a set of

type variables: 5 MacQueen-weak

aE TyVar
Attaches numbers to type variables which measure their

r T : P primitive type "weakness" (strength). The numbers indicate how

G type variable many applications must take place before a reference to

T - T function the type variable might have been created. Abstracl'101

r ref reference type is permitted only with respect to type variables wli,,s.

: S = T type weakness remains positive. Weakness is downward cont-
T - T A impure function taminating, and the reference constructor is the source
Va.r/ polymorphic type of contamination. A further restriction is riot, yet well

understood: An instantiation of a let-bound variable is

strength-limited somehow, related to the outermost. ab-

Definition (Type Closure). The type closure of q straction level at which the expression of which it. is part

with respect to type assignment A and type variables appears as an operand. Better figure this out.

4

5.1 Definitions The tollowing rules describe the typing requirements

of variables and the ML-style generic let construct.

The typing system distinguishes between imperntive and
applicative type variabes: WINST

w E Strength={...,-1,,1,...,oo} (z : Va".r) E A
a E Tyvar [ri] ,

a E WeakTyVar = TyVar x Strength A -z : r[ri/ai]

r : M ::= P primitive type

G type variable WLET

M --+ K function
r ref reference type A F" eb

A + (z : WeakClosAT) F e : r

Definition (Strength Limit). The type r is w- A F- (let (Z eb) e) : r

strength limited, written [r]w, iff all type variables in
r with non-infinite strength have strength less than or The reference value constructor ref is assigned the
equal to w. type Va 1'.a I

- a1 ref.

Definition (Strengthening). The strengthening of r,
written [-r++, is the type in which all type variables 6 Comparison of
with non-infinite strength have incrementally larger
strength. So [r. -- rj+* = [r.]++ _+rb]++, and Abstraction Rules

[ao]++ _ a-, but [aw]++ =a + 1.

6.1 Darnas-III > Tofte-applicative
Definition (Weak Type Closure). The weak type
clo.nre cfr with respect to A (written WeakClosAr), is (1) let f = let X = (fn X => X) 1
the type scheme rq = V a .r, where (ai} = tyvarsT- in (n y > !(ref y))
tyvars A, and wi = rnin{wa aL E tyvars r}. end

in (f 1; f true)

When a type scheme is instantiated, the type substi- end
tuted for a type variable must not be stronger than the

type variable. [Tofte87] provides this example on page 73.

Weak Typing Rules Damas-ITI can type this system because the let ex-
pression defining f is abstractable with respect to the
type of y. This is the case because the two-level analysis

The type reconstruction rules of MacQueen-weak are as of the allocated types of the let expression reveals that
fHllows: none are already allocated, although the type of y w';;

be allocated by further application.

WLAMBDA Tofte-applicative cannot type this system because the

A, + (z: p) F e : r one-level analysis reveals merely that the type of y is-or

A F- (lambda (z) e) : [p --+ r]++ will-be allocated, and the let expression is considered
expansive, so the type abstraction is not permitted.

WAPPL
A F e : [r, -.

A -e, : 6.2 Tofte-applicative > Damas-III

[-ro10

A F- (e ea) :ri (2) No known example.

The above rules describe the typing requirements of
value abstraction and value application. (Tofte87] states on page 73 that an embedding exisb.

5

6.3 MacQueen-weak > example because the two-level analysis also reveals that

Tofte-applicative, Damas-III the lambda expression defining f has not yet. allocated

at any types.)

(MacQueen-weak cannot type this example, because
let fold = fn f => fn i => fn 1 => ridmust be given atype with strength one, and yet rid,

let data = ref 1 after instantiation, is applied twice. This lowers the

result = ref i strength so that the strength of the type of y becomes
in (while (!data <> 0) do zero. Therefore, the type abstraction is not permitted.

(result := f(hd(!data))(!result);

data := tl(!data));

!result) 6.5 FX-89-pure > Damas-Ill,
end Tofte-applicative, MacQueen-weak

in let fast-reverse = fold cons D

in (f=it-reverse [3,5,7); (5) let nop = fn f => fn x =>
fast-reverse [true,true,false]) let g = fn y => f x

end in x

end end

in let h - ncp ,fn a => !(ref a))

[Tofte87, Example 4.5, mentioned on page 74. (fn b => b)

MacQueen-weak can type this example, because the
in (h 0;

h true)

counting methods used by the typing algorithm deduce end

that fold must be applied three times before any al- end

location occurs, and since fast-reverse is defined by
applying fold only twice, fast-reverse still has a type FX-89-pure can type this example because the side-
of strength one, and bo may be generalized with respect effect analysis system correctly determines that nop has

to the type of the elements of the list. no latent side-effects, because the evaluation of fop ap-

Tofte-applicative cannot type this example because plied to any arguments f and x will merely return x. If

the one-level store typing analy.is considers the expres- I were applied by nop, then the latent effect of the type

siori (fold cons [) to be expansive, and therefore of nop would include the latent effect of its argument

does not permit the type abstraction, type, the type of f. Therefore, the defining expression
for h is pure, and may be abstracted with respect to theDanas-lll cannot type this example because the two-

level method also considers all type variables to have type of b.

been allocated by the evaluation of (fold cons 0Q), Damas-III and Tofte-applicative cannot type this ex-

and therefore does not permit the necessary type ab- ample because the store-typing analysis methods as-

straction. sume that allocation has occured at the type of a during
the evaluation of the defining expression for h (the ap-
plication of nop). The binding of g in the definition of

6.4 Damas-Ifl, Tofte-applicative > nop constrains the type of a to be the same as the type

MacQueen-weak of b. Therefore, type abstraction with respect to the

type of b is not permitted.

(4) let rid = fn x => !(ref x) MacQueen-weak cannot type this example because
in let f = fn y => rid (fn a => a) Y the maximum weakness permitted for the type of a is

in (f 0; zero, because it is an operand of nop. Therefore, the
endf true) type of b is forced to strength zero and the type ab-
end straction is not permitted. My intuition for this is that

end nop is presumed to apply its arguments completely.

Tofte-applicative can type this example, because the

defining expression for f is a lambda abstraction, which 6.6 Damas-III, Tofte-applicative,
is considered non-expansive, and so the type abstraction MacQueen-weak > FX-89-pure
with respect to the type of y is permitted even though

it is an imperative type. (Damas-Ill can also type this (6) let k = fn a =>

6

let r = ref a 7 Summary
in fn b => !r

end Damas-llI is strictly superior to Tofte-applicative, but
in let f = k 0 MaeQueen-weak and FX-8C pare are incomparable to

in (f 0; either of the above. Tofte has suggested in [Tofte89] that.
f true; MacQueen-weak is strictly superior to Tofte-applicati v,
false) but this is not the case (see example (4)).

end
end

Appendix (sml)
Damas-III, Tofte-applicative, and MacQueen-weak

can type this example because the defining expression Examples provided in sml syntax.
for f can be abstracted with respect to the type of b.
All three systems will not permit abstraction with re- W let Val f = let Val X = (fn X => X)
spect to the type of a, because an allocation at that in (fn y => !(ref y))
type will have occured. However, this does not prevent end
the other abstraction, because the types of a and b are in (f 1; f true)
not related. nd ;

end;

FX-89-pure cannot type this example because the ab-
straction rule requires that no allocations have taken (2) No known example.
place, and does not distinguish between the type vari-

ables at which allocations have taken place and the type (3)
variables at which no allocation have (or will) occur. let fun fold f i 1 =

let val data = ref 1

and result = ref i
6.7 Further Speculation in while (!data <> [) do

(result := f(hd (!data))(!result;,
However, the above example will be typed by FX-89- data := tl(!data)
pure if an explicit abstraction is inserted within the def-
in!')..t of k. I _* alsr. to obczie L..ld ever. !Xeaul
with an explicit type abstraction in the definition of k, and

it will not be possible to give f a generic type, because and cons a b = a: :b
of the pure-abstraction rule. Yet f will be automati- val fast..reverse = fold cons 0
rally projected as required in this example, and f can in fast-reverse (3,5,7J;

c. ope.,(" explicitly as well. Special casing the abstrac- fast-reverse [true,true, false]

tion rule in let to permit generalization by opening end;
would circumvent this peculiarity, although it will not
liminate the need for explicit abstractions. (4) let fun id X = X

Also, I do not expect explicit abstractions to solve and rid x = !(ref x)

tbis problem in general. Including types in alloca- fun f y = rid id y

tion (and perhaps other) effects, and relaxing the pure- in (f 0;

abstraction rule to examine the side effects and selec- I true)

tively permit type abstractions should provide a much end;

more general treatment of this problem. I call this the
"AllocOT" typing system. This system is essentially (W) let fun id b = b
the system which is mentioned in [Damas85] on pages and rid a !(ref a)
9a-91, where he observes that attaching sets of types to and nop f x =
type arrows will complicate the unification algorithm let fun g y = f X
fcor types. Damas&-llI therefore attaches a set of types in x
to type scheme arrows and also a set of types to typing end

gsertions. Tofte-applicative may be viewed as attach- val h = nop rid id
ing a single set of types to type schemes. in (h 0;

7

h true) (rid (lambda (a) (get (new a))))

end; (nop (lambda (f)

(lambda (x)

(6) let fun ka
(let ((g (lambda (y) (f x))))

let val r = ref a x)))))

in fn b => ir (let (h ((nop rid) id)))

end
(begin

val f = k 0
(h O)

in (f 0;
(h #t))))

f true;

false) (6) (let ((k (lambda (a)

end; (let ((r (new a)))

(lambda (b) (get x));

(let ((f (k nil)))

Appendix (fx) (begin

(f 0)

Examples provided in FX-89 syntax.
(f 0

(")

(let ((f (let ((x ((lambda) x) W) References
(lambda (y) (get (new y))))))

(begin
(f 1) [Damas82] Damas, L., Milner, R., "Principa! iv;,-

(f #t))) schemes for functional programs", Pror,di, ,f(

the 9th Annual Symposium on Prnclpk(. ,f /'T,-

(2) No known example. gramming Languages, January 1982, pages '2 7

212.

(3) [Damas85] Damas, L., "Type Assignment in l'r,

(let ((fold (lambda (f i) (lambda (1) gransing Lanuages", Ph D. Thesis ('STii3 33'.

(let ((data (new 1)) University of Edinburgh, April 1985.

(result (new))) [Gifford87] Gifford, D. K., Jouvelot, P., Luc; s,&ti, .J
(,oegiM

(while (not (null? (get data))) M., Sheldon, M. A., The FX-87 D-ferYnc, Manual.

(begin MIT/LCS/TR-407, October 1987.

(set xesult (f (car (get data)) [Hindley691 Hindley, R., "The principal type .sch;ne

(get reslt))) of an objcct lii c Abinatary log:-', ,..Jnsactions

(set data (cdr (get data))))) of the American Mathematical Society, ' ol. I IC,
(get reslt)))))))) 16,pgs2-0

(let ((fast.xeverse (fold cons nil))) 1969, pages 29-60.

(begin [Lucassen87] Lucassen, J. M., Types and Eft cls: -

(fast-reverse (list 3 5 7)) wards the Integration of Functional and Imrperatt r

(fast.reverse (list #t #t #f))))) Programming, Ph.D. Thesis MIT/LC'Si VRliI ,

Massachusetts Institute of Technology, S, pti ni,'-r

(4) (let ((id (lambda Cx) x)) 1987.

(rid (lambda (x) (get (n x))))) [MacQueen84] MacQueen, D., "Modules f,r St,oi(let ((f (lambda (y) ((rid id) y)))) d r V r c e i g f t e 1 8 M C n tr
(begin dard ML", Proceedings of the 1984 A CM (,,nf, r

(f 0) ence on LISP and Functional Programming, 1981,
(f 0t)))

pages 198-207.

[Milner78] Milner, R., "A Theory of Type Polyii .')r

CS) phism in Programming", Journal of Compulfr andl

(let ((id (lambda (b) b)) System Sciences, vol. 17, 1978, pages 349 37-1.

8

[Morris68] Morris, J - , Lambda-Calculus Models of

Programming r!anguages, Massachusetts Institute

of Technolkgy, MAC-TR-57, 1968.

[O'Toolr89] O'Toole, James William, Jr., Type Re-

, nftruction with First Class Polymorphic Values,

MIVT/LCS/TM-380, 1989.

[Tofte87] Tofte, Mads, Operational Semantics and

Polymorphic Type Inference, Ph.D. Thsis, Univer-

sity of Edinburgh, 1987.

Acoession For

NTIS GRA&I (I

DTIC TAB []

Unrinno'xaed 13
just ification

By_

Distribution/...

Availabillt.Y Cades

,Avail and/or

Dt -.4t SPelal

9

P

